首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The Kuye River is the primary tributary located in the sediment concentrated regions in the Middle Yellow River in China. Significant decrease in streamflow has been observed in the Kuye River. The non-parametric Mann–Kendall test was applied to detect the change in annual streamflow for the period of 1960 to 2006. Mean annual streamflow in the Kuye River was 84.9 mm from 1960 to 1979 (period I), while it decreased to 58.2 mm from 1980 to 1998 (period II) and 20.5 mm from 1999 to 2006 (period III), respectively. The climate elasticity method and the hydrological modeling method were individually employed to assess the impact of climate variability and human activities on the decrease in streamflow. The results showed that climate variability was responsible for 29.6 and 27.1 % of the streamflow decrease from the climate elasticity method and the hydrological modeling method, respectively; while human activities accounted for 70.4 and 72.9 % of the streamflow decrease in period II. In period III, climate variability contributed 40.9 and 39.3 % of the streamflow decrease from the climate elasticity method and the hydrological modeling method, respectively; while human activities accounted for 59.1 and 60.7 % of the streamflow decrease. Therefore, human activities were the main reason of the streamflow decrease. Soil conservation measures (planting trees, improving pastures, building terraces and sediment-trapping dams) and coal mining led to the streamflow reduction in the Kuye River.  相似文献   

2.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Mingbin Huang  Lu Zhang 《水文研究》2004,18(10):1885-1898
Since the late 1950s a series of soil conservation practices have been implemented in the Loess Plateau. It is important to assess the impact of these practices on hydrology at the catchment scale. The Jialuhe River catchment, a tributary of the Yellow River, with a drainage area of 1117 km2 in the Loess Plateau, was chosen to investigate the hydrological responses to conservation practices. Parametric and non‐parametric Mann–Kendall tests were utilized to detect trends in hydrological variables or their residuals. Relationships between precipitation and hydrological variables were developed to remove the impact of precipitation variability. Significant linear decreasing trends in annual surface runoff and baseflow were identified during the treated period from 1967 to 1989, and the rate of reduction was 1·30 and 0·48 mm/year, respectively. As result, mean annual surface runoff and baseflow decreased by 32% over the period of 1967 to 1989. Seasonal runoff also decreased during the treated period with the greatest reduction occurring in summer and the smallest reduction in winter. The response of high and low daily flow to conservation practices was greater than average flows. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid reduction in run-off has been observed in the middle reaches of the Yellow River basin in recent decades. Understanding the contributions of climate change and human activities, such as vegetation restoration and water consumption, to surface water resource reduction has become urgent and very important for future regional planning. Here, we use attribution approaches to explore the effects of climate change and human activities on run-off over the past six decades. The results showed that the observed annual run-off at Tongguan station, which is located within the mainstream of the Yellow River, exhibited a significant decreasing trend of −0.69 mm year−1 (p < .01) and varied from −0.28 to −1.46 mm year−1 (p < .01) in the eight selected tributaries from 1960 to 2015. Two relatively abrupt changes in the double mass curves occurred around 1979 and 1999; compared with Period 1 (P1; 1960–1979), the average catchment run-off decreased 32% during Period 2 (P2; 1980–1999) and up to 49% during Period 3 (P3; 2000–2015). We calculated that approximately 29% of the reduction in the run-off during P2 and 18% during P3 were attributed to climate change. Increased surface water consumption resulted in effective run-off reduction, with relative contributions of approximately 27% and 28% during P2 and P3, respectively. With the implementation of the “Grain-for-Green” project, the vegetation coverage rapidly increased from 36% in P1 to 52% in P3 and reduced run-off by 35% during P3. These findings explain the run-off reduction and benefit water resource management in the middle reaches of the Yellow River basin.  相似文献   

5.
Qiaoling Guo  Yang  Yunsong  Su  Ning  Li  Jianlin  Wang  Xinyi 《Water Resources》2019,46(6):871-882
Water Resources - The Kuye river watershed is a coal mining watershed in Northwest China. The study analyzed runoff change of year, high flow period and low flow period in the past 60 years based...  相似文献   

