首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The recent detection of a transient absorption feature in the X-ray prompt emission of GRB 990705 showed the importance of such observations in the understanding of gamma-ray bursts and their progenitors. We investigate the time dependence of photoionization edges during the prompt emission of bursts in different environments. We show that their variability can be used to infer the density and geometry of the surrounding medium, giving important clues to unveil the nature of the burst progenitor.  相似文献   

2.
3.
4.
We present results from a study of short-term variability in 19 archival observations by XMM–Newton of 16 ultraluminous X-ray sources (ULXs). Eight observations (six sources) showed intrinsic variability with power spectra in the form of either a power-law or broken power-law-like continuum and in some cases quasi-periodic oscillations (QPOs). The remaining observations were used to place upper limits on the strength of possible variability hidden within. Seven observations (seven sources) yielded upper limits comparable to, or higher than, the values measured from those observations with detectable variations. These represented the seven faintest sources, all with   fx < 3 × 10−12 erg cm−2 s−1  . In contrast, there are four observations (three sources) that gave upper limits significantly lower than both the values measured from the ULX observations with detectable variations, and the values expected by comparison with luminous Galactic black hole X-ray binaries (BHBs) and active galactic nuclei (AGN) in the observed frequency bandpass (10−3–1 Hz). This is the case irrespective of whether one assumes characteristic frequencies appropriate for a stellar mass  (10 M)  or an intermediate mass  (1000 M)  black hole, and means that in some ULXs the variability is significantly suppressed compared to bright BHBs and AGN. We discuss ways to account for this unusual suppression in terms of both observational and intrinsic effects and whether these solutions are supported by our results.  相似文献   

5.
The X-ray binary Cygnus X-3 (Cyg X-3) is a highly variable X-ray source that displays a wide range of observed spectral states. One of the main states is significantly harder than the others, peaking at ∼20 keV, with only a weak low-energy component. Due to the enigmatic nature of this object, hidden inside the strong stellar wind of its Wolf–Rayet companion, it has remained unclear whether this state represents an intrinsic hard state, with truncation of the inner disc, or whether it is just a result of increased local absorption. We study the X-ray light curves from RXTE /ASM and CGRO /BATSE in terms of distributions and correlations of flux and hardness and find several signs of a bimodal behaviour of the accretion flow that are not likely to be the result of increased absorption in a surrounding medium. Using INTEGRAL observations, we model the broad-band spectrum of Cyg X-3 in its apparent hard state. We find that it can be well described by a model of a hard state with a truncated disc, despite the low cut-off energy, provided the accreted power is supplied to the electrons in the inner flow in the form of acceleration rather than thermal heating, resulting in a hybrid electron distribution and a spectrum with a significant contribution from non-thermal Comptonization, usually observed only in soft states. The high luminosity of this non-thermal hard state implies that either the transition takes place at significantly higher   L / L E  than in the usual advection models, or the mass of the compact object is  ≳20 M  , possibly making it the most-massive black hole observed in an X-ray binary in our Galaxy so far. We find that an absorption model as well as a model of almost pure Compton reflection also fit the data well, but both have difficulties explaining other results, in particular the radio/X-ray correlation.  相似文献   

6.
The BeppoSAX High Energy Large Area Survey (HELLAS) has surveyed several tens of deg2 of the sky in the     band down to a flux of about     . The source surface density of     at the survey limit corresponds to a resolved fraction of the     X-ray background (XRB) of the order of     per cent. The extrapolation of the HELLAS     towards fainter fluxes with a Euclidean slope is consistent with the first XMM–Newton measurements, in the same energy band, which are a factor of 20 times more sensitive. The source counts in the hardest band so far surveyed by X-ray satellites are used to constrain XRB models. It is shown that in order to reproduce the     counts over the range of fluxes covered by BeppoSAX and XMM–Newton a large fraction of highly absorbed     , luminous     active galactic nuclei is needed. A sizeable number of more heavily obscured, Compton-thick, objects cannot be ruled out but they are not required by the present data. The model predicts an absorption distribution consistent with that found from the hardness ratios analysis of the so far identified HELLAS sources. Interestingly enough, there is evidence of a decoupling between X-ray absorption and optical reddening indicators, especially at high redshifts/luminosities where several broad-line quasars show hardness ratios typical of absorbed power-law models with     .  相似文献   

