首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lithosphere is interpreted as a thermal boundary layer. Approximate solutions of the boundary layer cooling problem are developed which include mantle radioactivity, partial melt in the asthenosphere, a temperature gradient in the asthenosphere, and a non-zero lithospheric thickness at the ridge crests. The cooling history of oceanic lithosphere is found to be remarkably insensitive to assumptions about the amount of radioactivity in the upper mantle and the extent of melting in the asthenosphere. Determinations of the thickness of oceanic lithosphere and the depths of oceans as a function of age are in excellent agreement with boundary layer predictions which include a heat flux from the asthenosphere. However, the determinations do not resolve how much of the total asthenospheric heat flux might be caused by a temperature gradient in the asthenosphere. Simple thermal arguments indicate that the initial lithospheric thickness, L0, at ridge crests should depend on the local half-spreading rate, V, as L0 = 3 km/V(cm/year).  相似文献   

2.
The formation of the thermal cross section of the lithosphere and mantle upon the interaction between the mantle convection and the immobile continent surrounded by the oceanic lithosphere is studied by numerical modeling. The convective temperature and velocity fields and then the averaged geotherms for subcontinental and suboceanic regions up to the boundary with the core are calculated from the solution of convection equations with a jump in viscosity in the continental zone. Using the experimental data on the solidus temperature in the rocks of the upper mantle, the average thickness of the continental and oceanic lithosphere is estimated at 190 and 30 km, respectively. The effect of a hot spot formed in the subcontinental upper mantle at a depth of 250–500 km, which has not been previously noted, is revealed. Although the temperature in this zone is typically assumed to be close to adiabatic, the calculations show that it is actually higher than adiabatic by up to 200°C. The physical mechanism responsible for this effect is associated with the accumulation of convective heat beneath the thermally insulating layer of the continental lithosphere. The revealed anomalies can be important in studying the phase and mineral transformations at the base of the lithosphere and in the regional geodynamical reconstructions.  相似文献   

3.
Mantle convection stirs and homogenizes the subducted oceanic lithosphere with the convecting mantle. Convective mixing stretches and thins the subducted oceanic crust from an original thickness of 6 km to a thickness of 2 cm or less. The thinned, subducted oceanic crust can be observed as pyroxenite bands in high-temperature peridotite massifs. On the scale of centimeters, the bands are destroyed by diffusive processes. In this paper, the homogenization of the subducted oceanic crust with the depleted mantle is modeled by considering the combined problem of thinning and diffusion at a stagnation point. A layer of different composition from the surrounding material is thinned by normal strain until its identity is destroyed by diffusive processes. Thinning dominates the destruction of a layer if a2/D< 1, where is the strain rate, 2a is the initial layer thickness, and D is the diffusivity. Diffusion dominates if a2/D< 1. Our results indicate that the mantle is homogeneous at the centimeter scale. This conclusion is insensitive to variations in the strain rate and the diffusivity, and it is supported by isotopic studies of high-temperature peridotite massifs. Variations in isotope ratios in MORB can be attributed to the imperfect homogenization of the MORB source region.  相似文献   

4.
A model is proposed for the origin of hot spots that depends on the existence of major-element heterogeneities in the mantle. Generation of basaltic crust at spreading centers produces a layer of residual peridotite ~20–25 km thick directly beneath the crust which is depleted in Fe/Mg, TiO2, CaO, Al2O3, Na2O and K2O, and which has a slightly lower density than undepleted peridotite beneath it. Upon recycling of this depleted peridotite back into the deep mantle at subduction zones, it becomes gravitationally unstable, and tends to rise as diapirs through undepleted peridotite. For a density contrast of 0.05 g cm?3, a diapir 60 km in diameter would rise at roughly 8 cm y?1, and could transport enough heat to the base of the lithosphere to cause melting and volcanism at the surface. Hot spots are thus viewed as a passive consequence of mantle convection and fractionation at spreading centers rather than a plate-driving force.It is suggested that depleted diapirs exist with varying amounts of depletion, diameters, upward velocities and source volumes. Such variations could explain the occurrence of hot spots with widely varying lifetimes and rates of lava production. For highly depleted diapirs with very low Fe/Mg, the diapir would act as a heat source and the asthenosphere and lower lithosphere drifting across the diapir would serve as the source region of magmas erupted at the surface. For mildly depleted diapirs with Fe/Mg only slightly less than in normal undepleted mantle, the diapir could provide not only the source of heat but also most or all of the source material for the erupted magmas. The model is consistent with isotopic data that require two separate and ancient source regions for mid-ocean ridge and oceanic island basalts. The source for mid-ocean ridge basalts is considered to be material upwelling at spreading centers from the deep mantle. This material forms the oceanic lithosphere. Oceanic island basalts are considered to be derived from varying mixtures of sublithospheric and lower lithospheric material and the rising diapir itself.  相似文献   

