首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compressional (VP) and shear (VS) wave velocities and the dependent elastic constants have been determined by the pulse transmission technique to 6 kb confining pressure at room temperature and to 700° C at 6 kb confining pressure for eleven basalts from the Faeroe Islands. The Faeroe basalts investigated are tholeiitic, they clearly lie within the tholeiitic area, and display a pronounced trend of iron enrichment from rocks with an M/M + F ratio of 0.5 to rocks with an M/M + F ratio of about 0.25. The mean VP and VS for eleven specimens are 5.57 km/sec and 3.18 km/sec, respectively. Velocity—density relations for the basalts might be more appropriately described by non-linear solutions than by linear relations commonly used for basalts. In general, VP and VS remain unaffected by temperature up to 300° C. At higher temperature the changes in wave velocities are influenced by metamorphic processes and are, therefore, somewhat erratic. In zeolite-bearing specimens an abrupt velocity decrease around 350°C is observed, which correlates well with a drastic compaction of bulk volume. Additional experiments on cold-pressed zeolite powder clearly indicate that the sharp velocity decrease in the basalts is related to dehydration of zeolite minerals. Partial-melting processes, which occur within vesicules and pore-spaces at distinctly higher temperatures have no additional effect on wave velocity. Comparison with field data reveals that, without exception, the velocities at 0.5 kb confining pressure display the same range that has been commonly noted in refraction data for Layer 2. There are no significant differences in wave velocities and the pressure—temperature dependence in samples recovered from the upper, middle, and lower basalt series in the Faeroe Islands.  相似文献   

2.
A simple mathematical relation among the dip of isograd surface (θ), dip of isotherm surface (α), temperature gradient (Tg), pressure gradient (Pg) and δT/gdP of reaction is given by:
Pg is taken to be constant at 0.3 kb/km. Four major theoretical models for shapes and orientations of isograds are formulated on the basis of the parameters α, Tg and δT/δP. This offers a rational basis for studying the geometry of isograds, normal/reverse metamorphism and determination of temperature gradient. Two examples have been studied in the light of these models; in one case the domed shape of the isograd is best explained by a downwardly directed Tg; in the other case, reverse metamorphism is best explained as the result of a horizontal Tg of 18°C/km.  相似文献   

3.
Compressional wave velocities (VP) at above-solidus temperatures and at 1 GPa were obtained for a granite and amphibolite, which are considered to be major constituents of the continental crust. The temperature variation of velocities showed that the VP values of granite decreased with rising temperature, but substantially increased beyond the melting temperature (850–900 °C). Such an increase may be caused by the α–β transition of quartz. The velocities of amphibolite decreased linearly with increasing temperature and dropped sharply at temperatures above the solidus (700 °C), indicating that partial melting of amphibolite acts to significantly lower the seismic velocities.  相似文献   

