首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Aras water basin is located in northwest of Iran. Sungun mine which is the largest open-cast copper mine of Iran is located in this region and is in the primary stages of extraction. The influence of mining activity on the quality of regional surface water has been taken in to consideration in this study. Accordingly, sampling was done from 5 local streams in the study area. In order to consider the effect of flow quantity on the amount of different parameters, sampling was done in July and November 2005 when the local streams had the minimum and maximum flow rate respectively. The concentrations of major anions and cations as well as As, Mo, Al, Cu, Cd, Cr, Fe, Mn and Zn were determined. The results showed that the concentrations of metallic ions like aluminum, chromium, copper, manganese, molybdenum and iron in samples collected in July are above USEPA (Environmental Protection Agency) limits; however, mentioned concentrations are lessened remarkably in the samples collected in November. This fact is justified considering dilution of ions concentration via more amount of water in November. The chemical characteristics of water compositions on the basis of major ion concentrations were evaluated on a Schoeller and Piper diagram. Accordingly, the dominant type of water in July and November is considered to be Ca-HCO3 (calcium-bicarbonate type). Regarding Schoeller diagram, despite relatively high concentration of calcium, the current status of local surface water is acceptable for drinking purposes. By commencing mining excavation with designed capacity in near future, the minerals will come in to contact with air and water resulting in dissolution, especially in ponds, which, in turn, increases the concentration of heavy metals in surface water. Considering consequent uses of this water including drinking, irrigation, industrial, etc. precautions must be taken in to consideration.  相似文献   

2.
In the old mining area of Rodalquilar, mine wastes, soil and sediments were characterized and the results revealed high concentration of Au, Ag, As, Bi, Cu, Fe, Mn, Pb, Se, Sb and Zn in tailings and sediments. The contaminant of greatest environmental concern is As. The mean concentration in the tailings was 679.9, and 345 mg/kg in the sediments of Playazo creek. The groundwater samples from the alluvial aquifer showed high concentration of Al, As, Cd, Fe, Hg, Mn, Ni, Pb, Se, Sb and Zn and very high concentration of chloride and sulfate, which were above the concentration defined in the European standards for drinking water. The presence of As in groundwater may be caused by the oxidation of arsenian pyrite, the possible As desorption from goethite and ferrihydrite and the jarosite dissolution. Groundwater concentrations of Cd, Fe, Mn, and possibly Cu, were associated with low values of Eh, indicating the possible dissolution of oxy-hydroxides of Fe and Mn. The mobility of metals in the column experiments show the release of Al, Fe, Mn, Cr, Cu, Ni, V and Zn in significant concentrations but below the detected values in groundwater. However, As, Cd, Sb, Se Pb and Au, are generally mobilized in concentrations above the detected values in groundwater. The possible mass transfer processes that could explain the presence of the contaminants in the aquifer and the leachates was simulated with the PHREEQC numerical code and revealed the possible dissolution of the following mineral phases: jarosite, natrojarosite, arsenian pyrite, alunite, chlorite, kaolinite and calcite.  相似文献   

3.
A hydrogeochemical study was conducted on the groundwater of south Al Madinah Al Munawarah City, Saudi Arabia, to assess the quality of groundwater for drinking and irrigation uses. Groundwater samples have been collected and analyzed for major and some trace constituents from the study area. The nitrate concentration in most groundwater samples of the study area exceeded the safe limits for drinking purposes, whereas the concentrations of phosphate, boron, and trace constituents were below the maximum permissible limit for drinking purposes; Cr in two samples showed high content over the recommended limits of drinking purposes. Uncontrolled abstraction of groundwater in Abar Al Mashi area caused many environmental problems including water resource depletion and contamination. Correlations between chloride and major ions were positive and may be attributed to impact of agricultural activities on groundwater chemistry. Groundwater of the study area was classified into six water types. The chemical water types of groundwater in the study area contain CaHCO3 in the eastern and southeastern parts and NaCl in western and northwestern parts, reflecting different land use characteristics and pollution sources. Piper diagram showed that almost all the samples fall in one zone, indicating similar chemical signature. Groundwater can be used safely for drinking with special treatments to eliminate the effect of increased concentrations of total dissolved solids, nitrate, and chromium. The groundwater of the study area can be used safely for irrigation on clay soil; however, specific crops should be selected according to their salt tolerance.  相似文献   

