首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
湖北省巴东县新城区滑坡灾害空间预测   总被引:1,自引:0,他引:1  
论文在综合分析巴东县新城区区域地质背景及滑坡基本特征的基础上,分析了影响滑坡灾害发生的各因素与滑坡发生之间的相关性,提出影响灾害发生的主要因素:地形坡度、斜坡形态、岩性、构造、水的作用、人类工程活动。利用GIS的空间分析功能将各因素图件栅格化为86216个不规则单元。基于逻辑回归的方法对滑坡灾害进行了定量的概率预测。同时,对研究区进行滑坡灾害空间预测分区,将预测结果与该地区历史滑坡灾害发生情况进行对比发现预测精度为85.71%。说明所建立的模型具有较高的预测精度,是可以用于预测分析的。  相似文献   

2.
芮本善 《铀矿地质》1989,5(2):107-111
铀矿区化探资料计算机处理及其彩色等值图绘制软件,是应用了测量学、函数逼近论和计算机绘图等学科的有关理论完成的。绘图工作是在超级小型机PE-3230和静电彩色绘图仪ECP-42上进行的。根据需要,目前已开发了绘制1:20万和1:5万二种比例尺标准图幅的软件。当用户给出测区左下角的经纬度值后,本程序便能自动进行图廓整饰自动化(绘出方里网并写出其经纬度值)。在绘制彩色图时,由于应用了保凸拟合方法,使得图形色区各边界的一阶导数连续可微,从而达到边界线光滑的要求。图件的图名、接图表及其它注释均用中文标出。  相似文献   

3.
陆可喜  石文学  刘继朝 《地下水》2008,30(3):113-115
应用MAPGIS和Office软件找到了一种解决点位数据信息计算机绘制图件的方法。与传统的在方格纸上绘制等值线图的方法相比,图件准确、整洁、美观,且所绘制的图件与元素原始点位图比例尺相同,位置一致,套合较好,避免了人为因素的干扰,极大地缩短了室内整理时间,提高了工作效率。  相似文献   

4.
冯宇鹏  李婕  冯德光 《水文》2013,33(4):75-79
降水量等值线图的绘制除手工方法外,有多种计算机辅助方法及软件。在总结前人研究及实践的基础上,结合实际工作的需要,提出应用网格单元方法通过计算机辅助来完成等值线图的绘制,实现降水量等值线图绘制的客观化。该方法将流域分成若干有限个网格单元,应用流域内所有雨量站所在单元降水量及雨量站所在单元的位置,通过一定的数值计算方法计算所有单元的降水量,之后将大于等于某一数值所有网格单元区域的边界作为等值线,最终获得降水量等值线图。  相似文献   

5.
姜作勤 《中国地质》1994,(12):27-29
地学图件是地质工作成果的主要表现形式,是为社会、经济发展服务的重要手段.这些图件不仅用于矿产资源勘查的战略部署、矿产资源预测,而且广泛用于资源管理、国土利用与规划、环境监测、工程建设和灾害防治.地学图件种类多,内容复杂,在有了底图之后尚需十几道工序方能完成,编图与修编周期很长.与传统编图方式相比,采用数字制图技术进行计算机辅助编(制)图可大大减少编图工序和时  相似文献   

6.
张桂荣  殷坤龙  陈丽霞 《岩土力学》2006,27(Z2):389-393
基于GIS技术,利用信息量模型开展区域滑坡灾害危险性预测研究,编制滑坡灾害易发分区图,为滑坡灾害的风险预测及实时预警预报提供基础资料。以浙江省永嘉县为例,利用MAPGIS二次开发得到的信息量专业模块,结合永嘉县历史滑坡灾害和2004年以来新发生的灾害点,分别评价了研究区的历史滑坡灾害危险性和现状滑坡灾害危险性;提出用历史滑坡灾害危险性图件结合新发生的灾害点来验证评价模型;将历史灾害点和新灾害点结合生成滑坡灾害危险性预测图件的预测过程;研究成果经在永嘉县的实际验证分析,2004年后3次台风期间(2004年的“云娜” 台风,2005年的“海棠”和“麦莎”台风)发生的有准确地点的滑坡灾害点全部位于滑坡灾害易发区内,表明采用的模型具有较好的实用性和可靠性;采用历史统计和快速聚类相结合的方法进行危险性等级的划分,克服了前人研究工作中人为划分易发区的缺陷,更科学、客观。  相似文献   

7.
陈明  何门贵 《物探与化探》2008,32(2):196-198
在物探扫面工作中,有大量的剖面数据需要绘制成剖面平面图,要求寻找一个高效快速的制图方法.通过对Grapher 自动化功能的分析和实践,编制程序实现了快速绘制彩色渐变剖面平面图的需求,说明利用自动化脚本能够在获得精美图件的同时,可以极大地提高作图效率.  相似文献   