4.
The metamorphic evolution of a key sector of the western Mediterranean internal Alpine orogenic belt (southern Calabrian Peloritani Orogen) is identified and described by means of PT pseudosections calculated for selected metapelite specimens, showing evidence of multi-stage metamorphism.Attention focused on the two lowermost basement nappes of the Aspromonte Massif (southern Calabria), which were differently affected by poly-orogenic multi-stage evolution. After a complete Variscan orogenic cycle, the upper unit (Aspromonte Peloritani Unit) was involved in a late-Alpine shearing event. In contrast, the several underlying metapelite slices, here grouped together as Lower Metapelite Group, show exclusive evidence of a complete Alpine orogenic cycle.In order to obtain reliable PT constraints, an integrated approach was employed, based on: a) garnet isopleth thermobarometry; and b) theoretical predictions of the PT stability fields of representative equilibrium assemblages. This approach, which takes into account the role of the local equilibrium volumes in controlling textural developments, yielded reliable information about PT conditions from early to peak metamorphic stages, as well as estimates of the retrograde trajectory in the pseudosection PT space.According to inferred detailed PT paths, the evolution of the Aspromonte Peloritani Unit is characterised by a multi-stage Variscan cycle, subdivided into an early crustal thickening stage with PT conditions ranging from 0.56 ± 0.05 GPa at 570 ± 10 °C to 0.63–0.93 GPa at 650–710 °C (peak conditions) and evolving to a later crustal thinning episode in lower PT conditions (0.25 GPa at 540 °C), as documented by the retrograde trajectory.Conversely, the prograde evolution of the rocks of the Lower Metapelite Group shows evidence of a HP-LT early Alpine multi-stage cycle, with PT evolving from 0.75–0.90 GPa at 510–530 °C towards peak conditions, with pressure increasing northwards from 1.12 ± 0.02 GPa to 1.24 ± 0.02 GPa, and temperatures of 540–570 °C.A late-Alpine mylonitic overprint affected the rocks of both the Aspromonte Peloritani Unit and the Lower Metapelite Group. This overprint was characterised by an initial retrograde decompression trajectory (0.75 ± 0.05 GPa at 570–600 °C), followed by a joint cooling history, ranging from 0.38 ± 0.14 at temperature from 450 to 520 °C.These inferred results were then used: a) to interpret the Lower Metapelite Group as a single crystalline basement unit exclusively affected by a complete Alpine orogenic cycle, according to the very similar features of PT paths, comparable petrography and analogous structural characteristics; b) as a tool for more reliable correlations between the Aspromonte Massif, the other Calabrian terranes and the north African Orogenic Complexes. They may therefore consider a contribution to the geodynamic modelling of the western Mediterranean.  相似文献   

5.
Measurements of compressional wave velocity Vp were made in a gas apparatus to 500°C at 10 kbar in three cores of an anisotropic dunite specimen from Twin Sisters Mountain. The axial directions of the three chosen cores coincide with the preferred directions and concentration of olivine crystallographic axes (a [100], b [010], andc [001]).Measured (δVp/δT)p values at 10 kbar in the three cores (−6.7, −5.4 and −6.2 · 10−4 km/sec · deg, respectively), and the mean value for the dunite (−6.1 · 10−4 km/sec · deg) are larger than the Voigt-Reuss-Hill values calculated from single-crystal data. This discrepancy is explained by the presence of internal thermal stresses, due to anisotropic expansion of olivine grains, causing grain boundary cracks to widen.It is concluded that high negative values of (δVp/δT)p for rocks reported in the literature should be carefully evaluated in terms of the formation of new cracks or widening of cracks already present under high pressure-temperature environments.  相似文献   

6.
Rabaul caldera is a large volcanic depression at the north-east tip of New Britain, Papua New Guinea. The lavas range in composition from basalt to rhyolite and have a calc-alkalic affinity but also display features typical of tholeiites, including moderate absolute iron enrichment in flows cropping out around the caldera. The basalts contain phenocrysts of plagioclase and clinopyroxene with less abundant olivine and titanomagnetite. In the basaltic andesites olivine is rare, while orthopyroxene and titanomagnetite are common along with plagioclase and clinopyroxene. Orthopyroxene is also found mantling olivine in some of the basalts while in both rock types pigeonitic augite is a fairly common constituent of the groundmass. Plagioclase in both basalt and basaltic andesite often exhibits sieve texture and analysis of the glass blebs show them to be of similar composition to the bulk rock. Phenocrystic clinopyroxene is a diopsidic augite in both basalt and basaltic andesite. Al2O3 content of the clinopyroxene is moderately high (4%) and often shows considerable variation in any one grain. Calculations show that the microphenocrysts probably crystallised near the surface, while phenocrysts crystallised at around 7 kb (21 km). Neither the basalts nor the basaltic andesites would have been in equilibrium at any geologically reasonable P and T with quartz eclogite. Equilibration between mantle peridotite and a. typical Rabaul basaltic liquid could have occurred around 35 kb and 1270 °C. A basaltic andesite liquid yields a temperature of 1263 °C and a pressure of 28 kb for equilibration with mantle peridotite.Partial melting of sufficient volumes of mantle peridotite at these P's and T's requires about 15% H2O, but there is no evidence that these magmas ever contained large amounts of water. It is proposed that the Rabaul magmas were initially generated by partial melting of subducted lithosphere and subsequently modified by minor partial melting as they passed through the overlying mantle peridotite.  相似文献   