4.
The oxidation of sulfide minerals generates acidic waters containing high levels of SO4 and Fe. The study area has active Pb?CZn?CCu mining. It is thought that the surface/subsurface/underground sulfide minerals in the region generally contribute to the acidification of groundwater. Low pH values are also responsible for dissolved metals (Al, Fe, Mn, SO4, Pb, Zn) in the groundwater and river. Furthermore, current mining wastes have affected concentrations of trace elements in the water. High Fe and Mn concentrations are generally found in the spring which has acidic and low Eh values, while Al, Fe and Mn concentrations in the acidic waters show notable increases with the maximum values reaching 8,829, 19,084 and 1,708?ppb, respectively. These values exceed the Turkish drinking water standard of 200, 200 and 50?ppb, respectively.  相似文献   

5.
The present study was carried out in parts of Hindon-Yamuna interfluve region to evaluate the concentration of trace elements (Al, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Cd, B and Pb) in groundwater. Pre-monsoon groundwater samples were collected in 2007 from 22 locations distributed throughout the study area, and were analyzed using Inductive Coupled Plasma Mass-Spectrophotometer (ICPMS). Trace element analyses show high concentration levels for Al and Cr in almost all groundwater samples. Relatively high values are also reported for Pb, Se, Fe and Mn (as per B.I.S (1991) standard for drinking water) in few samples. These high concentrations of metal ions in groundwater were probably due to discharge of untreated effluents from Textile, dyeing and other industries. As far as Al is concerned, its source is rather enigmatic.  相似文献   

6.
The suitability of groundwater quality for drinking and agricultural purposes was assessed in the rural areas of Delhi based on the various water quality parameters. A total of 50 ground water samples were collected randomly from different sources viz. hand pump, tube well, boring and analyzed for major ion chemistry to understand the operating mechanism of geochemical processes for ground water quality. The quality analysis is performed through the estimation of pH, EC, TDS, total hardness, total alkalinity, Na, K, Cl, NO3, SO4, DO, BOD, Cu, Cr, Cd, Ni, Zn and Pb. Hydrochemical facies were identified using Piper, Durov and Chadha diagram. Chemical data were also used for mathematical calculations (SAR, %Na, RSC, PI, KI, and chloroalkaline indices) for better understanding the suitability of ground water for irrigation purposes. The results of saturation index shows that all the water samples were supersaturated to undersaturated with respect to carbonate minerals and undersaturated with respect to sulphate and chloride minerals. According to USSL diagram, most of the samples fall in the field of C3S1, indicating medium salinity and low sodium water which can be used for almost all types of soil with little danger of exchangeable sodium. Assessment of water samples from various methods indicated that majority of the ground water in the study area is chemically suitable for drinking and agricultural uses.  相似文献   

7.
A combination of major and trace elements have been used to characterize surface- and groundwater in El Minia district, Egypt. Surface water versus groundwater chemistry data enabled geographical zonation and chemical types to be differentiated. The main target of this research is to investigate the groundwater quality and hydrochemical evaluation. The situation is further complicated by contamination with lithogenic and anthropogenic (agricultural and sewage wastewaters) sources and low plan exploitation techniques. The investigated Pleistocene aquifer is composed of sand and gravel of different sizes, with some clay intercalation. The semi-confined condition was around the River Nile shifted to unconfine outside the floodplain. The groundwater flow generally from south to north and locally diverts towards the western part from the River Nile. Fifty-six, 11, five, and two water samples were collected from the Pleistocene aquifer, River Nile, Ibrahimia canal, and Al Moheet drain, respectively. The collected water samples were analyzed for major and trace elements. The toxic metal concentrations of Al Moheet drain are higher than those in the River Nile and the Ibrahimia canal. Cr, Hg, As, and Cd concentrations in the River Nile and Ibrahimia canal are fluctuated above and below the WHO drinking standards. Se concentration in River Nile and Ibrahimia canal is below WHO drinking and irrigation guidelines. Total dissolved solid content in groundwater is generally low, but it is increased due to the western part of the study area. The geographic position of the River Nile, Ibrahimia canal, and Al Moheet drain impact on the groundwater quality. The PHREEQC confirm the high mixing proportions from the River Nile into the groundwater and decline away from it. In addition to the thicknesses of the Pleistocene, aquifer and aquitard layer enhance the River Nile and agricultural wastewaters intrusion into the aquifer system. The toxic metal concentrations (Pb, Cd, Cr, PO4, Se, Mn, As, Hg, Ni, Al, Fe, and SIO2) in groundwater were increased mainly in the northwestern and southeastern part (far from the River Nile). It is attributed to anthropogenic, high vulnerability rate (unconfined), and partially to lithogenic. In most localities, the groundwater are unsuitable for drinking and irrigation purposes with respect to Se concentration, while they are unsuitable for dinking according Mn, As, and Hg contents. There are some Cd and Pb anomalies concentrations, which cause severe restriction if used in irrigation. The results suggested that significant changes are urgently needed in water use strategy to achieve sustainable development.  相似文献   