6.
The dynamic changes in the sediment discharge over 90 years from 1919 to 2008 in the Yellow River in China were assessed on the basis of annual rainfall series and annual sediment series in Shan County hydrological station. The key factors affecting sediment discharge, such as rainfall, and human activities were studied. Anomaly accumulation method and double mass curve were employed to test the stage changes of sediment discharge, and to determine the main factors of sediment decline. Results showed that the annual average sediment discharge under natural conditions was about 16 × 108 t, but the measured annual average sediment during 1919–2008 was 12.71 × 108 t. The highest annual average during the study period was 39.10 × 108 t in 1933 while the lowest was 1.77 × 108 t in 2008. Sediment discharge in the Yellow River experienced two low sediment stages (1924–1931 and 1979–2008) and a high sediment stage (1932–1971), respectively. Since 1979, there was a significant decreasing trend in the sediment discharge, and the main influencing factor was fierce human activities. Annual average sediment discharge in the post‐development period (1979–2008) was 69.7% lower than that in the pre‐development period (1919–1978), with average reduction of 81 and 19% caused by human activities and rainfall, respectively. These results provide important evidence for making protecting policy for water resources quality and environmental safety of the Yellow River.  相似文献   

7.
ABSTRACT

Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.
Editor Z.W. Kundzewicz; Associate editor K. Hamed  相似文献   

8.
We analyzed long daily runoff series at six hydrological stations located along the mainstem Yellow River basin by using power spectra analysis and multifractal detrended fluctuation analysis (MF-DFA) technique with aim to deeply understand the scaling properties of the hydrological series in the Yellow River basin. Research results indicate that: (1) the runoff fluctuations of the Yellow River basin exhibit self-affine fractal behavior and different memory properties at different time scales. Different crossover frequency (1/f) indicates that lower crossover frequency usually corresponds to larger basin area, and vice versa, showing the influences of river size on higher frequency of runoff variations. This may be due to considerable regulations of river channel on the runoff variations in river basin of larger basin size; (2) the runoff fluctuations in the Yellow River basin exhibit short-term memory properties at smaller time scales. Crossover analysis by MF-DFA indicates unchanged annual cycle within the runoff variations, implying dominant influences of climatic changes on changes of runoff amount at longer time scales, e.g. 1 year. Human activities, such as human withdrawal of freshwater and construction of water reservoirs, in different reaches of the Yellow River basin may be responsible for different scaling properties of runoff variations in the Yellow River basin. The results of this study will be helpful for hydrological modeling in different time scales and also for water resource management in the arid and semi-arid regions of China.  相似文献   

9.
The Yiluo River is the largest tributary for the middle and lower reaches of the Yellow River below Sanmenxia Dam. Changes of the hydrological processes in the Yiluo River basin, influenced by the climatic variability and human activities, can directly affect ecological integrity in the lower reach of the Yellow River. Understanding the impact of the climatic variability and human activities on the hydrological processes in the Yiluo River basin is especially important to maintain the ecosystem integrity and sustain the society development in the lower reach of the Yellow River basin. In this study, the temporal trends of annual precipitation, air temperature, reference evapotranspiration (ET0) and runoff during 1961–2000 in the Yiluo River basin were explored by the Mann‐Kendall method (M‐K method), Yamamoto method and linear fitted model. The impacts of the climatic variability and vegetation changes on the annual runoff were discussed by the empirical model and simple water balance model and their contribution to change of annual runoff have been estimated. Results indicated that (i) significant upwards trend for air temperature and significant downwards trend both for precipitation and ET0 were detected by the M‐K method at 95% confidence level. And the consistent trends were obtained by the linear fitted model; (ii) the abrupt change started from 1987 detected by the M‐K method and Yamamoto method, and so the annual runoff during 1961–2000 was divided into two periods: baseline period (1961–1986) and changeable period (1987–2000); and (iii) the vegetation changes were the main cause for change of annual runoff from baseline period to changeable period, and climatic variability contributed a little to the change of annual runoff of the Yiluo River. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
《国际泥沙研究》2021,36(6):747-755
The magnitude and variation of the sediment loads transported by rivers have important implications for the functioning of river systems and changes in the sediment loads of rivers are driven by numerous factors. In this paper, the key drivers of changes in the sediment loads of the major rivers of China are identified by reviewing recent studies of changes in their sediment loads. Except for the Songhua River, which presents no clear tendency of change in runoff or sediment load, nearly all the major rivers of China are characterized by an apparent decline in annual sediment load. The total annual sediment load of major Chinese rivers transported to the coast decreased from 2.03 billion t/yr during the period 1955–1968 to 0.50 billion t/yr during the period 1997–2010. The primary drivers of changes in the sediment loads of the rivers are dam construction, implementation of soil and water conservation measures, catchment disturbance, agricultural practices, sand mining and climate change. Examples drawn from Chinese rivers are used to demonstrate the importance of these drivers. Construction of a large number of reservoirs in the Yangtze River basin represents the primary driver for the reduced sediment load of the Yangtze River. The implementation of soil and water conservation programmes is one of the key drivers for the sharp decline in the sediment load of the Yellow River. Catchment disturbance explains why the reduction of the sediment load of the Lancang-Mekong River at the Chiang Saen gauging station was much less than that at the Gajiu gauging station upstream. A reduction in sediment load resulting from the expansion of agricultural production may be the main driver for the reduced sediment load of the Huaihe River. The decrease in the sediment load of the Pearl River has been influenced by sand mining activities. Climate change is one of the key drivers responsible for the greatly reduced sediment load of the rivers in the Haihe River Basin.  相似文献   

