首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
Twenty eight electron microprobe analyses of freibergite from the Mount Isa (Queensland) Pb-Zn-Ag stratiform orebody, range in silver content from 18.4 to 42.5 wt. % Ag. These values significantly extend the tetrahedrite-freibergite series. The compositional range based on twenty-one complete analyses is indicated by the formula (Ag,Cu)9.21–11.44(Fe,Zn)1.59–2.31(Sb,As)3.87–4.43S13.0. As far as could be determined, Mount Isa freibergite is homogeneous and no marked compositional changes were detected either across individual grains, or in different grains of the same electron microprobe sample. The linear, atom for atom, replacement of copper by silver reported for lower silver bearing tetrahedrites continues in Mount Isa freibergite. A maximum silver content of about 51 wt. % Ag is predicted. X-ray investigations indicate however that in contrast to the structural expansion with increasing silver content reported for argentian tetrahedrite, Mount Isa freibergite contracts with increase in silver. The extrapolated lattice parameter for the theoretical freibergite (Ag10(Fe,Zn)2Sb4S13) end member is of the same order as tetrahedrite.  相似文献   

3.
4.
Tetrahedrites of composition (Cu, Ag)10(Cu2, Fe, Zn)2(Sb, As)4S13 or Cu12Sb14/3S13 have 208 valence electrons per unit cell and are expected to be semiconductors. The bands are full in these cases, whereas compositions towards the classical formula Cu12Sb4S13 (204 valence electrons per unit cell) have only partially filled bands and are therefore expected to be metallic. These predictions are supported by new optical absorption spectra of tetrahedrites with 205 and 208 valence electrons per unit cell. The gap between valence and conduction bands of the semiconductor is about 1.7 (±0.2) eV. A further prediction based on a nearly-free electron model is that 208 valence electrons per unit cell represent a compositional limit for tetrahedrites, and that the stability increases as compositions approach this limit. Existing data indicate an exponential increase in the number of occurrences as the limit is approached.  相似文献   

5.
Crystals of hydronium jarosite were synthesized by hydrothermal treatment of Fe(III)–SO4 solutions. Single-crystal XRD refinement with R1=0.0232 for the unique observed reflections (|Fo| > 4F) and wR2=0.0451 for all data gave a=7.3559(8) Å, c=17.019(3) Å, Vo=160.11(4) cm3, and fractional positions for all atoms except the H in the H3O groups. The chemical composition of this sample is described by the formula (H3O)0.91Fe2.91(SO4)2[(OH)5.64(H2O)0.18]. The enthalpy of formation (Hof) is –3694.5 ± 4.6 kJ mol–1, calculated from acid (5.0 N HCl) solution calorimetry data for hydronium jarosite, -FeOOH, MgO, H2O, and -MgSO4. The entropy at standard temperature and pressure (So) is 438.9±0.7 J mol–1 K–1, calculated from adiabatic and semi-adiabatic calorimetry data. The heat capacity (Cp) data between 273 and 400 K were fitted to a Maier-Kelley polynomial Cp(T in K)=280.6 + 0.6149T–3199700T–2. The Gibbs free energy of formation is –3162.2 ± 4.6 kJ mol–1. Speciation and activity calculations for Fe(III)–SO4 solutions show that these new thermodynamic data reproduce the results of solubility experiments with hydronium jarosite. A spin-glass freezing transition was manifested as a broad anomaly in the Cp data, and as a broad maximum in the zero-field-cooled magnetic susceptibility data at 16.5 K. Another anomaly in Cp, below 0.7 K, has been tentatively attributed to spin cluster tunneling. A set of thermodynamic values for an ideal composition end member (H3O)Fe3(SO4)2(OH)6 was estimated: Gof= –3226.4 ± 4.6 kJ mol–1, Hof=–3770.2 ± 4.6 kJ mol–1, So=448.2 ± 0.7 J mol–1 K–1, Cp (T in K)=287.2 + 0.6281T–3286000T–2 (between 273 and 400 K).  相似文献   