7.
M. Rossi  O. Vidal  B. Wunder  F. Renard   《Tectonophysics》2007,441(1-4):47-65
Theoretical models of compaction processes, such as for example intergranular pressure-solution (IPS), focus on deformation occurring at the contacts between spherical grains that constitute an aggregate. In order to investigate the applicability of such models, and to quantify the deformation of particles within an aggregate, isostatic experiments were performed in cold-sealed vessels on glass sphere aggregates at 200 MPa confining pressure and 350 °C with varying amounts of fluid. Several runs were performed in order to investigate the effects of time, fluid content, pressure and temperature, by varying one of these parameters and holding the others fixed. In order to compare the aggregates with natural materials, similar experiments were also performed using quartz sand instead of glass spheres. Experiments with quartz show evidence of IPS, but the strain could not be quantified. Experiments with glass spheres show evidence of several types of deformation processes: both brittle (fracturing) and ductile (plastic flow and fluid-enhanced deformation, such as IPS). In experiments with a large amount of water (≥ 5 vol.%), dissolution and recrystallization of the glass spheres also occurred, coupled with crystallization of new material filling the initial porosity. Experiments performed with a fluid content of less than 1 vol.% indicate creep behavior that is typical of glass deformation, following an exponential law. These experiments can also be made to fit a power law for creep, with a stress exponent of n = 10.5 ± 2.2 in both dry and wet experiments. However, the pre-factor of the power law creep increases 5 times with the addition of water, showing the strong effect of water on the deformation rate. These simple and low-cost experiments provide new insights on the rheology of soda-lime glass, which is used in analogue experiments, and of glass-bearing rocks under mid-crustal PT conditions. They also highlight the strong enhancement of plasticity of natural rocks in presence of fluid or of a glassy phase.  相似文献   

8.
This paper reports a study of the metamorphic evolution of pelitic, semi-pelitic migmatites and mafic granulites of the Chafalote Metamorphic Suite (CMS), Uruguay, which represents the southernmost exposures of high-grade metamorphic rocks in the Dom Feliciano Belt, Uruguain—Sul-Rio-Grandense shield, South America. This belt is one of the Brasiliano orogens that crop out along the Brazilian and Uruguayan Atlantic margin, and the CMS is one of several disconnected segments of supracrustal rock in a dominantly granitic terrain. Petrological evidence from CMS mafic granulites and semi-pelitic migmatites indicates four distinct metamorphic assemblages. The early prograde assemblage (M1) is preserved only as inclusions in porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by near-isothermal decompression (M3), which resulted in symplectites and coronitic textures in the mafic granulites and compositional zoning of Ca in garnet (decreasing rimwards) and plagioclase (increasing rimwards) in the semi-pelitic migmatites. The retrograde metamorphic assemblage (M4) is represented by hydration reaction textures replacing minerals of the M2 and M3 assemblages. Average PT calculations using the program THERMOCALC and conventional thermobarometric methods yield peak-metamorphic (M2) PT conditions of 7–10 kbar and 830–950 °C, near-decompressional (M3) PT conditions of 4.8–5.5 kbar and 788–830 °C and M4 retrograde PT conditions of 3–6 kbar and 600–750 °C. The calculated PT path for the CMS rocks is ‘clockwise’ and incorporates a near-isothermal decompression segment followed by minor cooling, consistent with a history of crustal thickening followed by extensional collapse at ca. 650–600 Ma. The metamorphism recorded by rocks of this crustal segment may be correlated with 650 Ma metamorphism in the Coastal Terrane of the Kaoko Belt in Namibia, being the first unequivocal match between South America and Africa provided by crystalline rocks south of the Congo Craton.  相似文献   

