首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract— To examine the thermal history of the parent body/bodies of equilibrated H chondrites, we treated data for 11 volatile trace elements (Co, Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, Tl, and In in order of putative volatility) in 90 falls: 15 H4; 46 H5, and 29 H6. Using univariate statistical tests, contents of few of these elements differ significantly between any two of these suites. One element, Cs, differs systematically between all three pairs of suites; Co and Tl differ between two pairs of suites. For Co and Cs, contents varied as H4 > H5 > H6; while for Tl, contents varied as H4 < H5 < H6. Using multivariate statistical tests, all three suites can be distinguished compositionally, with trace element contents in the H5 suite being intermediate to those of H4 and H6. Surprisingly, the multivariate distinguishability reflects contents of less volatile Co, Rb, Ag, Se and Cs, and not of highly volatile Te, Zn, Cd, Bi, Tl and In. The compositional trends apparently reflect heterogeneous accretion >600 K, with the suites deriving from a stratified parent body/bodies.  相似文献   

2.
Abstract— We report radiochemical neutron activation analysis (RNAA) data for U, Co, Au, Sb, Ga, Rb, Cs, Se, Ag, Te, Zn, In, Bi, Tl, and Cd (ordered by increasing ease of vaporization and loss from the Murchison CM2 chondrite during open-system heating) in nine Antarctic C2 and C3 chondrites. These meteorites exhibit properties (obtained by reflectance spectroscopy, O isotopic mass spectrometry and/or mineralogy-petrology) suggesting thermal metamorphism in their parent bodies. Five of these meteorites (Asuka (A) 881655, Yamato (Y) 793495, Y-790992, Pecora Escarpment (PCA) 91008, and Y-86789—paired with Y-86720) exhibit significant depletion of the most thermally mobile 1–5 trace elements, which is consistent with open-system loss during extended parent-body heating (under conditions duplicated by week-long heating of the Murchison C2 chondrite, heated at 500–700 °C in a low-pressure (initially 10?5atm) H2 atmosphere). From earlier data, three other C3 chondrites—Allan Hills (ALH) 81003, ALH 85003, and Lewis Cliffs (LEW) 85332—show significant Cd depletion. Nine additional C2 and C3 chondrites show no evidence of mobile trace element depletion—including Y-793321, which by all other criteria was mildly metamorphosed thermally. Either metamorphism of these nine meteorites occurred under closed conditions and/or alteration took place under such mild conditions that even Cd could not be lost. The RNAA data suggest that 10 of the 46 Antarctic carbonaceous chondrites (including 4 of 37 from Victoria Land and 6 of 9 from Queen Maud Land) exhibit open-system loss of at least some thermally mobile trace elements by heating in their parent bodies, whereas none of the 25 non-Antarctic falls experienced this. These results are consistent with the idea that the Antarctic sampling of near-Earth material differs from that being sampled today.  相似文献   

3.
The flux of small meteoroids, originating primarily from comets, consists of sporadic, random objects and others whose orbits are related. Here, we summarize data relevant to the question of whether the flux of large meteoroids of asteroidal origin (recoverable as meteorites) also consists of objects with random orbits, as well as coorbital objects. After reviewing some relevant properties of planetary materials, applications of two nuclear techniques - radiochemical neutron activation analysis (RNAA) and accelerator mass spectrometry (AMS) - to this question are discussed. Contents of ten thermally labile trace and ultratrace elements determined by RNAA (Ag, Bi, Cd, Cs, In, Rb, Se, Te, Tl, Zn) act as thermometers for thermal metamorphism in parent sources. These data, together with spectral reflectivity information, establish the nature of surfaces on abundant C-, G-, B- and F-class asteroids. Data for these ten cosmothermometers in H4-6 type ordinary chondrites, when treated by multivariate statistical techniques, demonstrate that a suite chosen by one set of criteria (the circumstances of their fall in May, between 1855 and 1895) is distinguishable by another set, i.e. compositionally, from all other such falls analyzed. Hence, this suite, H Cluster 1, has an average thermal history distinguishable from those of all other falls, demonstrating that near-Earth source regions for H chondrite falls changes rapidly. AMS measurements of cosmogenic36Cl (301 kyr half-life), quantify nominal terrestrial ages for Antarctic H chondrites whose contents of thermometric trace elements were also established by RNAA. While multivariate statistical analysis of RNAA data from Antarctic H chondrites with nominal terrestrial ages 50 kyr are not distinguishable from those of falls, older Antarctic H chondrites are compositionally distinguishable from falls. Assertions that these highly significant compositional differences reflect terrestrial or methodologic causes are refutable. This result argues that near-Earth source regions of H chondrites have changed over a long time, as well. Thus, the Earth receives a highly biased sampling of planetary objects in the Solar System in any one time-period.  相似文献   