6.
Microprobe and fluid inclusion analyses of hydrothermal ore deposits containing the subassemblage sphalerite+ tetrahedrite-tennantite [(Cu, Ag)10(Fe, Zn)2(As,Sb)4S13] reveal that the Gibbs energies of the reciprocal reaction Cu10Zn2Sb4S13 + Cu10Fe2As4S13 = Cu10Fe2Sb4S13 + Cu10Zn2As4S13 and the Fe-Zn exchange reaction 1/2Cu10Fe2Sb4S13 + ZnS = 1/2Cu10Zn2Sb4S13 + FeS are within the uncertainties of the values established by Sack and Loucks (1985) and Raabe and Sack (1984), 2.59±0.14 and 2.07±0.07 kcal/gfw. However, this study suggests that the Fe-Zn exchange reaction between sphalerite and Sb and Ag-rich tetrahedrites does not obey the simple systematics suggested by Sack and Loucks (1985) wherein tetrahedrite is assumed to behave as an ideal reciprocal solution. Instead these studies show that the configurational Gibbs energy of this exchange reaction,RTln[(X Fe/X Zn)TET(X ZnS/X FeS)SPH], corrected for sphalerite nonideality exhibits both a local maximum and minimum as a function of Ag/(Cu+Ag) ratio at a givenX FeS SPH and temperature. The local maximum forX FeS SPH 0.10 corresponds to the position of the cell edge maximum established for natural tetrahedrites by Riley (1974), Ag/(Ag+Cu)0.4. These studies and the results of structural refinements of Ag-bearing tetrahedrites suggest that in low silver tetrahedrites Ag is preferentially incorporated in trigonal-planar sites but that in tetrahedrites with intermediate and greater Ag/(Ag+Cu) ratio, Ag is preferentially incorporated in tetrahedral sites. A nonconvergent site ordering model for tetrahedrite is developed to quantify and extrapolate these predictions.  相似文献   

7.
Zinclipscombite, a new mineral species, has been found together with apophyllite, quartz, barite, jarosite, plumbojarosite, turquoise, and calcite at the Silver Coin mine, Edna Mountains, Valmy, Humboldt County, Nevada, United States. The new mineral forms spheroidal, fibrous segregations; the thickness of the fibers, which extend along the c axis, reaches 20 μm, and the diameter of spherulites is up to 2.5 mm. The color is dark green to brown with a light green to beige streak and a vitreous luster. The mineral is translucent. The Mohs hardness is 5. Zinclipscombite is brittle; cleavage is not observed; fracture is uneven. The density is 3.65(4) g/cm3 measured by hydrostatic weighing and 3.727 g/cm3 calculated from X-ray powder data. The frequencies of absorption bands in the infrared spectrum of zinclipscombite are (cm?1; the frequencies of the strongest bands are underlined; sh, shoulder; w, weak band) 3535, 3330sh, 3260, 1625w, 1530w, 1068, 1047, 1022, 970sh, 768w, 684w, 609, 502, and 460. The Mössbauer spectrum of zinclipscombite contains only a doublet corresponding to Fe3+ with sixfold coordination and a quadrupole splitting of 0.562 mm/s; Fe2+ is absent. The mineral is optically uniaxial and positive, ω = 1.755(5), ? = 1.795(5). Zinclipscombite is pleochroic, from bright green to blue-green on X and light greenish brown on Z (X > Z). Chemical composition (electron microprobe, average of five point analyses, wt %): CaO 0.30, ZnO 15.90, Al2O3 4.77, Fe2O3 35.14, P2O5 33.86, As2O5 4.05, H2O (determined by the Penfield method) 4.94, total 98.96. The empirical formula calculated on the basis of (PO4,AsO4)2 is (Zn0.76Ca0.02)Σ0.78(Fe 1.72 3+ Al0.36)Σ2.08[(PO4)1.86(AsO4)0.14]Σ2.00(OH)1. 80 · 0.17H2O. The simplified formula is ZnFe 2 3+ (PO4)2(OH)2. Zinclipscombite is tetragonal, space group P43212 or P41212; a = 7.242(2) Å, c = 13.125(5) Å, V = 688.4(5) Å3, Z = 4. The strongest reflections in the X-ray powder diffraction pattern (d, (I, %) ((hkl)) are 4.79(80)(111), 3.32(100)(113), 3.21(60)(210), 2.602(45)(213), 2.299(40)(214), 2.049(40)(106), 1.663(45)(226), 1.605(50)(421, 108). Zinclipscombite is an analogue of lipscombite, Fe2+Fe 2 3+ (PO4)2(OH)2 (tetragonal), with Zn instead of Fe2+. The mineral is named for its chemical composition, the Zn-dominant analogue of lipscombite. The type material of zinclipscombite is deposited in the Mineralogical Collection of the Technische Universität Bergakademie Freiberg, Germany.  相似文献   