5.
Recent advances in the measurement and interpretation of geoid height anomalies provide a new way to estimate the thickness of the oceanic lithosphere as a function of crustal age. GEOS-III satellite altimetry measurements show abrupt changes in sea level across fracture zones which separate areas of lithosphere with different ages. These changes have the correct location, amplitude, and wavelength to be caused by the combined gravitational attraction of the relief across the fracture zone and the isostatic support of this relief. Eight profiles of geoid height and bathymetry across the Mendocino fracture zone are inverted to determine the depth of the isostatic compensation, assuming that the compensation occurs in a single layer. These depths are then interpreted with a thermal boundary layer model of lithospheric growth. To explain satisfactorily the geoid measurements, the thermal diffusivity of the upper mantle must be 3.3 × 10?3 cm2 s?1 and the thickness of the lithosphere, defined as the depth at which the geotherm reaches 95% of its maximum value, must be9.1km m.y.?1/2 × t1/2, where t is lithospheric age.  相似文献   

6.
增厚大陆岩石层热边界层对流剥离的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
用数值模拟方法模拟了增厚大陆岩石层热边界层被对流地幔剥离并为软流层物质替代的动力学过程.结果表明,在初始温度分层分布、侧向均匀但存在微小热扰动的流场中,80km厚的增厚岩石层热边界层约需60Ma才能被完全剥离,剥离的速率微弱地依赖扰动的强度;在已建立好的流场中,同样厚度的增厚热边界层只需约10Ma就可被剥离.模拟结果暗示青藏高原地壳及岩石层在岩石层增厚和剥离以前就很热,其下伏地馒中可能已存在建立好的上地幔小尺度对流系统,而该尺度的对流系统很可能是由特提斯海洋岩石圈俯冲和消减诱发的  相似文献   

7.
A new model is proposed for the structure of the Kaapvaal craton lithosphere. Based on chemical thermodynamics methods, profiles of the chemical composition, temperature, density, and S wave velocities are constructed for depths of 100–300 km. A solid-state zone of lower velocities is discovered on the S velocity profile in the depth interval 150–260 km. The temperature profiles are obtained from absolute values of P and S velocities, taking into account phase transformations, anharmonicity, and anelastic effects. The examination of the sensitivity of seismic models to the chemical composition showed that relatively small variations in the composition of South African xenoliths result in lateral temperature variations of ~200°C. Inversion of some seismic profiles (including IASP91) with a fixed bulk composition of garnet peridotites (the primitive mantle material) leads to a temperature inversion at depths of 200–250 km, which is physically meaningless. It is supposed that the temperature inversion can be removed by gradual fertilization of the mantle with depth. In this case, the craton lithosphere should be stratified in chemical composition. The depleted lithosphere composed by garnet peridotites exists to depths of 175–200 km. The lithospheric material at depths of 200–250 km is enriched in basaltoid components (FeO, Al2O3, and CaO) as compared with the material of garnet peridotites but is depleted in the same components as compared with the fertile substance of the underlying primitive mantle. The material composing the craton root at a depth of ~275 km does not differ in its physical and chemical characteristics from the composition of the normal mantle, and this allows one to estimate the thickness of the lithosphere at 275 km. The results of this work are compared with data of seismology, thermal investigations, and thermobarometry.  相似文献   