8.
The water quality of the Vacacaí River was assessed at different sites in the period between winter 2005 and autumn 2006. All samples were analyzed for 52 elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, Li, Be, Mg, Al, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Ag, Cd, In, Cs, Ba, Tl, Pb, Bi, U, Na, K, Hg, B, Mo, Sn, Te, Ti), temperature, pH, ammonia, and alkalinity levels. Water from the Vacacaí River ranged from slightly acidic to alkaline. No difference was observed in the chemical composition at different sites of the Vacacaí River. Levels of Ba, Ca, Sr and Mg increase in the dry seasons and reach their highest concentrations in autumn; Be and U decrease in the dry season and reach their highest concentration in spring. Al, Fe, Cr, Ni, Th, U Mn, Ca and Mg are highly positively related, indicating a common origin. Se and Cu are probably from anthropogenic source, from the rice crops of the margins of the river. Waterborne Al and Fe levels were above the desirable level for drinking water at all sites during all seasons. These results demonstrate the need for constant monitoring of water parameters, which is crucial to ensure water quality for the population of this region.  相似文献   

9.
王瑞  李潇瀚 《中国岩溶》2021,40(3):398-408
百泉泉域岩溶地下水是河北邢台市生产和生活的主要供水水源。近年来受到自然条件变化和人类活动的影响,泉域地下水流场明显改变,水化学场演变机制有待查明。本研究在水文地质调查和样品采集测试的基础上,采用统计学方法(描述性统计、Person相关系数)、饱和指数计算和水化学方法(Piper图、Stiff图、Gibbs图、离子比例系数)对泉域岩溶水化学特征展开了系统分析。结果表明:泉域岩溶水为弱碱性淡水,Ca2+、Mg2+、HCO3-、SO42- 是地下水中的主要离子,主要来源于方解石、白云石和石膏的风化溶解,Na+和Cl-主要来源于少量岩盐的溶解。沿着径流方向方解石相对于地下水由溶解状态转变为平衡状态,而白云石、石膏和岩盐一直处于溶解状态。补给区和北部径流区基本为HCO3-Ca·Mg型水,七里河、沙河附近和南部煤铁矿区岩溶水除HCO3-Ca·Mg型外,还多出现HCO3·SO4-Ca型、CO3·Cl-Ca·Mg型和HCO3·SO4-Ca·Mg型水,煤铁矿区附近岩溶水中SO42- 的升高是受到了高SO42- 矿坑排水的混合影响。蒸发浓缩作用仅在水位埋深浅且地下水流动相对滞缓的排泄区较为明显,排泄点——百泉泉水为HCO3·SO4·Cl-Ca·Mg型。此外,人类工农业活动改变了地下水的径流条件和水质,使局部岩溶水中NO3-、Cl-、Fe、总硬度含量升高甚至超标。   相似文献   