8.
Synchrotron radiation has been used to collect Cu K-edge and Ag K-edge EXAFS from several tetrahedrite, (Cu,Ag)10(Zn,Fe,Cu)2Sb4S13, minerals. The results have been used to investigate the coordination environment of the Ag and Cu, and to determine which sites in the structure are occupied by silver atoms when they replace copper. The Ag EXAFS spectrum of a sample with high silver content reveals an interaction between silver and antimony which may explain the anomalous decrease in unit cell size found in natural tetrahedrites when the silver content increases beyond four atoms per unit formula.  相似文献   

9.
The crystal structure of a new compound [Mg(H2O)4(SeO4)]2(H2O) (monoclinic, P2 1/a, a = 7.2549(12), b = 20.059(5), c = 10.3934(17) Å, β = 101.989(13), V = 1479.5(5) Å3) has been solved by direct methods and refined to R 1 = 0.059 for 2577 observed reflections with |F hkl | ≥ 4σ|F hkl |. The structure consists of [Mg(H2O)4(SeO4)]0 chains formed by alternating corner-sharing Mg octahedrons and (SeO4)2? tetrahedrons. O atoms of Mg octahedrons that are shared with selenate tetrahedrons are in a trans orientation. The heteropoly-hedral octahedral-tetrahedral chains are parallel to the c axis and undulate within the (010) plane. The adjacent chains are linked by hydrogen bonds involving H2O molecules not bound with M2+ cations.  相似文献   

10.
The Hiendelaencina mining district (Guadalajara, Spain), includes the ore deposits of the Hiendelaencina, La Bodera and Congostrina areas. In this paper a general overview of this district is given, with special emphasis on the parageneses, mineralizing stages and chemical characteristics of the sulphides and sulphosalts. These deposits contain silver in Sb-rich sulphosalts such as freibergite, pyrargyrite, polybasite, stephanite, freieslebenite and the Bi-rich sulphosalt, aramayoite. Three mineralizing stages have been detected in Hiendelaencina and Congostrina: (1) As-Fe; (2) Cu-Zn-Fe-Sb-Ag; and (3) Pb-Sb-Ag (±Bi) but only two in La Bodera (stages 2 and 3). The average sulphosalt formulas are: freibergite (Cu0.5 Ag5.9) (Fe1.42 Zn0.66) (Sb4.49 As0.02) S13; pyrargyrite Ag3.38 Sb1.0 S3; polybasite (Ag16.3Cu0.15) (Sb2.8 As0.15) S11; stephanite Ag6.7 Sb1.38 S4; freieslebenite Ag1.1 Sb0.83 Pb1.05 S3 and aramayoite Ag1.06 Bi0. 35 Sb0.7 Pb0.03 S2. The compositional patterns of these sulphosalts (mainly based on the Sb/(Sb + Ag), Ag/ (Ag + Cu), Sb(Ag + As) and Ag/(Ag + Cu) ratios) are outlined, pointing broadly to similar tendencies in their chemistry and genetic conditions.  相似文献   

11.
Pyrrhotite (Fe7S8) is a natural iron sulphide that can participate in rock magnetisation. Its electronic structure is not yet surely described. X-ray magnetic circular dichroism (XMCD) at Fe L2,3 edges on Fe7S8, coupled with multiplet calculations, shows that iron is present only as Fe2+ in this magnetic iron sulphide. It reveals a strong magnetic orbital moment. XMCD at Fe and S K edges shows the quite strong polarization of both Fe and S in Fe7S8.  相似文献   

12.
A novel complex continuous system of solid solutions involving vauquelinite Pb2Cu(CrO4)(PO4)(OH), bushmakinite Pb2Al(VO4)(PO4)(OH), ferribushmakinite Pb2Fe3+(VO4)(PO4)(OH), and a phase with the endmember formula Pb2Cu(VO4)(PO4)(H2O) or Pb2Cu(VO4)(РО3ОН)(ОН) is studied based on samples from the oxidation zone of the Berezovskoe, Trebiat, and Pervomaisko-Zverevsky deposits in the Urals, Russia. This is the first natural system in which chromate and vanadate anions show a wide range of substitutions and the most extensive solid solution system involving (CrO4)2– found in nature. The major couple substitution is Cr6+ + Cu2+ ? V5+ + M3+, where M = Fe, Al. The correlation coefficients calculated from 125 point analyses are: 0.96 between V and (Fe + Al), 0.96 between Cr and (Cu + Zn),–0.96 between V and (Cu + Zn),–0.97 between Cr and (Fe + Al), and–0.97 between (Fe + Al) and (Cu + Zn). The substitutions V5+ ? Cr6+ (correlation coefficient–0.98) and to a lesser extent P5+ ? As5+ (correlation coefficient–0.86) occur at two types of tetrahedral sites, whereas the metal–nonmetal/metalloid substitutions, i.e., V or Cr for P or As, are minor. The substitution Fe3+ ? Al3+ is also negligible in this solid solution system.  相似文献   