8.
徐晓斌  何宝石  王清 《世界地质》2015,34(4):1149-1154
针对现有钻孔柱状图绘制中描述文字空间分布存在的问题,采用弹性理论-非线性原理对柱状图描述文字位置进行规划,合理分配各岩层描述单元空间,形成柱状图的初步分布;计算出各个地层的工程地质描述文字在柱状图图纸中最优位置的高度坐标xi;利用Auto CAD软件图形绘制环境,实现全程自动绘制钻孔柱状图的新方法。该方法高效且专业性强,图件规范、整齐、文字分布合理、格式美观,无需对图件进行后期的手动处理,免去了人工处理过程,节约了大量的人力成本。  相似文献   

9.
最近,中国地质大学(武汉)推出“计算机辅助彩色地学图件编辑出版系统”,以微型计算机为核心,实现了从地图的输入、编辑、修改、分色加网、制版印刷全过程的计算机化。中国科学院学部委员陈述彭教授、王鸿祯教授、王选教授等制图、计算机、地质、地理等多个专业领域的十一名高级专家鉴定一致认为:该系统在微机上实现了大幅面全开地质图的制作,这是一项重大的技术突破。是国内第一个全部自行开发可实际应用的彩色地学图件编辑出版  相似文献   

10.
浅谈计算机技术在煤矿储量估算中的应用   总被引:1,自引:0,他引:1  
介绍了在煤矿储量估算中应用Microsoft Excel制作各种表格及计算,同时应用MAPGIS软件直接绘制储量估算图,提高图件的精度及节省绘制图件的时间。  相似文献   

11.
Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps.  相似文献   

12.
Landslide zonation studies emphasize on preparation of landslide hazard zonation maps considering major instability factors contributing to occurrence of landslides. This paper deals with geographic information system-based landslide hazard zonation in mid Himalayas of Himachal Pradesh from Mandi to Kullu by considering nine relevant instability factors to develop the hazard zonation map. Analytical hierarchy process was applied to assign relative weightages over all ranges of instability factors of the slopes in study area. To generate landslide hazard zonation map, layers in geographic information system were created corresponding to each instability factor. An inventory of existing major landslides in the study area was prepared and combined with the landslide hazard zonation map for validation purpose. The validation of the model was made using area under curve technique and reveals good agreement between the produced hazard map and previous landslide inventory with prediction accuracy of 79.08%. The landslide hazard zonation map was classified by natural break classifier into very low hazard, low hazard, moderate hazard, high hazard and very high landslide hazard classes in geographic information system depending upon the frequency of occurrence of landslides in each class. The resultant hazard zonation map shows that 14.30% of the area lies in very high hazard zone followed by 15.97% in high hazard zone. The proposed model provides the best-fit classification using hierarchical approach for the causative factors of landslides having complex structure. The developed hazard zonation map is useful for landslide preparedness, land-use planning, and social-economic and sustainable development of the region.  相似文献   

13.
For the socio-economic development of a country, the highway network plays a pivotal role. It has therefore become an imperative to have landslide hazard assessment along these roads to provide safety. The current study presents landslide hazard zonation maps, based on the information value method and frequency ratio method using GIS on 1:50,000 scale by generating the information about the landslide influencing factors. The study was carried out in the year 2017 on a part of Ravi river catchment along one of the landslide-prone Chamba to Bharmour road corridor of NH-154A in Himachal Pradesh, India. A number of landslide triggering geo-environmental factors like “slope, aspect, relative relief, soil, curvature, Land Use and Land Cover (LULC), lithology, drainage density, and lineament density” were selected for landslide hazard mapping based on landslide inventory. The landslide inventory has been developed using satellite imagery, Google earth and by doing exhaustive field surveys. A digital elevation model was used to generate slope gradient, slope aspect, curvature, and relative relief map of the study area. The other information, i.e., soil maps, geological maps, and toposheets, have been collected from various departments. The landslide hazard zonation map was categorized namely “very high hazard, high hazard, medium hazard, low hazard, and very low hazard.” The results from these two methods have been validated using area under curve (AUC) method. It has been found that hazard zonation map prepared using frequency ratio model had a prediction rate of 75.37% while map prepared using information value method had prediction rate of 78.87%. Hence, on the basis of prediction rate, the landslide hazard zonation map, obtained using information value method, was experienced to be more suitable for the study area.  相似文献   