10.
Mining and milling of base metal ore deposits can result in the release of metals to the environment. When sulfide minerals contained in mine tailings are exposed to oxygen and water, they oxidize and dissolve. Two principal antagonistic geochemical processes affect the migration of dissolved metals in tailings impoundments: sulfide oxidation and acid neutralization. This study focuses on acid neutralization reactions occurring in the saturated zone of tailings impoundments. To simulate conditions prevailing in many tailings impoundments, 0.1 mol/L sulfuric acid was passed continuously through columns containing fresh, unoxidized tailings, collected at Kidd Creek metallurgical site. The results of this column experiment represent a detailed temporal observation of pH, Eh, and metal concentrations. The results are consistent with previous field observations, which suggest that a series of mineral dissolution-precipitation reactions control pH and metal mobility. Typically, the series consists of carbonate minerals, Al and Fe(III) hydroxides, and aluminosilicates. In the case of Kidd Creek tailings, the dissolution series consists of ankerite-dolomite, siderite, gibbsite, and aluminosilicates. In the column experiment, three distinct pH plateaus were observed: 5.7, 4.0, and 1.3. The releases of trace elements such as Cd, Co, Cr, Cu, Li, Ni, Pb, V, and Zn were observed to be related to the pH buffering zones. High concentrations of Zn, Ni, and Co were observed at the first pH plateau (pH 5.7), whereas Cd, Cr, Pb, As, V, and Al were released as the pH of the pore water decreased to 4.0 or less.  相似文献   

11.
The present study aims to evaluate the possible source of major and some minor elements and heavy metals in the groundwater of Qareh-Ziaeddin plain, NW Iran with respect to chemical elements, saturation index, and multivariate statistics including correlation coefficient, cluster analysis, and factor analysis. Groundwater samples were collected in Jun 2016 and measured with respect to EC, pH, major and some minor elements and heavy metals including Fe, Mn, Zn, Cr, Pb, Cd, Al, and As. Among all the measured parameters, some of the samples exceed the World Health Organization (WHO) guideline value for EC, Na, Mg, HCO3, SO4, Cl, NO3, F, As, Zn, and Pb. The results of correlation analysis show that weathering and dissolution of minerals especially evaporites and silicates, water-rock interaction, and cation exchange are dominant occurred processes in the groundwater of the study area. Also, denitrification process is occurred in the groundwater system. Cluster analysis categorizes the samples into three distinct groups which are different based on their EC and dependent variables, e.g., Na, Ca, Cl, SO4 and pH, Pb, Cd, and As. It can be found that volcanic, evaporite, and clay formations have the least impact on the chemistry of the cluster 1 samples while clay and evaporite formations have the highest impact on the cluster 3 and also calcareous formations on cluster 2. Factor analysis shows that five factors, with total variance of 83%, are effective in the release of heavy metals and groundwater chemistry which are mostly geogenic.  相似文献   

12.
Groundwater pollution is a major global environmental issue especially in the large cities and trace metals are considered as most important aquatic pollutants. The present study is based on the measurement and characterization of various physicochemical parameters (pH, EC, TDS, DO, alkalinity, hardness, and chloride), major cations (Ca, Mg, Na and K) and selected trace metals (Sr, Li, Fe, Zn, Cu, Co, Mn, Ag, Cd, Cr, Ni, and Pb) in the groundwater of Lahore, Pakistan during summer and winter (2017–18) seasons. Groundwater is the main source of drinking water in urban areas of Lahore. Seasonal comparison of the data indicated that majority of the metals showed relatively higher concentrations during winter than summer. Most of the metals exhibited significant spatial variability during both seasons; relatively higher metal levels were found in the old settlements and thickly populated areas of the city. Average concentrations of Pb, Ni, Cd and Co in the groundwater were found to be higher than the national and international guideline values. Factor analysis and cluster analysis revealed major anthropogenic contributions of Ni, Co, Cd, Cu, Cr and Pb in the groundwater while rest of the metals showed mixed and/or natural contributions. Evaluation of human health risks for the metal contents in groundwater revealed that Pb, Co, Ni and Cd were associated with significantly higher non-carcinogenic risks (HQing > 1); the calculated risk for children was considerably higher than the adults. Moreover, the carcinogenic risk associated with Ni, Cr, Cd and Pb exceeded the safe limits. The present study revealed significantly higher anthropic pollutants in the groundwater which imposed considerable risks to human; therefore, it is recommended to implement immediate remedial measures to ensure safe drinking water.  相似文献   