13.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

14.
The crystal structure of the unstable mineral alumoklyuchevskite K3Cu3AlO2(SO4)4 [monoclinic, I2, a = 18.772(7), b = 4.967(2), c = 18.468(7) Å, β = 101.66(1)°, V = 1686(1) Å] was refined to R 1 = 0.131 for 2450 unique reflections with F ≥ 4σF hkl. The structure is based on oxocentered tetrahedrons (OAlCu 3 7+ ) linked into chains via edges. Each chain is surrounded by SO4 tetrahedrons forming a structural complex. Each complex is elongated along the b axis. This type of crystal structure was also found in other fumarole minerals of the Great Tolbachik Fissure Eruption (GTFE, Kamchatka Peninsula, Russia, 1975–1976), klyuchevskite, K3Cu3Fe3+O2(SO4)4; and piypite, K2Cu2O(SO4)2.  相似文献   

15.
High-precision unit-cell volume data of stibnite, collected in the pressure range of 0–10 GPa, was used for fitting a third-order Birch–Murnaghan equation of state. The zero-pressure volume, bulk modulus and its pressure derivative were found to be 487.73(6) Å3, 26.91(14) GPa and 7.9(1), respectively. A series of X-ray intensity data was collected in the same pressure range using a CCD-equipped Bruker diffractometer. The high-pressure structures were all refined to R1(|F0|>4) values of approximately 0.03. Crystal-chemical parameters as polyhedron volume, centroid and eccentricity were calculated for the seven coordinated cation positions using the software IVTON. The cation eccentricity appears to be a very useful tool for quantification of the lone electron pair activity. U2S3, Dy2S3 and Nd2Te3 are all isostructural with stibnite, but the cations in these materials have no lone electron pair. Their eccentricity is much smaller than that of Sb, and close to zero. This confirms that the stibnite structure type alone does not force eccentricity upon the cations involved and it is the lone electron pairs of Sb that generate the eccentricity of cation positions in the structures of stibnite. At increasing pressure the eccentricity of Sb is decreasing. It is therefore reasonable to conclude that the lone electron pair activity is decreasing with increasing pressure.  相似文献   

16.
Electron microprobe analysis of Pb-Cu(Fe)-Sb-Bi sulfosalts from Bazoges and Les Chalanches (France), and Pedra Luz (Portugal), give new data about (Bi, Sb) solid-solution and incorporation of the minor elements Cu, Fe or Ag in jaskolskiite, and in izoklakeite-giessenite and kobellite-tintinaite series. Jaskolskiite from Pedra Luz has high Sb contents (from 17.9 to 20.7 wt.%), leading to the extended general formula: Cu x Pb2+x (Sb1–y Bi y )2–x S5, with 0.10 x 0.22 and 0.19 y 0.41. Fe-free, Bi-rich izoklakeite from Bazoges has high Ag contents (up to 2.2 wt. %), leading to the simplified formula Cu2Pb22Ag2(Bi, Sb)22S57; in Les Chalanches it contains less Ag content (1.2 wt.%), but has an excess of Cu that gives the formula: Cu2.00 (Cu0.49Ag1.18)=1.67Pb22.70(Bi12.63Sb8.99)=21.62S57.27.In tintinaite from Pedra Luz, the variation of the Fe/Cu ratio can be explained by the substitution: Cu + (Bi, Sb) Fe + Pb; Fe-free kobellite from Les Chalanches has a Cu-excess, corresponding to the formula Cu2.81Ag0.54Pb9.88(Bi10.37Sb5.21)=15.38S35.09. Eclarite from the type locality, structurally related to kobellite, shows a Cu excess too. In natural samples of the kobellite homologous series, Fe is positively correlated with Pb, and its contents never exceed that of Cu. Ag substitutes for Pb, together with (Bi, Sb). Taking into account the possibility of Cu excess, but excluding formal Cu2+ and Fe3+, general formulae can be written:  相似文献   

