首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a theoretical weakly nonlinear analysis of the dynamics of an inviscid flow submitted to both rotation and precession of an unbounded cylindrical container, by considering the coupling of two Kelvin (inertial) waves. The parametric centrifugal instability known for this system is shown to saturate when one expands the Navier–Stokes equation to higher order in the assumed small precession parameter (ratio of precession to rotation frequencies) with the derivation of two coupled Landau equations suitable to describe the dynamics of the modes. It is shown that an azimuthal mean flow with differential rotation is generated by this modes coupling. The time evolution of the associated dynamical system is studied. These theoretical results can be compared with water experiments and also to some numerical simulations where viscosity and finite length effects cannot be neglected.  相似文献   

2.
Abstract

The ray method is used to study slow hydromagnetic waves in an incompressible, inviscid, perfectly conducting fluid of constant density in the presence of a constant toroidal magnetic field. The fluid is bounded below by a rigid sphere and above by a rigid spheroidal surface, and the mean fluid layer thickness is assumed to be small. Both the general time-dependent and time-harmonic (free oscillation) problems are studied and dispersion relations and conservation laws are derived. These results are applied to free oscillations with constant azimuthal wave number in a spherical shell and then compared to those of previous authors. Such oscillations propagate to the east and are trapped between circles of constant latitude. Wave propagation in axisymmetric shells is then studied with emphasis on the relationship between shell shape and direction of propagation, and it is found that such shells can sustain westward propagating modes wherever the shell thickness decreases sufficiently rapidly from a maximum at the poles to zero at the equator; no shells exist which can sustain westward propagation at the equator.  相似文献   

3.
A new category of hydromagnetic waves in a rotating conducting fluid within a spherical shell geometry is investigated. These quasi-free-decay magnetic modes are based on particular solutions of the induction equation where the magnetic diffusion plays the central role. These solutions, normally only decaying with time, become propagative owing to the combined action of the background magnetic field and the rotation. The amplitude and sign of their azimuthal phase drift strongly depend on morphology and magnitude of the background magnetic field. The validity domain of these quasi-free-decay (QFD)-modes is related to the Elsasser number and is written as Λ???1. It follows that these modes dissipate quickly before propagating out. This restriction falls when the above criterion is no longer fulfilled (Λ?~?1), the corresponding modes evolving towards distorted QFD-modes. A systematic study of these QFD-modes is made in the limit of small Elsasser number (Λ???1), for the different symmetries allowed. Application to the Earth's and other planetary cores is then examined for an Elsasser number up to Λ?≈?O(1), in relation to the geomagnetic secular variation and the frozen-flux approximation.  相似文献   

4.
Abstract

This paper presents the first attempt to examine the stability of a poloidal magnetic field in a rapidly rotating spherical shell of electrically conducting fluid. We find that a steady axisymmetric poloidal magnetic field loses its stability to a non-axisymmetric perturbation when the Elsasser number A based on the maximum strength of the field exceeds a value about 20. Comparing this with observed fields, we find that, for any reasonable estimates of the appropriate parameters in planetary interiors, our theory predicts that all planetary poloidal fields are stable, with the possible exception of Jupiter. The present study therefore provides strong support for the physical relevance of magnetic stability analysis to planetary dynamos. We find that the fluid motions driven by magnetic instabilities are characterized by a nearly two-dimensional columnar structure attempting to satisfy the Proudman-Taylor theorm. This suggests that the most rapidly growing perturbation arranges itself in such a way that the geostrophic condition is satisfied to leading order. A particularly interesting feature is that, for the most unstable mode, contours of the non-axisymmetric azimuthal flow are closely aligned with the basic axisymmetric poloidal magnetic field lines. As a result, the amplitude of the azimuthal component of the instability is smaller than or comparable with that of the poloidal component, in contrast with the instabilities generated by toroidal decay modes (Zhang and Fearn, 1994). It is shown, by examining the same system with and without fluid inertia, that fluid inertia plays a secondary role when the magnetic Taylor number Tm ? 105. We find that the direction of propagation of hydromagnetic waves driven by the instability is influenced strongly by the size of the inner core.  相似文献   

5.