13.
The old Senhora das Fontes uranium mine, in central Portugal, consists of quartz veins which penetrated along fracture shear zones at the contact between graphite schist and orthogneiss. The mine was exploited underground until a depth of 90 m and was closed down in 1971. The ores from this mine and two others were treated in the mine area by the heap-leach process which ended in 1982. Seven dumps containing a total of about 33,800 m3 of material and partially covered by natural vegetation were left in the mine area. A remediation process took place from May 2010 to January 2011. The material deposited in dumps was relocated and covered with erosion resisting covers. Surface water and groundwater were collected in the wet season just before the remediation, in the following season at the beginning of the remediation and also after the remediation in the following dry season. Before, at the beginning and after the remediation, surface water and groundwater have an acid-to-alkaline pH, which decreased with the remediation, whereas Eh increased. In general, before the remediation, uranium concentration was up to 83 μg/L in surface water and up to 116 μg/L in groundwater, whereas at the beginning of the remediation it increases up to 183 μg/L and 272 μg/L in the former and the latter, respectively, due to the remobilization of mine dumps and pyrite and chalcopyrite exposures, responsible for the pH decrease. In general, after the remediation, the U concentration decreased significantly in surface water and groundwater at the north part of the mine area, but increased in both, particularly in the latter up to 774 μg/L in the south and southwest parts of this area, attributed to the remobilization of sulphides that caused mobilization of metals and arsenic which migrated to the groundwater flow. Uranium is adsorbed in clay minerals, but also in goethite as indicated by the geochemical modelling. After the remediation, the saturation indices of oxyhydroxides decrease as pH decreases. The remediation also caused decrease in Cd, Co, Cr, Ni, Pb, Zn, Cu, As, Sr and Mn concentrations of surface water and groundwater, particularly in the north part of the mine area, which is supported by the speciation modelling that shows the decrease of most dissolved bivalent species. However, in general, after the remediation, Th, Cd, Al, Li, Pb, Sr and As concentrations increased in groundwater and surface water at south and southwest of the mine area. Before and after the remediation, surface water and groundwater are contaminated in U, Cd, Cr, Al, Mn, Ni, Pb, Cu and As. Remediation caused only some improvement at north of the mine area, because at south and southwest part, after the remediation, the groundwater is more contaminated than before the remediation.  相似文献   

14.
The physical (turbidity, color, smell, taste, pH, and conductivity) and geochemical properties (Ca, Mg, Na, Fe, Mn, Al, K, Cl?, HCO3 ?, SO4 2?, Fe, Cu, Co, Ni, Zn, Cd, Pb, and Cr) of the drinking water in Gümü?hane city center were determined. This city center constitutes the study area. The pH levels of the water samples ranged from 6.3 to 8.2, and their conductivities ranged between 240 and 900 μS. These findings were concordant with the drinking water standards of the Turkey Standard Institute and the World Health Organization. The hardness of the water samples in the study area was between 18.1 and 115.1 °Fr. These samples were classified as extremely hard, hard, and quite hard. In addition, an assessment using the criteria for Inland Surface Water Classification indicated that considering certain parameters (pH levels, amount of Na, SO4 2?, Fe, Mn, Al, Co, Ni, Cu, and Cr), the samples belonged to class I (high quality) water. When Cl? amount and conductivity were considered, the samples belonged to the first and second classes (less polluted) of water. The water in the study area was generally classified as carbonated and sulfated (Ca + Mg > Na + K) water classes. This water contained more weak acids than strong acids (HCO3 ? + CO3 2? > Cl? + SO4 2?). The pH levels (6.3–8.2) of the water in the study area were unrelated to the varying concentrations of metals in the water. Elements such as Fe, Ni, Cd, Pb, Zn, and Cu increase in the water through the water–rock interaction in the area in which water rises or through the mixture of water with either mine or industrial wastes. In addition, several water samples belonged to an acceptable water class for drinking and usage.  相似文献   