11.
气候变化和人类活动对流域径流影响的定量研究是当前研究的热点,赣江作为鄱阳湖流域最大的子流域,径流变化对鄱阳湖湿地水生态系统具有重要的影响.利用Mann-Kendall突变检验分析了赣江流域径流1955—2010年间演变趋势,再分别应用统计方法和IHACRES集总式模型分析气候要素和人类活动对径流的影响.研究表明IHACRES能够较好地模拟赣江流域径流,适用于中亚热带湿润季风气候区.Mann-Kendall突变检验表明赣江流域径流在1979年发生突变,可划分为1955—1979年和1980—2010年两个时段.降水是影响赣江流域径流年际变化的主要因素,而土地利用等人类活动的影响并不明显.水库建设显著影响赣江径流的季节分配,1980—2010年间人类活动影响更加显著,其中45%的年份秋季径流增加50%以上,26%的年份秋季径流增加超过100%,其中1989年的秋季径流增加幅度达到320%.  相似文献   

12.
In this paper, the changes in sediment transport over 51 years from 1955 to 2006 in the Kuye River in the Loess Plateau in China are assessed. Key factors affecting sediment yield and sediment transport, such as precipitation depth, discharge, and human activities are studied. To investigate the changes in sediment yield in this watershed, a trend analysis on sediment concentration, precipitation depth, and discharge is conducted. Precipitation depths at 2 Climate Stations (CSs), as well as discharge and sediment transport at 3 Gauging Stations (GSs) are used to assess the features of sediment transport in the Kuye River. The rtmoff modulus (defined as the annual average discharge per unit area, L/(s·km^2)) and the sediment transport modulus (defined as the annual suspended sediment transport per unit area, t/(yr km^2)) are introduced in this study to assess the changes in runoff and sediment yield for this watershed. The results show that the highest average monthly discharge during the study period in the Kuye River is 66.23 m^3/s in August with an average monthly sediment concentration of 88.9 kg/m^3. However, the highest average monthly sediment concentration during the study period in the Kuye River is 125.34 kg/m^3 and occurs in July, which has an average discharge of 42.6 m^3/s that is much less than the average monthly discharge in August. It is found that both the runoff modulus and sediment transport modulus at Wenjiachuan GS on the Kuye River has a clear downward trend. During the summer season from July to August, the sediment transport modulus at Wenjiachuan GS is much higher than those at Toudaoguai and Longmen GSs on the Yellow River. The easily erodible loess in the Kuye River watershed and the sparse vegetation are responsible for the extremely high sediment yield from the Kuye River watershed. The analyses of the grain size distribution of suspended load in the Kuye River are presented. The average monthly median grain size of suspended load in the Kuye River is largest in February and then decreases until June. In July, the average monthly median grain size of suspended load approaches another peak and decreases until September. Then, the median grain size of suspended load starts to increase until February of the following year. However, the average monthly median grain size of suspended load in the Yellow River at Toudaoguai and Longmen GSs is the smallest between early summer and late fall The median grain size in the Yellow River starts to increase in November and approaches the largest size in January.  相似文献   