Linear stability of rotating thermal convection in a horizontal layer of Boussinesq fluid under the fixed heat flux boundary condition is examined by the use of a vertically truncated system up to wavenumber one. When the rotation axis is in the vertical direction, the asymptotic behavior of the critical convection for large rotation rates is almost the same as that under the fixed temperature boundary condition. However, when the rotation axis is horizontal and the lateral boundaries are inclined, the mode with zero horizontal wavenumber remains as the critical mode regardless of the rotation rate. The neutral curve has another local minimum at a nonzero horizontal wavenumber, whose asymptotic behavior coincides with the critical mode under the fixed temperature condition. The difference of the critical horizontal wavenumber between those two geometries is qualitatively understood by the difference of wave characteristics; inertial waves and Rossby waves, respectively.  相似文献   

6.
Abstract

Inertial waves are excited in a fluid contained in a slightly tilted rotating cylindrical cavity while the fluid is spinning up from rest. The surface of the fluid is free. Since the perturbation frequency is equal to the rotation speed resonance occurs at a critical height to radius aspect ratio of the fluid. Detailed study of a particular inertial wave shows that in solid body rotation this “eigenratio” agrees with predictions from linear inviscid theory to within 0.5%. Measured time dependence of the eigenratio during spin-up from rest is a function of the tilt amplitude and agrees favorably with predictions from a numerical study. Mean flow associated with the inertial wave becomes unstable during spin-up and in the steady state. A boundary for the unstable region is found experimentally.  相似文献   

7.
Numerical model experiments have been performed to analyze the low-latitude baroclinic continental shelf response to a tropical cyclone. The theory of coastally trapped waves suggests that, provided appropriate slope, latitude, stratification and wind stress, bottom-intensified topographic Rossby waves can be generated by the storm. Based on a scale analysis, the Nicaragua Shelf is chosen to study propagating topographic waves excited by a storm, and a model domain is configured with simplified but similar geometry. The model is forced with wind stress representative of a hurricane translating slowly over the region at 6 km h−1. Scale analysis leads to the assumption that baroclinic Kelvin wave modes have minimal effect on the low-frequency wave motions along the slope, and coastal-trapped waves are restricted to topographic Rossby waves. Analysis of the simulated motions suggests that the shallow part of the continental slope is under the influence of barotropic topographic wave motions and at the deeper part of the slope baroclinic topographic Rossby waves dominate the low-frequency motions. Numerical solutions are in a good agreement with theoretical scale analysis. Characteristics of the simulated baroclinic waves are calculated based on linear theory of bottom-intensified topographic Rossby waves. Simulated waves have periods ranging from 153 to 203 h. The length scale of the waves is from 59 to 87 km. Analysis of energy fluxes for a fixed volume on the slope reveals predominantly along-isobath energy propagation in the direction of the group velocity of a topographic Rossby wave. Another model experiment forced with a faster translating hurricane demonstrates that fast moving tropical cyclones do not excite energetic baroclinic topographic Rossby waves. Instead, robust inertial oscillations are identified over the slope.  相似文献   