8.
The outer core is assumed to consist of iron and sulfur, with a small amount of potassium that generates heat by radioactive decay of sim||pre|40 K. Two cases are considered, corresponding respectively to a high rate of heat production (Q = 2 · 1012 cal./sec, about 0.1% K), and to a low rate (Q = 2 · 1011 cal./sec). The temperature at a depth of 2800 km in the mantle is taken to be 3300°K (Wang, 1972). The temperature Tc at the core-mantle boundary depends on whether or not a density gradient in the lowermost layer D″ of the mantle prevents convection in that layer. In the first case, and for high Q, Tc = 4500–5000°K. In the second case, or for low Q, Tc ≈ 3500°K.The heat-conduction equation is used to calculate the temperature Ti at the inner-core boundary in the absence of convection. For high Q, Ti ? Tc ≈ 1600°K; for low Q, Ti ? Tc ≈ 160°K. Corresponding temperature gradients at r = rc and r = ri are listed in Table I.The adiabatic gradient at the top of the core is calculated by the method of Stewart (1970). It strongly depends on the parameters (ρ0, c0, γ0, etc.) that characterize core material at low pressure. Stewart has drawn graphs that allow the selection of sets of parameters that are consistent with seismic velocities and a given density distribution in the core. Some acceptable sets of parameters are listed in Table II. Many sets yield temperatures Tc in the range 3500–5000°K; some give an adiabatic gradient steeper than the conductive gradient and are compatible with convection; others do not. Since properties of FeS melts remain unknown, there is at present no way of selecting any set in preference to another.Properties of the FeS system at low pressure suggest the possible appearance of immiscibility at high temperature in liquids of low sulfur content; accordingly, the inner-core boundary is thought to represent equilibrium between a solid (FeNi) inner core and a liquid layer containing only a small amount of sulfur; layer F in turn is in equilibrium with another liquid (forming layer E) containing more sulfur, and slightly less dense, than F. The temperature Ti at the inner-core boundary is about 6000–6500°K for high Q and Tc ≈ 4500–5000°K. It is consistent with Alder's (1966) and Leppaluoto's (1972) estimates of the melting point of iron at 3.3 Mbar, but not with that of Higgins and Kennedy (1971).  相似文献   

9.
10.
We provide new petrological evidence for the strong influence of water on the formation of the oceanic lithospheric mantle, the subcontinental mantle above, and the continental lithosphere. Our analysis throws new light on the hypothesis that new continental lithosphere was formed by the passage of silicate-rich aqueous fluid through the sub-continental mantle. In order to investigate this hypothesis, we analyzed a representative collection of lherzolite and harzburgite xenoliths from the sample volcano known as “The Thumb”, located in the center of the Colorado Plateau, western United States. The studied sample collection exhibits multi-stage water enrichment processes along point, line and planar defect structures in nominally anhydrous minerals and the subsequent formation of the serpentine polymorph antigorite along grain boundaries and in totally embedded annealed cracks. Planar defect structures act like monomineralic and interphase grain boundaries in the oceanic lithosphere and the subcontinental mantle beneath the North American plate, which was hydrated by the ancient oceanic Farallon plate during the Cenozoic and Mesozoic eras. We used microspectroscopical, petrological, and seismological techniques to confirm multi-stage hydration from a depth of ∼150 km to just below the Moho depth. High-resolution mapping of the water distribution over homogeneous areas and fully embedded point, line and planar defects in olivine crystals of lherzolitic and harzburgitic origin by synchrotron infrared microspectroscopy enabled us to resolve local wet spots and thus reconstruct the hydration process occurring at a depth of ∼150 km (T  1225 °C). These lherzolites originated from the middle part of the Farallon mantle slab; they were released during the break up of the Farallon mantle slab, caused by the instability of the dipping slab. The background hydration levels in homogeneous olivines reached ∼138 ppm wt H2O, and the water concentration at the planar defects could reach up to ∼1000 ppm wt H2O. However, the formation of antigorite in grain boundaries was found to be the primary hydration mechanism for harzburgitic samples originating from the subcontinental mantle (for hydration, T  600 °C). Additionally, the formation of antigorite in lherzolites could be found in annealed cracks. From these observations, we conclude that hydration induces multi-stage water enrichment of the mantle wedge by a process that is dominated by the growth and movement of ubiquitous cracks, which acts as planar defects. Cracks in the mantle seem to be the an important feature in both the water cycle of the subduction zone and the formation of the continental lithosphere.  相似文献   

11.
The junction between lithosphere and asthenosphere for the oceanic and continental mantles is usually defined as the depth where the shear velocity suddenly decreases. It now also appears reasonable to define the junction in terms of a sudden increase in the dissipating properties of the lower of the two boundary materials. Using new data for the suboceanic upper mantle it is possible to deduce the relative thinning of the lithosphere under the oceans compared to the continents from the variation with frequency of the Rayleigh wave specific attenuation factorQγ?1.  相似文献   