13.
Abstract

Two river catchments, the Huangfuchuan and the Hailiutu, located in the same climate zone in the Erdos Plateau, China, have distinctly different flow regimes. This study systematically compared differences between the flow regimes of these two catchments using several statistical methods, and analysed the possible causes. The variations in yearly, monthly and daily mean discharges were found to be much greater in the Huangfuchuan catchment than in the Hailiutu catchment. Preliminary analysis indicated that these differences are not caused by changes in climate, but are instead attributable to differences in geology, geomorphology, hydrological processes and human interventions. In the Hailiutu catchment, the dominant groundwater contribution maintains stationary daily and monthly river discharges, while shifts in yearly mean discharges were closely associated with the expansion or reduction of crop area. In the Huangfuchuan catchment, the dominant direct rainfall–runoff process generates flashier daily and monthly river discharges, while the decrease of yearly mean discharges is caused mainly by the construction of check dams. These findings have significant implications for water resource management and the implementation of proper soil and water conservation measures in the middle reach of the Yellow River Basin of China.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   

14.
ABSTRACT

The conventional abrupt change-based assessments of climate- and human-induced impacts on streamflow require the existence of change point(s) and stationarity assumption. However, hydrological conditions may not change abruptly at a certain time, but rather evolve gradually over a period. We propose a trend-based time-varying approach that does not require these prerequisites to assess the climate- and human-induced impacts on hydrological conditions in the Pearl River Basin (PRB), China, which can be applied in other basins. The trend-based time-varying approach detects human activities exert a significant seasonal regulation on streamflow (i.e. 113% of the decreases in the wet season and 93% of the increases in the dry season) and 101% of the reductions in flood peaks in the East River Basin, the sub-basin with the highest ratio of total reservoir storage capacity to river discharge in the PRB. Climate change contributes to 77% of the increases in flood peaks in the West River Basin, a large sub-basin with lower flood control levels.  相似文献   

15.
ABSTRACT

This study investigated the impacts of human activities, especially water resources development, and climate variation on the runoff reduction and its spatial variability in the Huaihe Basin, the sixth largest river basin in China, which is also an important agricultural area in Eastern China. The annual runoff had statistically negative trends at all hydrological stations located on the main river and the major tributaries, which ranges from ?0.13 to ?1.99 mm year-1. The Budyko-based approach was employed to quantitatively differentiate the runoff reduction driven by human activities and climate variation. Results showed that the precipitation decrease contributed to the runoff reduction in all study sub-catchments. However, significant reductions of the annual runoff in some sub-catchments were mainly caused by the human activities rather than the precipitation decrease. Spatial variability of hydrological changes were closely related to different types of human activities especially irrigation and water diversion. In the southern sub-catchments, water diversion played a significant role in runoff reduction, while agriculture irrigation was the relatively dominant driving factor in the northern sub-catchments. The results show the complexity in the catchment hydrological response to the changes in climate forcing and human water resources development and the effectiveness of the Budyko-based approach for attribution analysis.
Editor D. Koutsoyiannis; Associate editor C. Cudennec  相似文献   