9.
Ferrous granulites in the area of Tidjénouine (Central Hoggar) exhibit a remarkable mineralogical composition characterized by the association orthoferrossilite–fayalite–quartz. These granulites are metamorphosed mafic igneous rocks showing the juxtaposition of different metamorphic parageneses. Peak paragenesis with garnet–clinopyroxene–amphibole–plagioclase–quartz reach to assemblage with orthopyroxene–plagioclase2. Secondary orthopyroxene reacted with garnet to produce symplectites with fayalite + plagioclase + quartz. The latest stage corresponds to an orthopyroxene–fayalite–quartz–plagioclase assemblage. The metamorphic history of the ferrous granulites is inferred by combining the study of phase relations with the construction of a petrogenetic grid and pseudosection in the CFMASH and CFAS systems using the Thermocalc program of [J. Metamorph. Geol. 6 (1988) 173]. The evolution of paragenetic minerals indicates a metamorphic PT path through the following conditions: 7.1 ± 1 kbar at 880 °C, 4.9 ± 1.6 kbar at 750 °C and 3–4 kbar at 700 °C, which is consistent with a clockwise PT path recorded throughout the area.  相似文献   

10.
Mantle xenoliths brought to the surface by kimberlite magmas along the south-western margin of the Kaapvaal craton in South Africa can be subdivided into eclogites sensu stricto, kyanite eclogites and orthopyroxene eclogites, all containing omphacite, and garnet clinopyroxenites and garnet websterites characterised by diopside. Texturally, chemically (major elements) and thermally, we observe an evolution from garnet websterites (TEG = 742–781 °C) towards garnet clinopyroxenites (TEG = 715–830 °C) and to eclogites (TEG = 707–1056 °C, mean value of 913 °C). Pressures calculated for orthopyroxene-bearing samples suggest upper mantle conditions of equilibration (P = 16–33 kb for the garnet websterites, 18 kb for a garnet clinopyroxenite and 23 kb for an opx-bearing eclogite). The overall geochemical similarity between the two groups of xenoliths (omphacite-bearing and diopside-bearing) as well as the similar trace element patterns of clinopyroxenes and garnet suggest a common origin for these rocks. Recently acquired oxygen isotope data on garnet (δ18Ognt = 5.25–6.78 ‰ for eclogites, δ18Ognt = 5.24–7.03 ‰ for garnet clinopyroxenites) yield values ranging from typical mantle values to other interpreted as resulting from low-temperature alteration or precursors sea-floor basalts and associated rocks. These rocks could then represent former magmatic oceanic rocks that crystallised from a same parental magma as plagioclase free diopside-bearing and plagioclase-bearing crustal rocks. During subduction, these oceanic rock protoliths equilibrated at mantle depth, with the plagioclase-bearing rocks converting to omphacite and garnet-bearing lithologies (eclogites sensu largo), whereas the plagioclase-free diopside-bearing rocks converted to diopside and garnet-bearing lithologies (garnet websterites and garnet clinopyroxenites).  相似文献   