4.
Abstract— The Noblesville meteorite is a genomict, regolith breccia (H6 clasts in H4 matrix). Mössbauer analysis confirms that Noblesville is unusually fresh, not surprising in view of its recovery immediately after its fall. It resembles “normal” H4–6 chondrites in its chemical composition and induced thermoluminescence (TL) levels. Thus, at least in its contents of volatile trace elements, Noblesville differs from other H chondrite, class A regolith breccias. Noblesville's small pre-atmospheric mass and fall near Solar maximum and/or its peculiar orbit (with perihelion <0.8 AU as shown by natural TL intensity) may partly explain its levels of cosmogenic radionuclides. Its cosmic ray exposure age of ~ 44 Ma, is long, is equalled or exceeded by <3% of all H chondrites, and also differs from the 33 ± 3 Ma mean exposure age peak of other H chondrite regolith breccias. One whole-rock aliquot has a high, but not unmatched, 129Xe/132Xe of 1.88. While Noblesville is now among the chondritic regolithic breccias richest in solar gases, elemental ratios indicate some loss, especially of He, perhaps b; impacts in the regolith that heated individual grains. While general shock-loading levels in Noblesville did not exceed 4 GPa, individual clasts record shock levels of 5–10 GPa, doubtless acquired prior to lithification of the whole-rock meteoroid.  相似文献   

5.
Abstract— Linear discriminant analysis and logistic regression have been applied to concentration data for 10 labile trace elements (Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, Tl and In) in 33 Antarctic H4–6 chondrites. The proportion of bulk Fe in the Fe3+ state, Fe3+/Fe, of these same chondrites permit their assignment to less- and more-weathered suites. Wherever the division between these suites is placed, the results are identical and consistent with the null hypothesis that the suites sample a single preterrestrial compositional population. Hence, no evidence exists that preterrestrial contents of labile trace elements in Antarctic H4–6 chondrites have been significantly altered by weathering as quantified by Fe3+/Fe or the A-B-C weathering index.  相似文献   

6.
Abstract— We present the first detailed study of a population of texturally distinct chondrules previously described by Kurat (1969), Christophe Michel‐Lévy (1976), and Skinner et al. (1989) that are sharply depleted in alkalis and Al in their outer portions. These “bleached” chondrules, which are exclusively radial pyroxene and cryptocrystalline in texture, have porous outer zones where mesostasis has been lost. Bleached chondrules are present in all type 3 ordinary chondrites and are present in lower abundances in types 4–6. They are most abundant in the L and LL groups, apparently less common in H chondrites, and absent in enstatite chondrites. We used x‐ray mapping and traditional electron microprobe techniques to characterize bleached chondrules in a cross section of ordinary chondrites. We studied bleached chondrules from Semarkona by ion microprobe for trace elements and H isotopes, and by transmission electron microscopy. Chondrule bleaching was the result of low‐temperature alteration by aqueous fluids flowing through finegrained chondrite matrix prior to thermal metamorphism. During aqueous alteration, interstitial glass dissolved and was partially replaced by phyllosilicates, troilite was altered to pentlandite, but pyroxene was completely unaffected. Calcium‐rich zones formed at the inner margins of the bleached zones, either as the result of the early stages of metamorphism or because of fluid‐chondrule reaction. The mineralogy of bleached chondrules is extremely sensitive to thermal metamorphism in type 3 ordinary chondrites, and bleached zones provide a favorable location for the growth of metamorphic minerals in higher petrologic types. The ubiquitous presence of bleached chondrules in ordinary chondrites implies that they all experienced aqueous alteration early in their asteroidal histories, but there is no relationship between the degree of alteration and metamorphic grade. A correlation between the oxidation state of chondrite groups and their degree of aqueous alteration is consistent with the source of water being either accreted ices or water released during oxidation of organic matter. Ordinary chondrites were probably open systems after accretion, and aqueous fluids may have carried volatile elements with them during dehydration. Individual radial pyroxene and cryptocrystalline chondrules were certainly open systems in all chondrites that experienced aqueous alteration leading to bleaching.  相似文献   