15.
Acid mine drainage (AMD) is one of the severe environmental problems that coal mines are facing. Generation of AMD in the northeastern part of India due to the coal mining activities has long been reported. However detailed geochemical characterization of AMD and its impact on water quality of various creeks, river and groundwater in the area has never been reported. Coal and coal measure rocks in the study area show finely disseminated pyrite crystals. Secondary solid phases, resulted due to oxidation of pyrite, occur on the surface of coal, and are mainly consisting of hydrated sulphate complexes of Fe and Mg (copiapite group of minerals). The direct mine discharges are highly acidic (up to pH 2.3) to alkaline (up to pH 7.6) in nature with high concentration of SO42−. Acidic discharges are highly enriched with Fe, Al, Mn, Ni, Pb and Cd, while Cr, Cu, Zn and Co are below their maximum permissible limit in most mine discharges. Creeks that carrying the direct mine discharges are highly contaminated; whereas major rivers are not much impacted by AMD. Ground water close to the collieries and AMD affected creeks are highly contaminated by Mn, Fe and Pb. Through geochemical modeling, it is inferred that jarosite is stable at pH less than 2.5, schwertmannite at pH less than 4.5, ferrihydrite above 5.8 and goethite is stable over wide range of pH, from highly acidic to alkaline condition.  相似文献   

16.
确定矿井水中重金属污染程度及主要来源,对矿井水的再利用及矿区生态环境保护具有重要的理论意义。以内蒙古某矿区为研究对象,采集地表水、第四系潜水、承压水及矿井水水样49组,检测水体中Zn、Pb、Fe、Mn、As、Cu、Cd、Cr、Hg、Se 10种重金属浓度,分析矿井水中重金属污染特征及超标情况,利用HPI模型定量评价重金属污染程度,并综合数理统计、不同类型水样重金属浓度箱形图及煤/顶板重金属浸出试验,分析矿井水重金属主要来源。结果表明:内蒙古某矿矿井水中Zn、Pb、Fe、Mn、As 5种重金属浓度值超标,其中Fe和Zn的超标率高达100%;7个矿井水样中6个矿井水的HPI值大于临界值100,矿井水重金属污染程度较高;矿井水中的Pb、As主要来源于采煤及运输机械油类物质泄漏,Mn主要来源于Ⅲ含地下水,Fe、Zn主要来源于Ⅲ含地下水及煤层中含Fe、Zn矿物的溶滤。该结论将为矿井水中重金属污染防治提供基础与依据。   相似文献   

17.
沉积物的元素地球化学特征是对沉积盆地水体环境以及古气候条件变化的响应。本文根据元素(Al、Fe、Mg、Ca、K、Na、P、V、Ni、Co、Cr、Cu、Zn、Sr、Ba、Cd、Li、Mn、Pb、Ti)的含量及其比值(Al/Ti、Fe/Mn、Sr/Ba、Mg/Ca、Sr/Ca、Na/Ca、V/Cr、Ni/Co、Ni/V)的变化,对三水盆地古近系心组红岗段生油层的沉积条件进行了系统分析。心组红岗段下部(亚段A)表现为较稳定的地球化学特征。各元素丰度及其比值指示这一时期陆源输入持续较高、且物源组成变化不大。由于海水入侵的影响,湖盆水体盐度相对较高,底部水体以弱氧化条件为主,O2-H2S界面位于水/沉积物界面附近。红岗段中上部(亚段B、C)的元素地球化学特征变化较为频繁且幅度很大,反映古气候和湖盆沉积条件的迅速变迁。在潮湿气候条件下,沉积物的地球化学特征表现为以Al、Ti为代表的外源元素含量及其比值较高,而Mg、Ca等盆内化学沉积元素含量较低。古氧气指标指示底部水体为还原环境,有利于有机质保存。因而,相应于较高的有机碳含量。在间歇性干旱时期,陆源输入减少,外源元素含量及其比值显著降低。随着蒸发作用的加强,水体盐度加大,内源元素丰度以及Mg/Ca、Sr/Ba、Sr/Ca和Na/Ca比值大幅度上升。底部水体为氧化环境,O2-H2S界面多位于水/沉积物界面或沉积物中。上述两种气候条件在红岗段中上部沉积时期交替出现。红岗段沉积后期由于淡水的长期输入,湖水出现逐渐淡化趋势。  相似文献   