12.
A suite of highly depleted peridotite xenoliths in East Serbian Palaeogene basanites represents the lithospheric mantle beneath the Balkan Peninsula. The xenoliths are harzburgites, clinopyroxene-poor lherzolites and rare dunites. They contain mostly <5 vol.% of modal clinopyroxene and are characterized by high Mg# in silicates (>91), high Cr# in spinel (mostly 0.5–0.7), and by distinctively low Al2O3 contents in orthopyroxene (mostly 1–2 wt.%). They have experienced some mantle metasomatism which has slightly obscured their original composition. Nevertheless, the general characteristics of the xenoliths imply a composition which is significantly more depleted than most non-cratonic sub-continental mantle xenolith suites, as well as orogenic peridotites and abyssal peridotites. Geological and compositional evidence suggests that the xenoliths do not represent Archean mantle. The existence of Proterozoic mantle cannot be entirely excluded, although it is in disagreement with geological evidence. On the other hand, the studied xenoliths are compositionally very similar to peridotites of modern oceanic sub-arc settings. The existence of such a depleted lithospheric mantle segment is also inferred from the presence of rare orthopyroxene-rich xenoliths in the same suite. These are interpreted to have originated as lithospheric precipitates of high-Mg, SiO2-saturated magmas that require a highly depleted mantle source. Such source is typically required by boninitic-like magmas of intraoceanic suprasubduction settings. A proposed geodynamic model to explain these observations involves accretion or underplating of the lower parts of the Tethyan oceanic lithosphere during the Upper Jurassic closure of the eastern branch of the Vardar ocean.  相似文献   

13.
For a lherzolite mantle with about 0.1 wt.-percent CO2 or less, and a CO2/H2O mole ratio greater than about one, the mantle solidus curve in P-T space will have two important low-temperature regions, one centered at about 9 kbar (30 km depth) and another beginning at about 28 kbar (90 km depth). It is argued that the depth of generation of primary tholeiitic magmas beneath ridge crests is about 9 kbar, and that the geotherm changes from an adiabatic gradient at greater pressures to a strongly superadiabatic gradient at lesser pressures. Such a ridge geotherm would intersect the solidus at two separate depth intervals corresponding to the two low-temperature regions on the solidus. With increasing age and cooling of the lithosphere, the shallow partial melt zone would pinch out and the thickness of the deep partial melt zone would decrease. With increasing depth in a mature oceanic lithosphere, the rock types would consist of depleted harzburgite from directly beneath the crust to about 30 km depth, fertile spinel lherzolite from about 30 km to 50–60 km, and fertile garnet lherzolite from about 50–60 km to the top of the deep partial melt zone at about 90 km.  相似文献   

14.
15.
Whether in the mantle or in magma chambers, convective flows are characterized by large variations of viscosity. We study the influence of the viscosity structure on the development of convective instabilities in a viscous fluid which is cooled from above. The upper and lower boundaries of the fluid are stress-free. A viscosity dependence with depth of the form ν0 + ν1 exp(?γ.z) is assumed. After the temperature of the top boundary is lowered, velocity and temperature perturbations are followed numerically until convective breakdown occurs. Viscosity contrasts of up to 107 and Rayleigh numbers of up to 108 are studied.For intermediate viscosity contrasts (around 103), convective breakdown is characterized by the almost simultaneous appearance of two modes of instability. One involves the whole fluid layer, has a large horizontal wavelength (several times the layer depth) and exhibits plate-like behaviour. The other mode has a much smaller wavelength and develops below a rigid lid. The “whole layer” mode dominates for small viscosity contrasts but is suppressed by viscous dissipation at large viscosity contrasts.For the “rigid lid” mode, we emphasize that it is the form of the viscosity variation which determines the instability. For steep viscosity profiles, convective flow does not penetrate deeply in the viscous region and only weak convection develops. We propose a simple method to define the rigid lid thickness. We are thus able to compute the true depth extent and the effective driving temperature difference of convective flow. Because viscosity contrasts in the convecting region do not exceed 100, simple scaling arguments are sufficient to describe the instability. The critical wavelength is proportional to the thickness of the thermal boundary layer below the rigid lid. Convection occurs when a Rayleigh number defined locally exceeds a critical value of 160–200. Finally, we show that a local Rayleigh number can be computed at any depth in the fluid and that convection develops below depth zr (the rigid lid thickness) such that this number is maximum.The simple similarity laws are applied to the upper mantle beneath oceans and yield estimates of 5 × 1015?5 × 1016 m2 s?1 for viscosity in the thermal boundary layer below the plate.  相似文献   

16.
The increased depth and volume of melting induced in a higher temperature Archaean mantle controls the stability of the lithosphere, heat loss rates and the thickness of the oceanic crust. The relationship between density distributions in oceanic lithosphere and the depth of melting at spreading centres is investigated by calculating the mineral proportions and densities of residual mantle depleted by extraction of melt fractions. The density changes related to compositional gradients are comparable to those produced by thermal effects for lithosphere formed from a mantle which is 200°C or more hotter than modern upper mantle. If Archaean continental crust formed initially above oceanic lithosphere, the compositional density gradients may be sufficient to preserve a thick Archaean continental lithosphere within which the Archaean age diamonds are preserved. The amount of heat advected by melts at mid-ocean ridges today is small but heat advected by melting becomes proportionally more important as higher mantle temperatures lead to a greater volume of melt and as the rate of production of oceanic plates increases. Archaean tectonics could have been dominated by spreading rates 2–3 times greater than now and with mantle temperatures between ca. 1600°C and 1800°C at the depth of the solidus. Mid-ocean ridge melting would produce a relatively thick but light refractory lithosphere on which continents could form, protected from copious volcanism and high mantle temperatures.  相似文献   