11.
Mineralogical, fluid inclusion and geochemical studies were made on two intra-granitic gold deposits (Grovelas and Penedono), together with a deposit linked to sub-vertical structures in silicified metasediments at Três-Minas, and several intra-metamorphic occurrences at Vila Pouca de Aguiar. They all possess similar mineral assemblages, deformational state, fluid flow characteristics, ore fluid composition and have comparable PT conditions. Three successive crystallisation stages are recorded during the formation of gold-bearing structures independent of their location or host rocks (granites or metasediments). They are:Stage 1 — the development of milky quartz veins that formed primarily after the emplacement of peraluminous two-mica granites (315–310 Ma) at PT conditions reflecting high temperature and low pressure. They are similar to those from pluton induced metamorphism (P=300–350 MPa and T=500–550°C). No clear evidence was found for gold deposition during this stage.Stage 2 — during orogenic uplift and repeated tectonic reactivation a clear quartz was deposited in the early milky quartz veins (Stage 1) at PT conditions between 100 and 300 MPa and 300 and 450°C. Local sulphide deposition (arsenopyrite II and pyrite II) occurred in clear quartz, but was never massive. The fluids percolating within the granite were mainly aqueous-carbonic and reflect equilibrium with the metamorphic host rocks. They are very similar to those found in metamorphic environments. No evidence for the involvement of magmatic fluids was found.Stage 3 — intense microfissuring of the earlier vein infillings occurred, associated with the main episode of gold deposition. The PT conditions were <100 MPa and <300°C based on aqueous fluid inclusions. Native gold and electrum crystallised together with sulphides (galena, chalcopyrite and bismuthinite), native Bi and sulphosalts (Pb–Bi–Ag dominated). The fractures frequently contain chlorite (± sericite) especially where they crosscut earlier sulphides (arsenopyrite).These processes and fluid types are similar in both the granites and metamorphic host rocks. Therefore, the gold ores appear to be the result of successive periods of fluid circulation, in this case related to the uplift of the Variscan basement in response to high heat flow and the intrusion of granites. Without exception, these fluids have been re-equilibrated with the metamorphic rocks. However magmatic fluids are absent; the granites thus act passively as heat engines for fluid circulation.  相似文献   

12.
The western terranes exposed east of the Pan-African suture in western Hoggar (southwest Algeria), are reexamined in the light of new structural, petrologic and by the 40Ar/39Ar laser probe data on metamorphic micas and amphiboles. To the north, the Tassendjanet nappe includes the Paleoproterozoic basement, its Mesoproterozoic cover and mafic rocks representing the roots of a ca. 680 Ma arc overlain by Late Neoproterozoic andesites and volcanic greywackes. The nappe preserved at rather shallow crustal level in the east was emplaced southward (D1a) to southeastward (D2). In the south, two metamorphic suites are distinguished. The Tideridjaouine–Tileouine high-pressure metamorphic belt (T=550–600 °C, P=1.4–1.8 GPa) represents a slab of subducted continental material exposed along the western edge of the In Ouzzal granulite unit interpreted as a microcontinent. Differential exhumation of tectonic slices from the high-pressure belt occurred around 615–600 Ma through a system of west-directed recumbent folds (D1b). The Egatalis high grade belt in the west was intruded by syn-metamorphic gabbro–norite bodies. It includes unretrogressed low-pressure granulite facies rocks (T around 750–800 °C, P0.45 GPa) cooled at a rate of 15°/m.y. between 600 and 580 Ma, and followed by the emplacement of several late-kinematic granitic plutons. Final exhumation of the low-pressure, high-temperature metamorphic rocks, that are not found as pebbles in the molasse, took place in the Late Cambrian. The early and relatively fast cooling of the high-pressure and high-temperature metamorphic rocks of the southern part of the Tassendjanet terrane is at variance with the slow cooling of central Hoggar where repeated magmatic activity as young as Late Cambrian occurred [Lithos 45 (1998) 245].  相似文献   

13.
藏北羌塘中部改则县以北天泉山、屏风岭等地区大面积分布一套浅变质岩系,岩性以变质杂砂岩、千枚岩为主,夹变质玄武岩、变质安山岩等火山岩夹层,因缺乏化石依据时代不明。通过LA-ICP-MS锆石U-Pb同位素定年测得安山岩的~(206)Pb/~(238)U年龄为251.4±2.4Ma,同时结合该地区已测得的254Ma的~(206)Pb/~(238)U年龄,证实这套浅变质岩系的时代应属于晚二叠世—早三叠世,并非传统意义的展金组。在剖面测制和区域对比的基础上,将天泉山、屏风岭一带的浅变质岩系重新厘定为上二叠统—下三叠统天泉山组。天泉山组的发现和建立不仅进一步完善了该区的地层系统,而且是龙木错-双湖-澜沧江洋首次发现的晚二叠世—早三叠世洋盆地层记录,为进一步丰富和研究龙木错-双湖-澜沧江洋的演化提供了重要的地层证据。  相似文献   