7.
Abstract— I have determined the composition via instrumental neutron activation analysis of a bulk pristine sample of the Tagish Lake carbonaceous chondrite fall, along with bulk samples of the CI chondrite Orgueil and of several CM chondrites. Tagish Lake has a mean of refractory lithophile element/Cr ratios like those of CM chondrites, and distinctly higher than the CI chondrite mean. Tagish Lake exhibits abundances of the moderately volatile lithophile elements Na and K that are slightly higher than those of mean CM chondrites. Refractory through moderately volatile siderophile element abundances in Tagish Lake are like those of CM chondrites. Tagish Lake is distinct from CM chondrites in abundances of the most volatile elements. Mean CI‐normalized Se/Co, Zn/Co and Cs/Co for Tagish Lake are 0.68 ± 0.01, 0.71 ± 0.07 and 0.76 ± 0.02, while for all available CM chondrite determinations, these ratios lie between 0.31 and 0.61, between 0.32 and 0.58, and between 0.39 and 0.74, respectively. Considering petrography, and oxygen isotopic and elemental compositions, Tagish Lake is an ungrouped member of the carbonaceous chondrite clan. The overall abundance pattern is similar to those of CM chondrites, indicating that Tagish Lake and CMs experienced very similar nebular fractionations. Bells is a CM chondrite with unusual petrologic characteristics. Bells has a mean CI‐normalized refractory lithophile element/Cr ratio of 0.96, lower than for any other CM chondrite, but shows CI‐normalized moderately volatile lithophile element/Cr ratios within the ranges of other CM chondrites, except for Na which is low. Iridium, Co, Ni and Fe abundances are like those of CM chondrites, but the moderately volatile siderophile elements, Au, As and Sb, have abundances below the ranges for CM chondrites. Abundances of the moderately volatile elements Se and Zn of Bells are within the CM ranges. Bells is best classified as an anomalous CM chondrite.  相似文献   

8.
Abstract— A large impact event 500 Ma ago shocked and melted portions of the L‐chondrite parent body. Chico is an impact melt breccia produced by this event. Sawn surfaces of this 105 kg meteorite reveal a dike of fine‐grained, clast‐poor impact melt cutting shocked host chondrite. Coarse (1–2 cm diameter) globules of FeNi metal + sulfide are concentrated along the axis of the dike from metal‐poor regions toward the margins. Refractory lithophile element abundance patterns in the melt rock are parallel to average L chondrites, demonstrating near‐total fusion of the L‐chondrite target by the impact and negligible crystal‐liquid fractionation during emplacement and cooling of the dike. Significant geochemical effects of the impact melting event include fractionation of siderophile and chalcophile elements with increasing metal‐silicate heterogeneity, and mobilization of moderately to highly volatile elements. Siderophile and chalcophile elements ratios such as Ni/Co, Cu/Ga, and Ir/Au vary systematically with decreasing metal content of the melt. Surprisingly small (?102) effective metal/silicate‐melt distribution coefficients for highly siderophile elements probably reflect inefficient segregation of metal despite the large degrees of melting. Moderately volatile lithophile elements such K and Rb were mobilized and heterogeneously distributed in the L‐chondrite impact breccias whereas highly volatile elements such as Cs and Pb were profoundly depleted in the region of the parent body sampled by Chico. Volatile element variations in Chico and other L chondrites are more consistent with a mechanism related to impact heating rather than condensation from a solar nebula. Impact processing can significantly alter the primary distributions of siderophile and volatile elements in chondritic planetesimals.  相似文献   