8.
地震方位各向异性广泛存在于地球上地幔中,目前利用地震体波或面波分析研究上地幔各向异性的地球物理方法有很多种,但是由于各自的局限性均难以分析上地幔过渡区中的各向异性特征.方位各向异性可导致球形简正模和环形简正模之间发生耦合.地球长周期自由振荡的简正模可深入到上地幔过渡区.本文利用各向异性地球模型计算各向异性简正模耦合深度敏感核,表明长周期(250~400 s)简正模各向异性耦合(如0S20-0T210S25-0T25)的敏感度峰值在400~600 km之间.在不受地球自转影响的台站,如位于南极极点的QSPA站,仍然可以观测到强烈的简正模耦合现象.本文的研究表明:只有在地震观测台站靠近长周期球形振荡的节点时,才能在其观测数据中观测到各向异性耦合现象,许多各向异性耦合在震后18~24 h期间最强,并可导致垂直方向的环形简正模的振幅大于球形耦合简正模的振幅.这些特征是在地震观测数据中寻找各向异性耦合的重要线索.长周期简正模的方位各向异性耦合为我们提供了一个新的认识上地幔过渡区各向异性的窗口.  相似文献   

9.
Abstract

The linear problem of the onset of convection in rotating spherical shells is analysed numerically in dependence on the Prandtl number. The radius ratio η=r i/r o of the inner and outer radii is generally assumed to be 0.4. But other values of η are also considered. The goal of the analysis has been the clarification of the transition between modes drifting in the retrograde azimuthal direction in the low Taylor number regime and modes traveling in the prograde direction at high Taylor numbers. It is shown that for a given value m of the azimuthal wavenumber a single mode describes the onset of convection of fluids of moderate or high Prandtl number. At low Prandtl numbers, however, three different modes for a given m may describe the onset of convection in dependence on the Taylor number. The characteristic properties of the modes are described and the singularities leading to the separation with decreasing Prandtl number are elucidated. Related results for the problem of finite amplitude convection are also reported.  相似文献   

10.
重力波在中层大气温度波导中的传播模式研究   总被引:2,自引:1,他引:1       下载免费PDF全文
本文给出了重力波在中层大气温度波导中的导制传播模型,并在此模型的基础上详细讨论了重力波部分导制传播下的对称模式与非对称模式,导出了不同模式下相应的特征函数和色散方程,进一步用离散的方法对两类色散方程进行了求解;同时还利用二维全隐欧拉格式(FICE)对重力波在温度波导中的传播进行了模拟,模拟的结果也成功地展现了对称与非对称两种传播模式.研究表明,下边界的扰动能量在向上传播进入波导区域后被俘获,形成导制传播.不同周期的初始扰动,在波导内均会形成对称与非对称形式两种模式的导制传播,由于两者的行进速度不一致,最终会引起两种不同模式的分离.数值模拟中重力波的水平行进速度与线性模型预测值非常接近.波导中不同模式下重力波的水平波长与初始扰动的水平波长非常一致,然而波导区域内重力波的频率与初始扰动的频率无关,频率不同的初始扰动会激发出相同频率的重力波对称与非对称导制传播模式.这表明在确定的温度波导中,水平波数才是决定重力波传播特性的决定因素.进一步的分析显示,初始扰动的水平波数-频率分布越接近完全导制传播的色散关系时,温度波导中更易于生成以该种模式部分导制传播的重力波.  相似文献   

11.
Abstract

If a contained homogeneous, rotating fluid is forced near to a resonance for elastoid-inertia waves, strong vortices are observed to form. Numerical experiments reported here lend support to the explanation that these are due to a redistribution of the angular momentum by the waves. If the waves grow until the Angular momentum gradient is overturned somewhere, turbulent mixing there make the redistribution irreversible, resulting in a vortex. The process is analogous to the formation of steps in a stratified fluid by breaking internal waves.  相似文献   