7.
8.
For the bright neutron star low-mass X-ray binary Sco X-1, we analyzed all updated frequencies of the twin kilohertz quasi-periodic oscillations (kHz QPOs), their correlations and distributions. We found that the frequency separation of the kHz QPO peaks appears not to be a constant, rather, it decreases with increasing inferred mass accretion rate. We show that the currently available data of Sco X-1 by Rossi X-ray Timing Explorer are inconsistent with the proposals of the beat model that the frequency separation is a constant. Our conclusions are consistent with those of some previous researchers and we discuss further implications for the kilohertz QPO models.  相似文献   

9.
10.
We have carried out single and multisite photometry of the three β Cephei stars β and 15 CMa as well as KZ Mus. For the two stars in CMa, we obtained 270 h of measurement in the Strömgren uvy and Johnson V filters, while 150 h of time-resolved Strömgren uvy photometry was acquired for KZ Mus. All three stars are multiperiodic variables, with three (β CMa) and four (15 CMa, KZ Mus) independent pulsation modes. Two of the mode frequencies of 15 CMa are new discoveries and one of the known modes showed amplitude variations over the last 33 yr. Taken together, this fully explains the diverse behaviour of the star reported in the literature.
Mode identification by means of the amplitude ratios in the different passbands suggests one radial mode for each star. In addition, β CMa has a dominant  ℓ= 2  mode while its third mode is non-radial with unknown ℓ. The non-radial modes of 15 CMa, which are  ℓ≤ 3  , form an almost equally split triplet that, if physical, would imply that we see the star under an inclination angle larger than 55°. The strongest non-radial mode of KZ Mus is  ℓ= 2  , followed by the radial mode and a dipole mode. Its weakest known mode is non-radial with unknown ℓ, confirming previous mode identifications for the pulsations of the star.
The phased light curve for the strongest mode of 15 CMa has a descending branch steeper than the rising branch. A stillstand phenomenon during the rise to maximum light is indicated. Given the low photometric amplitude of this non-radial mode this is at first sight surprising, but it can be explained by the aspect angle of the mode.  相似文献   

11.
Gamma-ray bursts are often modelled as jet-like outflows directed towards the observer; the cone angle of the jet is then commonly inferred from the time at which there is a steepening in the power-law decay of the afterglow. We consider an alternative model in which the jet has a beam pattern where the luminosity per unit solid angle (and perhaps also the initial Lorentz factor) decreases smoothly away from the axis, rather than having a well-defined cone angle within which the flow is uniform. We show that the break in the afterglow light curve then occurs at a time that depends on the viewing angle. Instead of implying a range of intrinsically different jets – some very narrow, and others with a similar power spread over a wider cone – the data on afterglow breaks could be consistent with a standardized jet, viewed from different angles. We discuss the implication of this model for the luminosity function.  相似文献   

12.
13.
14.
15.
16.
The analysis of hard X-ray INTEGRAL observations (2003–2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind–wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20–100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio   q = mx / m v ≃  0.25–0.5. The absolute minimum of joint orbital and precessional  χ2  residuals is reached at   q ≃ 0.3  . The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star   f v = 0.268 M  as derived from Hillwig & Gies data, the obtained value of   q ≃ 0.3  yields the masses of the components   mx ≃ 5.3 M, m v ≃ 17.7 M  , confirming the black hole nature of the compact object in SS433.  相似文献   

17.
18.
1E 161348-5055 (1E) is a compact object lying at the center of the 2000 year old Supernova Remnant (SNR) RCW103. Its original identification as an isolated, radio-quiet neutron star has been questioned in recent years by the observation of a significant long-term variability, as well as by reports of a possible periodicity at ∼6 hours. Here we report conclusive evidence for a strong (nearly 50%) periodic modulation of 1E at 6.67±0.03 hours, discovered during a long (90 ks) XMM-Newton observation performed in August 2005, when the source was in a “low state”. The source spectrum varies along the 6.67 hr cycle. No fast pulsations are seen. 1E could be a very young binary system, possibly composed of a compact object and a low-mass star in an eccentric orbit. This would be the first example of a low-mass X-ray binary (LMXB) associated with a SNR, and thus the first LMXB for which we know the precise birth date, just 2000 years ago. Alternatively, if it is an isolated neutron star, the unprecedented combination of age, period and variability may only fit in a very unusual scenario, featuring a peculiar magnetar, dramatically slowed-down over 2000 years, possibly by a supernova debris disc.   相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号