17.
Several distinct assemblages of Pb-Sb, Pb-As, Cu-Pb-Sb and Cu-Fe-Zn-Sn sulphosalts are identified in sulphide samples from Bleikvassli mine, Norway. Detailed optical microscopy and electron probe microanalysis have permitted investigation of textural relationships between minerals and compositional variations between different ore types. Tetrahedrite, typically containing 10–16?wt.% Ag (rare freibergite containing 25–30?wt.% Ag has also been identified in two samples), stannite (Cu2(Fe>Zn)SnS4), and meneghinite, CuPb13Sb7S24, are widely distributed as trace constituents throughout massive pyritic and galena-rich ores. Native antimony and pyrargyrite occur in trace amounts in all ore types, as the breakdown products of earlier sulphosalts. Several distinct types of wall-rock mineralisation are present at Bleikvassli. Of considerable mineralogical interest are the coarse-grained sulphide mobilisates within the wall rock which contain a distinct?and characteristic suite of Pb-As sulphosalts:?tennantite?+?jordanite (Pb14As6S23)?+?seligmannite (CuPbAsS3) ± dufrenoysite (Pb2As2S5). Bournonite (CuPbSbS3) is the only Sb-bearing sulphosalt recognised in significant amounts within the mobilisates, meneghinite and tetrahedrite being conspicuously absent. These mobilisates display considerable Au enrichment; electrum can be confirmed, intimately associated with jordanite and tennantite. Appreciable Sb (up to 3?wt.%) is contained within galena in the mobilisates, in contrast to galena from massive ores which contains only negligible Sb. Contents of Ag and Bi in galena vary considerably in all ore types, but confirm earlier suggestions that galena is a major Ag-carrier at Bleikvassli. Boulangerite (Pb5Sb4S11), jamesonite (FePb4Sb6S14) and gudmundite (FeSbS) occur in trace amounts. Sn-sulphosalts are represented by kësterite, (Cu2(Zn> Fe)SnS4), but commonly zoned with respect to Zn/Fe ratio, in the mobilisates, rather than by stannite. A rare type of mobilisate, also in the wall rock, in which chalcocite and bornite are the main minerals, contains native Ag, stromeyerite (AgCuS), mckinstryite ((Ag,Cu)2?S), Ag-free tetrahedrite, an unnamed Cu-Ag-Fe sulphide (Cu3Ag2FeS4) and native Bi, myrmekitically intergrown with chalcocite. Although a comprehensive genetic model for the wall-rock mineralisation at Bleikvassli is largely impossible given the limitations in the present state of knowledge regarding mechanisms involved in remobilisation processes, a multi-stage model of remobilisation during regional metamorphism is considered to best explain the observations. An interplay of different solid- and liquid-state remobilisation mechanisms, in various combinations, is required to account for the macro- and microscopic observations. Remobilisation probably began during the earlier stages of metamorphism, with crystallisation and further remobilisation taking place during the entire metamorphic cycle, giving rise to the extensive chemical and mineralogical diversity observed today. Preserved mineral assemblages and their textural relationships reflect a complex sequence of replacement and decomposition reactions taking place during the latest phase of late-metamorphic crystallisation and subsequent cooling.  相似文献   

18.
In the oxidation zone of the Berezovskoe gold deposit in the middle Urals, Russia, minerals of the beudantite–segnitite series (idealized formulas PbFe3 3+ AsO4)(SO4)(OH)6 and PbFe3 3+ AsO4)(AsO3OH)(OH)6, respectively) form a multicomponent solid solution system with wide variations in the As, S, Fe, Cu, and Sb contents and less variable P, Cr, Zn, Pb, and contents K. The found minerals of this system correspond to series from beudantite with 1.25 S apfu to S-free segnitite, with segnitite lacking between 1.57 and 1.79 As apfu. Segnitite at the Berezovskoe deposit contains presumably pentavalent Sb (up to 15.2 wt % Sb2O5 = 0.76 Sb apfu, the highest Sb content in the alunite supergroup minerals), which replaces Fe3+. The Sb content increases with increasing As/S value. On the contrary, beudantite is free of or very poor in Sb (0.00–0.03 Sb apfu). Many samples of segnitite are enriched in Cu (up to 8.2 wt% CuO = 0.83 Cu apfu, uncommonly high Cu content for this mineral) and/or in Zn (up to 2.0 wt% ZnO = 0.19 Zn apfu). Both Cu and Zn replace Fe. The generalized formula of a hypothetic end member of the segnitite series with 1 Sb apfu is Pb(Fe3+ M 2+Sb5+)(AsO4)2(OH)6, where M = Cu, Zn, Fe2+. The chemical evolution of beudantite–segnitite series minerals at the Berezovskoe deposit is characterized by an increase in the S/As value with a decrease in the Sb content from early to late generations.  相似文献   