9.
10.
Abstract— We have classified 12 new, moderately to severely weathered meteorites from Roosevelt County, New Mexico (RC 079–090) that were recovered between 1969 and 1993. They include nine H chondrites and three L chondrites of petrologic types 4 to 6 and shock classification S1 to S4. Among these are a flight-oriented specimen of an H5 chondrite, an L4 chondrite with a porphyritic impact-melt rock clast, an H5 fragmental breccia with an unusual weathering assemblage (probably a Ca sulfate), and an H4 chondrite with unequilibrated pyroxenes.  相似文献   

11.
The Kumtag 016 strewn field was found in the eastern part of the Kumtag desert, Xinjiang Province, China. In this study, 24 recovered meteorites have been characterized by a suite of different analytical techniques to investigate their petrography, mineralogy, bulk trace elements, noble gas isotopic composition, density, and porosity. We attribute to the strewn field 22 L5 chondrites with shock stage S4 and weathering grade W2–W3. Two different meteorites, Kumtag 021, an L4 chondrite and Kumtag 032, an L6 chondrite, were recognized within the strewn field area. Moreover, Kumtag 003, an H5 chondrite, was previously found in the same area. We infer that the Kumtag 016 strewn field most likely consists of at least four distinct meteorite falls. The effects of terrestrial weathering on the studied meteorites involve sulfide/metal alteration, chemical changes (Sr, Ba, Pb, and U enrichments and depletion in Cr, Co, Ni, and Cs abundances), and physical modifications (decrease of grain density and porosity). Measurements of the light noble gases indicate that the analyzed Kumtag L5 samples contain solar wind-implanted noble gases with a 20Ne/22Ne ratio of ~12.345. The cosmic-ray exposure (CRE) ages of the L5 chondrites are in a narrow range (3.6 ± 1.4 Ma to 5.2 ± 0.4 Ma). For L4 chondrite Kumtag 021 and L6 chondrite Kumtag 032, the CRE ages are 5.9 ± 0.4 Ma and 4.7 ± 0.8 Ma, respectively.  相似文献   

12.
Abstract— Lewis Cliff 85332 (LEW85332) is a highly unequilibrated (type 3.0–3.1) unique carbonaceous chondrite. It resembles CI and “CR” chondrites in its abundance ratios of refractory lithophiles and refractory siderophiles, but differs significantly from these groups in important ways: relative to CI chondrites, LEW85332 has low abundances of Mn, Se, Zn and most volatile siderophiles; relative to “CR” chondrites, LEW85332 has high abundance ratios of Mn and most volatile siderophiles. Although several petrologic characteristics of LEW85332 resemble those of CO chondrites, LEW85332 differs from this group in having lower abundance ratios of refractory lithophiles and higher abundance ratios of common and volatile siderophiles. Chondrules (mean diameter of 170 μm) are smaller than those in CV and CM chondrites and bigger than those in most CO chondrites. Two melilite-rich (Åk 22) fluffy type-A refractory inclusions were observed. Weathering of LEW85332 has resulted in the formation of 6.2 vol.% limonite; 3.9 vol.% metallic Fe-Ni remains. The inferred original metallic Fe-Ni abundance (13–15 wt.%) is very high for a carbonaceous chondrite and is most similar to those of Kainsaz and Colony (both CO3). LEW85332 is a breccia: the one thin section we examined contains (a) ≥ 10 primitive carbonaceous chondrite clasts (with both C1 and C2 affinities) that contain magnetite framboids and platelets, (b) two clasts containing numerous 10-μm-size clusters of troilite grains, and (c) one clast containing small needles of schreibersite embedded in fine-grained silicate matrix. The unique nature of LEW85332 underscores the wide diversity of materials produced in the solar nebula.  相似文献   