18.
An attempt has been made to study the groundwater geochemistry in part of the NOIDA metropolitan city and assessing the hydrogeochemical processes controlling the water composition and its suitability for drinking and irrigation uses. The analytical results show that Na and Ca are the major cations and HCO3 and Cl are the major anions in this water. The higher ratios of Na+K/TZ+ (0.2–0.7), Ca+Mg/HCO3 (0.8–6.1); good correlation between Ca-Mg (0.75), Ca-Na (0.77), Mg-Na (0.96); low ratio of Ca+Mg/Na+K (1.6), Ca/Na (1.03), Mg/Na (0.64), HCO3/Na (1.05) along with negative correlation of HCO3 with Ca and Mg signify silicate weathering with limited contribution from carbonate dissolution. The hydro-geochemical study of the area reveals that many parameters are exceeding the desirable limits and quality of the potable water has deteriorated to a large extent at many sites. High concentrations of TDS, Na, Cl, SO4, Fe, Mn, Pb and Ni indicate anthropogenic impact on groundwater quality and demand regional water quality investigation and integrated water management strategy. SAR, %Na, PI and Mg-hazard values show that water is of good to permissible quality and can be used for irrigation. However, higher salinity and boron concentration restrict its suitability for irrigation uses at many sites.  相似文献   

19.
Water, sediment, and mine spoil samples were collected within the vicinity of the Okpara coal mine in Enugu, Southeastern Nigeria, and analyzed for trace elements using ICP-MS to assess the level of environmental contamination by these elements. The results obtained show that the mine spoils and sediments are relatively enriched in Fe, with mean values of 1,307.8(mg/kg) for mine spoils and 94.15% for sediments. As, Cd, Cr, Mn,Ni, Pb, and Zn in the sediments were found to be enriched relative to the mean values obtained from the study area, showing contamination by these elements. The mean values of Fe, Mn, Cu, and Cr in the mine spoils and mean values of Fe, Cu, Pb, Zn, Ni, Cr, and Mn in sediments, respectively, are above the background values obtained from coal and shale in the study area, indicating enrichment with these elements. The water and sediments are moderately acidic, with mean pH values of 4.22?±?1.06 and 4.66?±?1.35, respectively. With the exception of Fe, Mn, and Ni, all other elements are within the Nigerian water quality standard and WHO limits for drinking water and other domestic purposes. The strong to moderate positive correlation between Fe and Cu (r?=?0.72), Fe and Zn (r?=?0.88), and Fe and As (r?=?0.60) at p?<?0.05 as obtained for the sediments depict the scavenging effect of Fe on these mobile elements. As also shows a strong positive correlation with Mn (r?=?≥ 0.70, p?<?0.05), indicating that Mn plays a major role in scavenging elements that are not co-precipitated with Fe. In water, the strong positive correlation observed between Cr and Cd (r?=?1.00), Cu and Ni (r?=?0.94), Pb and Cu (r?=?0.87) and Zn and Cu (r?=?0.99); Ni and Pb (r?=?0.83) and Zn and Ni (r?=?0.97); and between Pb and Zn (0.84) at p?<?0.05 may indicate similar element–water reaction control on the system due to similarities in chemical properties as well as a common source. Elevated levels of heavy metals in sediments relative to surface water probably imply that sorption and co-precipitation on Al and Fe oxides are more effective in the mobilization and attenuation of heavy metals in the mine area than acid-induced dissolution. The level of concentration of trace elements for the mine spoils will serve as baseline data for future reference in the study area.  相似文献   

20.
 The major (Al, Ti, Ca, Mg, Fe, Mn, Si) and trace element (Cd, Cr, Cu, Hg, Li, Ni, Pb, V, Zn) concentrations in surficial (<20 cm) sediments from fjords and open coastal waters around Greenland have been determined. Regionally, high concentrations of Fe, Ti, Mg, Cr, Cu, Ni, and V occur in some west and east coast sediments, but they appear to be natural in origin, as there is no indication of anthropogenic influence. Chemical partition indicates that most of the heavy metals are structurally bound in various silicate, oxide, and sulfide minerals. These host minerals occur more or less equally in the coarse and fine sediment fractions (material >63 μm and <63 μm) and have accumulated at the same rate as other detrital clastic material. Provenance and glaciomarine deposition are the main factors controlling the abundance and distribution of the major and trace elements. The chemical composition reflects the mineralogical differences in the provenance of glacial marine material deposited by water and ice adjacent to Greenland. The main source of the sediments enriched in Ti, Fe, Mg, Cr, Cu, Ni, and V appears to be material derived from the volcanic rocks of the Mesozoic-Tertiary Provinces of Greenland by glacial erosion. Received: 26 June 1995 · Accepted: 11 August 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号