14.
Precambrian granulite-facies rocks occur in significant proportion in the East Antarctic Precambrian shield. Ages of metamorphic and deformational events range from 2500 m.y. to about 500 m.y., but some rocks are much older, notably the approximately 3500 m.y. ages for crust formation in Enderby Land. Mineral assemblages over most of the area are typical of the hornblende granulite facies, and sparse temperature pressure estimates indicate metamorphism at 700–800°C and 5–8 kbar at reduced water pressures. A terrane of exceptional interest is the Napier complex of Enderby Land, where sapphirine-quartz ± garnet, sillimanite-orthopyroxene, osumilite, and inverted pigeonite are associated with pyroxene-granulite-facies rocks. Metamorphic conditions are estimated to have reached 900°–980°C, 7–9 kbar, and pH2O < 0.5 kbar. Metamorphism in the Napier complex, and possibly in other parts of East Antarctica, may be associated with large loss of fluid rather than massive influx of CO2.  相似文献   

15.
This investigation presents and interprets fluid inclusion data from different lithological units of the Cu skarn deposits at Mazraeh, north of Ahar, Azarbaijan, NW Iran. The results provide an assessment of the PT conditions and mineral–fluid evolution and suggest new exploration parameters. Five types of inclusions are recognized from quartz and garnet. The temperature of homogenization of Type I inclusions with daughter minerals halite and sylvite ranges from 312° to 470 °C with total salinity of 52 to 63 wt.% NaCl equiv.; Type II and III inclusions with halite have homogenization temperatures of 230° to 520 °C and salinity of 31 to 50 wt.% NaCl equiv. The salinity of Types IV and V biphase (liquid + vapor) inclusions, based on their final ice melting temperature, varies between 10.2 to 20.8 wt.% NaCl equiv. Th vs. salinity plots of inclusions show that the salinity of the fluids correlates positively with temperature. The inclusions formed at low pressure. Changes in the temperature and salinity of the fluids can be reconstructed from the inclusions. Highly saline, high-temperature fluids were most abundant during the main chalcopyrite ore-forming phase in the skarn and mineralized quartz veins. Low-salinity aqueous fluids were abundant in barren veins, in which there is no evidence for early hot high-salinity brine, and might have resulted from late-stage dilution and mixing of hydrothermal fluids with meteoric water. Based on petrographic features and fluid-inclusion data, early-stage magnetite deposition is related to boiling of fluid at temperatures of about 500 °C. At a later stage, boiling at temperatures of around 320° to 400 °C favored the deposition of sulfides and Fe mobility was decreased at these lower temperatures. The following inclusion characteristics may be used as exploration parameters in the Mazraeh area. (i) Presence of high-temperature, salt-bearing inclusions, with Th between 300 and 500 °C; (ii) High-salinity fluid inclusions; and (iii) Inclusions showing evidence of boiling of the fluid. In addition, the presence of magnetite is an important exploration parameter.  相似文献   