13.
Abstract— Micrometeorites (MMs) currently represent the largest steady‐state mass flux of extraterrestrial matter to Earth and may have delivered a significant fraction of volatile elements and organics to the Earth's surface. Nitrogen and noble gases contents and isotopic ratios have been measured in a suite of 17 micrometeorites recovered in Antarctica (sampled in blue ice at Cap Prudhomme) and Greenland (separated from cryoconite) that have experienced variable thermal metamorphism during atmospheric entry. MMs were pyrolized using a CO2 laser and the released gases were analyzed for nitrogen and noble gas abundances and isotopic ratios by static mass spectrometry after specific purification. Noble gases are a mixture of cosmogenic, solar, atmospheric, and possibly chondritic components, with atmospheric being predominant in severely heated MMs. δ15N values vary between ?240 ± 62‰ and +206 ± 12‰, with most values being within the range of terrestrial and chondritic signatures, given the uncertainties. Crystalline MMs present very high noble gas contents up to two orders of magnitude higher than carbonaceous chondrite concentrations. In contrast, nitrogen contents between 4 ppm and 165 ppm are much lower than those of carbonaceous chondrites, evidencing either initially low N content in MMs and/or degradation of phases hosting nitrogen during atmospheric entry heating and terrestrial weathering. Assuming that the original N content of MMs was comparable to that of carbonaceous chondrites, the contribution of nitrogen delivery by these objects to the terrestrial environment would have been probably marginal from 3.8 Gyr ago to present but could have been significant (?10%) in the Hadean, and even predominant during the latest stages of terrestrial accretion.  相似文献   

14.
Abstract– Nineteen nonporphyritic pyroxene and pyroxene/olivine chondrules, chondrule fragments, and irregular objects were studied from two equilibrated chondrites, the ordinary (L/LL5) Knyahinya chondrite and the Rumuruti type (R4) Ouzina chondrite. Major element contents for almost all objects in the chondrites are disturbed from their chondritic ratios, most probably during metamorphic re‐equilibration. However, the volatile elements (Na2O + K2O) in Ouzina scatter around the CI line, probably the result of being generated and/or processed in different environments as compared with those for Knyahinya. All studied objects from Knyahinya and Ouzina possess systematically fractionated trace element abundances. Depletion of LREE with respect to HREE and ultra‐refractory HFSE documents variable degrees of LREE transport into an external mineral sink and restricted mobility of most of the HREE and HFSE. Moderately volatile elements preserve volatility‐controlled abundances. Strongly fractionated Rb/Cs ratios (up to 10× CI) in all studied objects suggest restricted mobility of the large Cs ion. All studied objects sampled and preserved Y and Ho in solar proportions, a feature that they share with the nonporphyritic chondrules of unequilibrated ordinary chondrites.  相似文献   

15.
Abstract— The cumulative mass distributions (mass range > 100 g) of each type of Japanese and U.S. Antarctic ordinary chondrites are compared with those of non-Antarctic falls and those obtained from the present-day flux of meteorites. The steeper slope of the mass distribution of Antarctic chondrites is indicative of the presence of several chondrite showers. The fall-to-specimen ratio of Antarctic ordinary chondrites larger than 100 g is about 1:2, indicating that half of them are shower components. The fall-to-specimen ratios of each group range from 1:1 to 1:6; those of the Japanese and U.S. Antarctic meteorite collections are 1:1 to 1:2 and 1:4 for H chondrites, 1:1 to 1:2 and 1:2 for L chondrites, and 1:2 and 1:6 for LL chondrites, indicating that the Japanese collection includes less abundant shower components than the U.S. collection. The fall-to-specimen ratios of each H4-6 and L4-6 type range from 1:1 to 1:4, and U.S. H6 and Japanese H4 have the low ratios of 1:4.  相似文献   