14.
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity.  相似文献   

15.
基于逻辑回归模型和确定性系数的崩滑流危险性区划   总被引:1,自引:0,他引:1  
崩滑流是崩塌、滑坡和泥石流地质灾害的总称。本文根据逻辑回归模型和贵州省崩滑流地质灾害发生的确定性系数CF,统计贵州省内崩滑流发生概率与其影响因子之间的函数关系; 并利用GIS技术编制贵州省崩滑流地质灾害危险性区划图。首先根据影响因子子集中已发崩滑流灾害面积和影响因子子集面积来计算崩滑流地质灾害发生的确定性系数CF; 其次将灾害是否发生作为因变量,影响因子子集发生崩滑流地质灾害的确定性系数CF作为自变量,应用逻辑回归模型统计分析它们之间的函数关系; 然后利用GIS技术计算研究区内各独立属性单元发生崩滑流地质灾害的概率p,按p值10等分标准将研究区划分为10个危险性等级区,并绘制贵州省崩滑流地质灾害危险性区划图; 最后用已发崩滑流地质灾害的分布数据来检验危险性区划的效果。研究结果表明:本文根据逻辑回归模型和崩滑流地质灾害发生的确定性系数CF,将贵州省分为Ⅰ~Ⅹ的10个崩滑流地质灾害危险性等级区与实际情况基本符合,能够良好地反映贵州省境内发生崩滑流地质灾害的难易程度。  相似文献   

16.
区域滑坡灾害人口易损性及人口伤亡风险预测研究是区域滑坡灾害预警预报工作的一个重要环节,该研究对提高预警预报工作的针对性和有效性具有关键作用.在对浙江省永嘉县有关资料进行分析的基础上,从研究区人口年龄结构、居民对滑坡灾害风险的防范意识、政府对滑坡灾害的重视程度及滑坡灾害预警预报体系的完善程度4个方面评价了研究区人口易损性,并给出了计算人口易损性的公式,据此得到了永嘉县人口易损性分布图.根据永嘉县的实际情况,提出了耕地人口密度的概念.综合人口易损性分布图、人口密度分布图和滑坡灾害易发性预测图得到了研究区受威胁人口伤亡风险预测图,为当地政府职能部门实施滑坡灾害风险的控制和管理提供决策依据.  相似文献   

17.
This paper presents a methodology for developing a landslide hazard zonation map by integration of global positioning system (GPS), geographic information system (GIS), and remote sensing (RS) for Western Himalayan Kaghan Valley of Pakistan. The landslides in the study area have been located and mapped by using GPS. Eleven causative factors such as landuse, elevation, geology, rainfall intensity, slope inclination, soil, slope aspect, distances from main road, distances from secondary roads, and distances from main river and those from trunk streams were analyzed for occurrence of landslides. These factors were used with a modified form of pixel-based information value model to obtain landslide hazard zones. The matrix analysis was performed in remote sensing to produce a landslide hazard zonation map. The causative factors with the highest effect of landslide occurrence were landuse, rainfall intensity, distances from main road, distances from secondary roads, and distances from main river and those from trunk streams. In conclusion, we found that landslide occurrence was only in moderate, high, or very high hazard zones, and no landslides were in low or very low hazard zones showing 100% accuracy of our results. The landslide hazard zonation map showed that the current main road of the valley was in the zones of high or very high hazard. Two new safe road routes were suggested by using the GIS technology.  相似文献   

18.
滑坡灾害空间区划及GIS应用研究   总被引:76,自引:3,他引:76  
殷坤龙  朱良峰 《地学前缘》2001,8(2):279-284
滑坡灾害空间区划研究是当前国内外滑坡领域的重要研究方向之一。虽然滑坡灾害的发生具有随机性的特点 ,但其发生的区域性和重复性特点则是区域滑坡分布与发生的总体规律。从减灾与土地规划的角度 ,开展滑坡灾害空间区划研究具有十分重要的理论和实际意义。文中重点探讨了滑坡灾害空间区划的理论体系、灾害风险评估的基本术语定义及GIS制图的基本原理 ,采用MAPGIS软件为平台及其二次开发的滑坡灾害信息分析系统 ,在中国滑坡重灾害的汉江流域开展了灾害危险性空间区划应用研究。  相似文献   

19.
Landslides cause extensive loss of life and property in the Nepal Himalaya. Since the late 1980s, different mathematical models have been developed and applied for landslide susceptibility mapping and hazard assessment in Nepal. The main goal of this paper is to apply fuzzy logic to landslide susceptibility mapping in the Ghurmi-Dhad Khola area, Eastern Nepal. Seven causative factors are considered: slope angle, slope aspect, distance from drainage, land use, geology, distance from faults and folds, soil and rock type. Likelihood ratios are obtained for each class of causative factors by comparison with past landslide occurrences. The ratios are normalized between zero and one to obtain fuzzy membership values. Further, different fuzzy operators are applied to generate landslide susceptibility maps. Comparison with the landslide inventory map reveals that the fuzzy gamma operator with a γ-value of 0.60 yields the best prediction accuracy. Consequently, this operator is used to produce the final landslide susceptibility zonation map.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号