16.
A ‘soft’ carbon-based high-volatile bituminous (Ro max=0.68%) coal and a ‘hard’ carbon-based Pennsylvania anthracite (Ro max=5.27%) were deformed in the steady state at high temperatures and pressures in a series of coaxial and simple shear deformation experiments designed to constrain the role of shear strain and strain energy in the graphitization process. Tests were carried out in a Griggs-t type solid (NaCl) medium apparatus at T=400–900°C, constant displacement rates of 10-5−10-6 s−1, at confining pressures of 0.6 GPa (coaxial) or 0.8 and 1.0 GPa (simple shear). Coaxial samples were shortened up to 50%, whereas shear strains up to 4.9 were attained in simple shear tests. Experiments lasted up to 118 h. Deformed, high-volatile bituminous coal was extensively coked and no correlation between strain and Ro max, bireflectance or coal texture was observed in any samples. With increasing temperature, Ro max and bireflectance increase in highly anisotropic, coarse mosaic units, but remain essentially constant in the fine granular mosaic, which becomes more abundant at higher temperatures. Graphite-like reflectances are observed locally only in highly reactive macerals and in pyrolytic carbon veins. The degree of molecular ordering attained in deformed bituminous coal samples appears to be determined by the heating-pressurization path rather than by subsequent deformation.Graphitization did not occur in coaxially deformed anthracite. Nonetheless, dramatic molecular ordering occurs at T>700°C, with average bireflectance values increasing from 1.68% at 700°C to 6.36% at 900°C. Anisotropy is greatest in zones of high strain at all temperatures. In anthracite samples deformed in simple shear over the 600–900°C range at 1.0 GPa, the average Ro max values increase up to 11.9%, whereas average bireflectance values increase up to 10.7%. Bireflectance increases with progressive bedding rotation and, thus, with increasing shear strain. Graphitization occurs in several anthracite samples deformed in simple shear at 900°C. X-ray diffraction and transmission electron microscopy of highly anisotropic material in one sample confirms the presence of graphite with d002=0.3363 nm. These data strongly suggest that shear strain, through its tendency to align basic structural units, is the factor responsible for the natural transformation of anthracite to graphite at temperatures far below the 2200°C required in hydrostatic heating experiments at ambient pressure.  相似文献   

17.
Vp and Vs values have been measured experimentally and calculated for granulite-facies lower crustal xenoliths from central Ireland close to the Caledonian Iapetus suture zone. The xenoliths are predominantly foliated and lineated metapelitic (garnet–sillimanite–K-feldspar) granulites. Their metapelitic composition is unusual compared with the mostly mafic composition of lower crustal xenoliths world-wide. Based on thermobarometry, the metapelitic xenoliths were entrained from depths of c. 20–25 ± 3.5 km and rare mafic granulites from depths of 31–33 ± 3.4 km. The xenoliths were emplaced during Lower Carboniferous volcanism and are considered to represent samples of the present day lower crust.Vp values for the metapelitic granulites range between 6.26 and 7.99 km s− 1 with a mean value of 7.09 ± 0.4 km s− 1. Psammite and granitic orthogneiss samples have calculated Vp values of 6.51 and 6.23 km s− 1, respectively. Vs values for the metapelites are between 3.86 and 4.34 km s− 1, with a mean value of 4.1 ± 0.15 km s− 1. The psammite and orthogneiss have calculated Vs values of 3.95 and 3.97 km s− 1, respectively.The measured seismic velocities correlate with density and with modal mineralogy, especially the high content of sillimanite and garnet. Vp anisotropy is between 0.15% and 13.97%, and a clear compositional control is evident, mainly in relation to sillimanite abundance. Overall Vs anisotropy ranges from 1% to 11%. Poisson's ratio (σ) lies between 0.25 and 0.35 for the metapelitic granulites, mainly reflecting a high Vp value due to abundant sillimanite in the sample with the highest σ. Anisotropy is probably a function of deformation associated with the closure of the Iapetus ocean in the Silurian as well as later extension in the Devonian. The orientation of the bulk strain ellipsoid in the lower crust is difficult to constrain, but lineation is likely to be NE–SW, given the strike-slip nature of the late Caledonian and subsequent Acadian deformation.When corrected for present-day lower crustal temperature, the experimentally determined Vp values correspond well with velocities from the ICSSP, COOLE I and VARNET seismic refraction lines. Near the xenolith localities, the COOLE I line displays two lower crustal layers with in situ Vp values of 6.85–6.9 and 6.9–8.0 km s− 1, respectively. The upper (lower velocity) layer corresponds well with the metapelitic granulite xenoliths while the lower (higher velocity) layer matches that of the basic granulite xenoliths, though their metamorphic pressures suggest derivation from depths corresponding to the present-day upper mantle.  相似文献   