16.
Abstract— Concentration and isotopic composition of the light noble gases as well as of 84Kr, 129Xe, and 132Xe have been measured in bulk samples of 60 carbonaceous chondrites; 45 were measured for the first time. Solar noble gases were found in nine specimens (Arch, Acfer 094, Dar al Gani 056, Graves Nunataks 95229, Grosnaja, Isna, Mt. Prestrud 95404, Yamato (Y) 86009, and Y 86751). These meteorites are thus regolith breccias. The CV and CO chondrites contain abundant planetary‐type noble gases, but not CK chondrites. Characteristic features of CK chondrites are high 129Xe/132Xe ratios. The petrologic type of carbonaceous chondrites is correlated with the concentration of trapped heavy noble gases, similar to observations shown for ordinary chondrites. However, this correlation is disturbed for several meteorites due to a contribution of atmospheric noble gases, an effect correlated to terrestrial weathering effects. Cosmic‐ray exposure ages are calculated from cosmogenic 21Ne. They range from about 1 to 63.5 Ma for CO, CV, and CK classes, which is longer than exposure ages reported for CM and CI chondrites. Only the CO3 chondrite Isna has an exceptionally low exposure age of 0.15 Ma. No dominant clusters are observed in the cosmic‐ray exposure age distribution; only for CV and CK chondrites do potential peaks seem to develop at ~9 and ~29 Ma. Several pairings among the chondrites from hot deserts are suggested, but 52 of the 60 investigated meteorites are individual falls. In general, we confirm the results of Mazor et al. (1970) regarding cosmic‐ray exposure and trapped heavy noble gases. With this study, a considerable number of new carbonaceous chondrites were added to the noble gas data base, but this is still not sufficient to obtain a clear picture of the collisional history of the carbonaceous chondrite groups. Obviously, the exposure histories of CI and CM chondrites differ from those of CV, CO, and CK chondrites that have much longer exposure ages. The close relationship among the latter three is also evident from the similar cosmic‐ray exposure age patterns that do not reveal a clear picture of major breakup events. The CK chondrites, however, with their wide range of petrologic types, form the only carbonaceous chondrite group which so far lacks a solar‐gas‐bearing regolith breccia. The CK chondrites contain only minute amounts of trapped noble gases and their noble gas fingerprint is thus distinguishable from the other groups. In the future, more analyses of newly collected CK chondrites are needed to unravel the genetic and historic evolution of this group. It is also evident that the problems of weathering and pairing have to be considered when noble gas data of carbonaceous chondrite are interpreted.  相似文献   

17.
Abstract– We present a detailed study of mineralogy, chemistry, and noble gases of the Neuschwanstein (EL6) chondrite that fell in 2002 in southern Germany. The meteorite has an unbrecciated texture and exhibits only minor shock features. Secondary weathering products are marginal. Neuschwanstein is an EL6 chondrite with heterogeneously distributed metal and sulfide grains. In terms of bulk chemistry, it has very high Fe concentrations, and siderophile and halogen element abundances higher than typical EL chondrites. However, like other ELs of higher petrologic type, it has low moderately volatile element abundances, e.g., Mn and Zn. We interpret these as indicators for loss of sulfide, probably through mobilization of ferroan alabandite and a Zn‐bearing sulfide, potentially sphalerite, during metamorphism. Trapped noble gases are dominated by a subsolar component with high Ar concentrations and are typical for EL chondrites. The shielding parameters indicate a small meteoroid (<20 cm radius) with an exposure age of approximately 47 Ma, which is among the highest for enstatite chondrites.  相似文献   