19.
Chemical compositions of tetrahedrite—Ag-rich tetrahedrite—freibergite solid solutions (Ag-rich tetrahedritess) and homogenization temperatures of fluid inclusions in quartz and carbonates of seventeen samples from nine veins in the El Zancudo deposit, Antioquia, Colombia, were investigated to reveal the origin of silver in Ag-rich tetrahedritess, to derive their crystallization temperatures and to examine the relationship between chemical compositions of Ag-rich tetrahedritess and their crystallization temperatures. The ores consist of arsenopyrite, pyrite, sphalerite, Ag-rich tetrahedritess, galena, boulangerite, andorite, owyheeite, diaphorite, jamesonite, miargyrite, bournonite, chalcopyrite, and electrum. Ag-rich tetrahedritess forms about 10 volume % of the total ores and is one of the most common and widely distributed sulfosalts in this deposit. Ag-rich tetrahedritess is rich in Ag (1.13 to 31.02 wt%) and Sb (22.93 to 29.82 wt%), and poor in As (0.06 to 2.43 wt%), consistent with the reported incompatibilities of Ag and As in Ag-rich tetrahedritess. The Zn/(Zn + Fe)-, Ag/(Ag + Cu)- and Sb/(Sb + As + Bi)-atomic ratios exhibit some variations among the veins. Ag-rich tetrahedritess with higher Ag/(Ag + Cu) ratios coexist with diaphorite, whereas those with lower ratios are not associated with this sulfosalt. Ag-rich tetrahedritess in the assemblages of Ag-rich tetrahedritess+ sphalerite and of Ag-rich tetrahedritess+ bournonite + galena shows no Zn ↔ Fe and Cu ↔ Ag variations between core and rim, respectively, negating the possibility of solid state reaction during cooling. Ag-rich tetrahedritess is thus regarded as primary phase. Homogenization temperatures of primary fluid inclusions in quartz and carbonates co-existing with Ag-rich tetrahedritess define the mineralization temperatures of 134 to 263°C. Independent crystallization temperatures of Ag-rich tetrahedrite estimated based on Zn/(Zn + Fe) and Ag/(Ag + Cu) ratios of the Ag-rich tetrahedritess associated with silver minerals such as miargyrite, andorite and diaphorite using Sack's thermochemical database lie in a range between 170 and ∼250°C. Both results are thus in good agreement.  相似文献   

20.
 The magnetic behavior of the Jahn-Teller structure braunite, (Mn2+ 1−yM y )(Mn3+ 6− x Mx)SiO12, is strongly influenced by the incorporation of elements substituting manganese. Magnetic properties of well-defined synthetic samples were investigated in dependence on the composition. The final results are presented in magnetic phase diagrams. To derive the necessary data, ac susceptibility and magnetization of braunites with the substitutional elements M = Mg, Fe, (Cu+Ti) and Cu were measured. Whereas the antiferromagnetic ordering temperature, T N , of pure braunite is hardly affected by the substitution of nonmagnetic Mg, it is rapidly suppressed by the substitution of magnetic atoms at the Mn positions. Typically for a concentration (x, y) ≥ 0.7 of the substituted elements, a spin glass phase occurs in the magnetic phase diagrams. Additionally, for the braunite system with Fe3+ substitutions, we observe in the concentration range 0.2 < x< 0.7 a double transition from the paramagnetic state, first to the antiferromagnetic state, followed by a transition to a spin glass state at lower temperatures. The unusual change of the magnetic properties with magnetic substitution at the Mn positions is attributed to the peculiar antiferromagnetic structure of braunite, which has been resolved recently. Received: 19 April 2001 / Accepted: 6 September 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号