18.
Recent U–Pb age determinations and PT estimates allow us to characterize the different levels of a formerly thickened crust, and provide further constraints on the make up and tectono-thermal evolution of the Grenville Province in the Manicouagan area. An important tectonic element, the Manicouagan Imbricate zone (MIZ), consists of mainly 1.65, 1.48 and 1.17 Ga igneous rocks metamorphosed under 1400–1800 MPa and 800–900 °C at 1.05–1.03 Ga, during the Ottawan episode of the Grenvillian orogenic cycle, coevally with intrusion of gabbro dykes in shear zones. The MIZ has been interpreted as representing thermally weakened deep levels of thickened crust extruded towards the NW over a parautochthonous crustal-scale ramp. Mantle-derived melts are considered as in part responsible for the high metamorphic temperatures that were registered.New data show that mid-crustal levels structurally above the MIZ are represented by the Gabriel Complex of the Berthé terrane, that consists of migmatite with boudins of 1136±15 Ma gabbro and rafts of anatectic metapelite with an inherited monazite age at 1478±30 Ma. These rocks were metamorphosed at about the same time as the MIZ (metamorphic zircon in gabbro: 1046±2 Ma; single grains of monazite in anatectic metapelite: 1053±2 Ma) and under the same T range (800–900 °C) but at lower P conditions (1000–1100 MPa). They are mainly exposed in an antiformal culmination above a high-strain zone, which has tectonic lenses of high PT rocks from the MIZ and is intruded by synmetamorphic gabbroic rocks. This zone is interpreted as part of the hangingwall of the MIZ during extrusion. A gap of 400 MPa in metamorphic pressures between the tectonic lenses and the country rocks, together with the broad similarity in metamorphic ages, are consistent with rapid tectonic transport of the high PT rocks over a ramp prior to the incorporation of the mafic lenses in the hangingwall.Between the antiformal culmination of the Gabriel Complex and the MIZ 1.48 Ga old granulites of the Hart Jaune terrane are exposed. They are intruded by unmetamorphosed 1228±3 Ma gabbro sills and 1166±1 Ma anorthosite. Hart Jaune Terrane represents relatively high crustal levels that truncate the MIZ-Gabriel Complex contact and are preserved in a synformal structure.Farther south, the Gabriel Complex is overlain by the Banded Complex, a composite unit including 1403+32/−25 Ma granodiorite and 1238+16/−13−1202+40/−25 Ma granite. This unit has been metamorphosed under relatively low-P (800 MPa) granulite-facies conditions. Metamorphic U–Pb data, limited to zircon lower intercept ages (971±38 Ma and 996±27 Ma) and a titanite (990±5 Ma) age, are interpreted to postdate the metamorphic peak.The general configuration of units along the section is consistent with extrusion of the MIZ during shortening and, finally, normal displacement along discrete shear zones.  相似文献   

19.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

20.
Application of hornblende thermobarometry and fluid inclusion studies to the Palaeoproterozoic (1.7 Ga) basement rocks from Maddhapara, NW Bangladesh, provide information on the pressure and temperature (P–T) conditions of crystallization, the emplacement depth and composition of magmatic fluid. The basement rocks are predominantly diorite or quartz diorite with a mineral assemblage of plagioclase, hornblende, biotite, quartz, K-feldspar, titanite, and secondary epidote and chlorite. The calculated P–T conditions of the dioritic rocks are 680–725 °C and 4.9–6.4 kbar, which probably correspond to crystallization conditions. Fluid inclusion studies suggest that low- to medium-salinity (0–6.4 wt.% NaCleq) H2O-rich fluids are trapped during the crystallization of quartz and plagioclase. The isochore range calculated for primary aqueous inclusions is consistent with the P–T condition obtained by geothermobarometry. The basement rocks likely crystallized at a depth of 17–22 km, with a minimum average exhumation rate of 12–15 m/Ma during Palaeoproterozoic to Lopingian time. Such slow exhumation indicates low relief continental shield surface during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号