18.
Abstract— Using the isotopic compositions derived in Huss and Lewis, 1994a (Paper I), abundances of the P3, HL, and P6 noble-gas components were determined for 15 diamond separates from primitive chondrites of 8 chondrite classes. Within a meteorite class, the relative abundances of these components correlate with the petrologic subtype of the host meteorite, indicating that metamorphism is primarily responsible for the variations. Relative abundances of P3, HL, and P6 among diamond samples can be understood in terms of thermal processing of a single mixture of diamonds like those now found in CI and CM2 chondrites. With relatively gentle heating, primitive diamonds first lose their low-temperature P3 gases and a “labile” fraction of the HL component. Mass loss associated with release of these components produces an increase in the HL and P6 content of the remaining diamond relative to unprocessed diamond. Higher temperatures initiate destruction of the main HL carrier, while the HL content of the surviving diamonds remains essentially constant. At the same time, the P6 carrier begins to preferentially lose light noble gases. Meteorites that have experienced metamorphic temperatures ?650 °C have lost essentially all of their presolar diamond through chemical reactions with surrounding minerals. The P3 abundance seems to be a function only of the maximum temperature experienced by the diamonds and thus is independent of the nature of the surrounding environment. If all classes inherited the same mixture of primitive diamonds, then P3 abundances would tie together the metamorphic scales in different meteorite classes. However, if the P3 abundance indicates a higher temperature than do other thermometers applicable to the host meteorite, then the P3 abundance may contain information about heating prior to accretion. Diamonds in the least metamorphosed EH, CV, and CO chondrites seem to carry a record of pre-accretionary thermal processing.  相似文献   

19.
Abstract— We report concentrations of cosmogenic 10Be, 26Al, 36Cl, and 41Ca in the metal phase of 26 ordinary chondrites from Frontier Mountain (FRO), Antarctica, as well as cosmogenic 14C in eight and noble gases in four bulk samples. Thirteen out of 14 selected H chondrites belong to two previously identified pairing groups, FRO 90001 and FRO 90174, with terrestrial ages of ?40 and ?100 kyr, respectively. The FRO 90174 shower is a heterogeneous H3–6 chondrite breccia that probably includes more than 300 individual fragments, explaining the high H/L chondrite ratio (3.8) at Frontier Mountain. The geographic distribution of 19 fragments of this shower constrains ice fluctuations over the past 50–100 kyr to less than ?40 m, supporting the stability of the meteorite trap over the last glacial cycle. The second H‐chondrite pairing group, FRO 90001, is much smaller and its geographic distribution is mainly controlled by wind‐transport. Most L‐chondrites are younger than 50 kyr, except for the FRO 93009/01172 pair, which has a terrestrial age of ?500 kyr. These two old L chondrites represent the only surviving members of a large shower with a similar preatmospheric radius (?80 cm) as the FRO 90174 shower. The find locations of these two paired L‐chondrite fragments on opposite sides of Frontier Mountain confirm the general glaciological model in which the two ice flows passing both ends of the mountain are derived from the same source area on the plateau. The 50 FRO meteorites analyzed so far represent 21 different falls. The terrestrial ages range from 6 kyr to 500 kyr, supporting the earlier proposed concentration mechanism.  相似文献   

20.
Supuhee is a shocked and brecciated H6 chondrite containing foreign lithic clasts. Three such clasts were analysed with the electron microprobe in an attempt to locate “mysterite,” a volatile-rich material postulated to be present in Supuhee. Clast 1 bears chemical and mineralogical similarities to C1 and C2 chondrites, but its total volatile content, <9.4%, is lower than that of either of these types. The composition of Clast 2 suggests its derivation from H-group chondrite material via loss of metal and sulfide. The third clast is apparently a unique meteorite type bearing compositional similarities to both ordinary and enstatite chondrites. The occurrence of these clasts in a highly recrystallized host is evidence for their incorporation after metamorphism. The presence of Clast 1, coupled with this time sequence, indicates that conditions were favorable for the formation, incorporation and preservation of volatile-rich materials such as mysterite  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号