12.
Linear α2Ω-dynamo waves are investigated in a thin turbulent, differentially rotating convective stellar shell. A simplified one-dimensional model is considered and an asymptotic solution constructed based on the small aspect ratio of the shell. In a previous paper Griffiths et al. (Griffiths, G.L., Bassom, A.P., Soward, A.M. and Kuzanyan, K.M., Nonlinear α2Ω-dynamo waves in stellar shells, Geophys. Astrophys. Fluid Dynam., 2001, 94, 85–133) considered the modulation of dynamo waves, linked to a latitudinal-dependent local α-effect and radial gradient of the zonal shear flow. These effects are measured at latitude θ by the magnetic Reynolds numbers R α f(θ) and R Ω g(θ). The modulated Parker wave, which propagates towards the equator, is localised at some mid-latitude θp under a Gaussian envelope. In this article, we include the influence of a latitudinal-dependent zonal flow possessing angular velocity Ω*(θ) and consider the possibility of non-axisymmetric dynamo waves with azimuthal wave number m. We find that the critical dynamo number D c?=?R α R Ω is minimised by axisymmetric modes in the αΩ-limit (Rα→0). On the other hand, when Rα?≠?0 there may exist a band of wave numbers 0?m?m ? for which the non-axisymmetric modes have a smaller D c than in the axisymmetric case. Here m ? is regarded as a continuous function of R α with the property m?→0 as R α→0 and the band is only non-empty when m??>1, which happens for sufficiently large R α. The preference for non-axisymmetric modes is possible because the wind-up of the non-axisymmetric structures can be compensated by phase mixing inherent to the α2Ω-dynamo. For parameter values resembling solar conditions, the Parker wave of maximum dynamo activity at latitude θp not only propagates equatorwards but also westwards relative to the local angular velocity Ω* p ). Since the critical dynamo number D c?=?R α R Ω is O (1) for small R α, the condition m ??>?1 for non-axisymmetric mode preference imposes an upper limit on the size of |dΩ*/dθ|.  相似文献   

13.
Abstract

Finite amplitude solutions for convection in a rotating spherical fluid shell with a radius ratio of η=0.4 are obtained numerically by the Galerkin method. The case of the azimuthal wavenumber m=2 is emphasized, but solutions with m=4 are also considered. The pronounced distinction between different modes at low Prandtl numbers found in a preceding linear analysis (Zhang and Busse, 1987) is also found with respect to nonlinear properties. Only the positive-ω-mode exhibits subcritical finite amplitude convection. The stability of the stationary drifting solutions with respect to hydrodynamic disturbances is analyzed and regions of stability are presented. A major part of the paper is concerned with the growth of magnetic disturbances. The critical magnetic Prandtl number for the onset of dynamo action has been determined as function of the Rayleigh and Taylor numbers for the Prandtl numbers P=0.1 and P=1.0. Stationary and oscillatory dynamos with both, dipolar and quadrupolar, symmetries are close competitors in the parameter space of the problem.  相似文献   

14.
Ballooning disturbances in a finite-pressure plasma in a curvilinear magnetic field are described by the system of coupled equations for the Alfvén and slow magnetosonic modes. In contrast to most previous works that locally analyzed the stability of small-scale disturbances using the dispersion relationship, a global analysis outside a WKB approximation but within a simple cylindrical geometry, when magnetic field lines are circles with constant curvature, is performed in the present work. This model is relatively simple; nevertheless, it has the singularities necessary for the formation of the ballooning mode: field curvature and non-uniform thermal plasma pressure. If the disturbance finite radial extent is taken into account, the instability threshold increases as compared to a WKB approximation. The simplified model used in this work made it possible to consider the pattern of unstable disturbances at arbitrary values of the azimuthal wavenumber (k y ). Azimuthally large-scale disturbances can also be unstable, although the increment increases with decreasing azimuthal scale and reaches saturation when the scales are of the order of the pressure nonuniformity dimension.  相似文献   

15.
In the framework of an axisymmetric magnetospheric model, we have constructed a theory for broad-band standing Alfvén waves with large azimuthal wave number m 1 excited by a stochastic source. External currents in the ionosphere are taken as the oscillation source. The source with statistical properties of –white noise is considered at length. It is shown that such a source drives oscillations which also have the –white noise properties. The spectrum of such oscillations for each harmonic of standing Alfvén waves has two maxima: near the poloidal and toroidal eigenfre-quencies of the magnetic shell of the observation. In the case of a small attenuation in the ionosphere the maximum near the toroidal frequency is dominated, and the oscillations are nearly toroidally polarized. With a large attenuation, a maximum is dominant near the poloidal frequency, and the oscillations are nearly poloidally polarized.  相似文献   