16.
The recession of bomb tritium in river discharge of large basins indicates a contribution of slowly moving water. For an appropriate interpretation it is necessary to consider different runoff components (e.g. direct runoff and ground water components) and varying residence times of tritium in these components. The spatially distributed catchment model (tracer aided catchment model, distributed; TACD) and a tritium balance model (TRIBIL) were combined to model process‐based tritium balances in a large German river basin (Weser 46 240 km2) and seven embedded sub‐basins. The hydrological model (monthly time step, 2 × 2 km2) estimated the three major runoff components: direct runoff, fast‐moving and slow‐moving ground water for the period of 1950 to 1999. The model incorporated topography, land use, geomorphology, geology and hydro‐meteorological data. The results for the different basins indicated a contribution of direct runoff of 30–50% and varying amounts for fast and slow ground water components. Combining these results with the TRIBIL model allowed us to estimate the residence time of the components. Mean residence times of 8 to 14 years were found for the fast ground water component, 21 to 93 years for the slow ground water component and 14 to 50 years for an overall mean residence time within these basins. Balance calculations for the Weser basin indicate an over‐estimation of loss of tritium through evapotranspiration (more than 60%) and decay (10%). About 28% were carried in stream‐flow where direct runoff contributed about 12% and ground water runoff 13% in relation to precipitation input over the studied 50‐year period. Neighbouring basins and nuclear power plants contributed about 1% each over this time period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Determining abrupt changes in runoff and sediment load may not only enhance identification of the principal driving factors for such changes but also help establish effective countermeasures for serious water deficit by managers in the Yellow River basin. We used the Mann-Kendall trend test and linear regression to determine trends and abrupt changes of runoff and sediment load during the period between 1950 and 2005, based on monthly hydrological data. Results show that runoff and sediment load decreased from 1950 to 2005, on annual or monthly time scales. Their changes are divided into three stages: fluctuating stage (1950–1970), slowly decreasing stage (1970–1980) and accelerated decreasing stage (1980–2005). The relationship between runoff and sediment load was most significant, and it can be expressed as a linear regression function. Precipitation was one of the most important climate factors affecting runoff before 1985, and the impact of human activities on runoff decrease grew strongly after 1985. Water balance analysis of the Yellow River basin indicates that natural climate change contributed about 55.3% and human activities about 44.7% to the runoff decrease after 1986.  相似文献   

18.
Small‐scale experiments have demonstrated that forest clearance leads to an increase in water yield, but it is unclear if this result holds for larger river basins (>1000 km2). No widespread changes in rainfall totals and patterns were found in the 12 100 km2 Nam Pong catchment in northeast Thailand between 1957 and 1995, despite a reduction in the area classified as forest from 80% to 27% in the last three decades. Neither were any detectable changes found in any other water balance terms nor in the dynamics of the recession at the end of the rainy season. When a hydrological model calibrated against data from the period before the deforestation was applied for the last years of the study period (1987–1995), runoff generation was however underestimated by approximately 15%, indicating increased runoff generation after the deforestation. However, this was mainly due to the hydrological response during one single year in the first period, when the Q/P ratio was very low. When excluding this year, neither analysis based on the hydrological model could reveal any significant change of the water balance due to the deforestation. More detailed land‐use analysis revealed that shade trees were left on agricultural plots as well as a number of abandoned areas where secondary growth can be expected, which is believed to account for the results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In recent years, the natural hydrology behaviors were greatly influenced by climate change. The relation between runoff and climate change are always the core of scientific hydrological study in arid region. This paper presents a multi-variate time series controlled auto-regressive (CAR) model based on hydrological and climatic data of typical tributaries Jinghe River in Ebinur Lake Basin of Xinjiang covering the period from 1957 to 2012. The aim is to study the climate change and its effects on runoff of the Jinghe River, Northwest China. The results showed the following: the runoff of the Jinghe River was unevenly distributed and has obvious seasonal changes throughout the year. It was concentrated in summer and has along dry season with less runoff. The monthly maximum river runoff was from June to September and accounted for 74% of annual runoff. The river runoff increased since the 1980s till the 1990s; in the 21st century there was a trend of decreasing. The oscillatory period of annual runoff series in the Jinghe River Basin was 21a and 13a, and these periods were more obvious, followed by 32a and 9a. The oscillation with a time scale of 21a and 13a was a fulltimed domain. The MRE is 6.54%, the MAE is 0.84 × 108 m3, and the RMSE is 0.039. The CAR model passed the F-test and residual test, and the change trend of calculated and measured values of annual runoff is consistence, which means that the model was reasonable.  相似文献   

20.
Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging of four monthly water balance models was proposed. The method was applied to the Weihe River Basin, the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities to runoff changes. The change point, which was used to determine the baseline period (1956–1990) and human-impacted period (1991–2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号