17.
A self-consistent approach is proposed for the investigation of the thermal conditions, chemical composition, and internal structure of the upper mantle of the Earth. Using this approach, the thermal state of the lithospheric mantle beneath the Siberian Craton (SC) is reconstructed from P velocities, taking into account the phase transitions, anharmonicity, and the effects of anelasticity. The velocities of seismic waves are more sensitive to temperature than to the composition of the mantle rocks, which allows the velocity models to be effectively used for reconstruction of the thermal regime of the mantle. The temperature at depths 100–300 km is reconstructed by inversion of the Kraton and Kimberlit superlong seismic profiles for compositions of the garnet harzburgite, lherzolite, and intermediate composition of garnet peridotite. The averaged temperature in the normal continental mantle is reconstructed by inversion of the IASP91 reference model for depleted and fertile substance. One-dimensional models and two-dimensional thermal fields undergo a substantial fall in temperature (~300–600°C) beneath the Siberian Craton as compared to the temperatures of the continental mantle and paleotemperatures inferred from the thermobarometry of xenoliths. Temperature profiles of the Siberian Craton deduced from seismic data lie between the conductive geotherms of 32.5–40.0 mW/m2 and below the P(H)-T values obtained for low- and high-temperature xenoliths from the Mir, Udachnaya, and Obnazhennaya kimberlite pipes. The thickness of the thermal lithosphere estimated from the intersection with the potential adiabat is 300–320 km, which is consistent with the data on heat flows and seismotomographic observations. This provides grounds for the assumption that the low-temperature anomalies (thermal roots of continents) penetrate down to a depth of 300 km. The analysis of the sensitivity of seismic velocity and density to the variations in temperature, pressure, and chemical and phase composition of petrological models shows that recognition of fine differences in chemical composition of the lithospheric rocks by seismic methods is impossible.  相似文献   

18.
Shock observations on melting of iron by Brown and McQueen with the inner core boundary (ICB) density contrast estimated by Masters are used with the assumption that the light ingredient of the outer core is oxygen to calculate the boundary temperature TICB = (5000 ± 900) K. Adiabatic extrapolation to the core-mantle boundary (CMB) gives TICB = (3800 ± 800) K. The temperature increment across the D″ layer is not well constrained, but is estimated to be TD = (800 ± 400) K and a slightly superadiabatic extrapolation to 670 km gives T670 + = (2300 ± 950) K. This is only about 300 K higher than the extrapolation to the same level from the upper mantle, T670? = (1970 ± 150) K. The difference is far too small to make a viable mid-mantle boundary layer. Remaining unceertainties are too large to discount such a boundary layer with certainty, but agreement of our new temperature profile with temperatures deduced from equation of state studies on the lower mantle and core encourages the view that we are converging to a well-determined temperature profile for the Earth.  相似文献   

19.
从洋中脊上升的地慢物质带上来的大量热量,使在洋中脊裂谷处的海底热流及温度最高,向海沟逐渐减小.由于热胀冷缩,海底地势在洋中脊处最高.作者根据板块模型由一维运动物体的热传导方程推出裂谷处上升物体的温度分布公式.用此分布公式作为垂直边的边界条件,严格地求解了运动板块的二维运动物体热传导方程.用此方程研究了各参数与观测量之间的关系.通过改变公式中的参数值,使计算的理论曲线与实测海底热流一年龄及海底深度一年龄曲线拟合,从而求出了板块的厚度L=97km,地幔上升速度u=3.gmm/a,热膨胀系数a=3.37×10-5/℃及温度分布.该方法克服了在洋中脊处理论热流值趋于无限大的问题,并可以计算出地幔上升流的速度及宽度.  相似文献   

20.
Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive εNd values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high ε values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation and of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic “oceanic” crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high εNd values of the Archean upper mantle. Using oceanic crustal production proportional to heat productivity, we show that temporary storage in the mantle of that crust, whether basaltic as formed by 5–20% partial melting, or partly komatiitic and formed by higher extents of melting is sufficient to balance an early depleted mantle of significant volume with εNd at least +3.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号