16.
The Earth–ionosphere cavity is characterized by a number of disturbances which cause departures from the behaviour expected for the spherical symmetric case usually applied in model calculations. The main effects are the inhomogeneity of the upper atmosphere which is characterised by different conductivity profiles during day and night, and the conductivity anisotropy introduced by the Earths magnetic field. Standing waves, excited by the global thunderstorm activity, with an eigenfrequency of ≈8 Hz develop in this cavity. This phenomenon, which is called Schumann resonance, suffers a frequency splitting due to the removal of the spherical symmetry.At the Institut für Geophysik we measured the electromagnetic field components for a whole year at frequencies up to 20 Hz. We present the results of the analysis of the polarization of individual events of the horizontal magnetic field components. With the help of the polarization parameters as indicators, we show the existence of the aforementioned splitting. A frequency difference of 0.1–0.2 Hz between the two elliptical modes has been estimated.  相似文献   

17.
The structure of monochromatic MHD-waves with large azimuthal wave number m 1 in a two-dimensional model of the magnetosphere has been investigated. A joint action of the field line curvature, finite plasma pressure, and transversal equilibrium current leads to the phenomenon that waves, standing along the field lines, are travelling across the magnetic shells. The wave propagation region, the transparency region, is bounded by the poloidal magnetic surface on one side and by the resonance surface on the other. In their meaning these surfaces correspond to the usual and singular turning points in the WKB-approximation, respectively. The wave is excited near the poloidal surface and propagates toward the resonance surface where it is totally absorbed due to the ionospheric dissipation. There are two transparency regions in a finite-beta magnetosphere, one of them corresponds to the Alfvén mode and the other to the slow magneto-sound mode.  相似文献   

18.
An important unanswered mathematical question in the theory of rotating fluids has been the completeness of the inviscid eigenfunctions which are usually referred to as inertial waves or inertial modes. We provide for the first time a mathematical proof for the completeness of the inertial modes in a rotating annular channel by establishing the completeness relation, or Parseval’s equality, for any piecewise continuous, differentiable velocity of an incompressible fluid.  相似文献   

19.
Experimental studies have been carried out on the dynamic stability of a cantilever cylindrical shell partially filled with liquid, under vertical excitation. Two polyester test cylinders with radius 100 mm, thickness 0.25 mm, and lengths 113 and 227 mm were used. The test cylinder was harmonically excited with constant acceleration- or displacement-amplitude. It was found that not only the parametric principal instability resonance but also the parametric combination involving two natural vibrations, each of which has the same circumferential wave number but different axial mode numbers, could occur. The latter type of vibration apparently has not been previously studied. By varying the dimensionless water height from 0.25 to 1.0 stepwise by 0.25 increments, the instability regions and vibration modes were determined for the two test cylinders. The response waves of shell wall and liquid free surface, and axial and circumferential vibration modes were also observed.  相似文献   

20.
Based on a detailed study of Pc3 events at an array between L = 1.5 and 3 in Central Europe, the authors found quick changes between upstream waves (UW, i.e. pulsation directly driven by UW) and field line resonance (FLR, i.e. azimuthal oscillations of geomagnetic field lines). The alternation of the two types is especially characteristic (and the UW part stronger) if the interplanetary magnetic field (IMF) is highly variable. Events due to field line resonance may have a structure consisting of multiple lines with frequencies differing by about 10%, corresponding to neighbouring shells of field lines separated by about 100 km at the surface. This coincides with previous findings (about 10% at a meridional distance of 80 km). The frequency of the UW type is well correlated with the frequency of waves in the interplanetary medium. Additionally, there are signals of unidentified origin which also seem to be influenced by IMF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号