首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277–296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.  相似文献   

2.
开发了适合城市环境下的应急重气扩散模型——SLAB_URBAN模型,该模型能够对城市环境下重气的传输扩散过程进行模拟。模型的原理基于重气扩散浅层理论,采用了新的城市边界层和扩散参数的参数化方案。该方案考虑了城市冠层内特有的风和湍流扩散的特征,能够体现城市边界层和湍流对重气扩散的影响。对美国盐湖城Urban2000的城市扩散试验进行模拟,主要验证下风方向观测弧所观测到的气体最大小时平均浓度与源释放速率的比值。结果表明,模型能够比较好地模拟出下风方向上浓度的分布特征。另外,与国外同类城市扩散模型的比较来看,SLAB_URBAN模型的模拟能力居于前列。  相似文献   

3.
An analytical model of atmospheric dispersion in urban areas in both daytime and nighttime conditions is presented. The model is based on a Gaussian formulation where the horizontal and vertical diffusion coefficients are determined according to analytical theories. The model is validated with dispersion measurements from field experiments conducted in Oklahoma City, Salt Lake City, St. Louis and London, U.K. The theory is in good agreement with the data for both daytime and nighttime conditions. The data support the conclusion that the magnitude of the nighttime stratification in the urban atmosphere is weak; however, its effects on dispersion are not negligible. The predicted existence of two distinct dispersion regimes, in the near and in the far field, is also confirmed by the data. The good collapse of the data suggests that urban dispersion is governed by the characteristic length scales of atmospheric boundary-layer turbulence, rather than urban canopy length scales that are more likely to affect dispersion only in the vicinity of the source.  相似文献   

4.
城市气象研究进展   总被引:5,自引:0,他引:5  
中国数十年来在城市气象研究这一新兴学科领域开展了大量研究并获得了多方面的丰硕成果。文中从城市气象观测网与观测试验、城市气象多尺度模式、城市气象与大气环境相互影响、城市化对天气气候的影响等4个方面论述了城市气象的主要研究进展:中国各大城市已建立或正在完善具有多平台、多变量、多尺度、多重链接、多功能等特点的城市气象综合观测网;北京、南京、上海等地开展了大型城市气象观测科学试验,被世界气象组织列入研究示范项目;成功开展了风洞实验、缩尺度外场实验研究;建立了多尺度城市气象和空气质量预报数值模式,并应用于业务;在城市热岛效应、城市对降水影响、城市气象与城市规划、城市化对区域气候及空气质量的影响、城市气象与大气环境相互作用等研究领域取得长足进展。最后指出,未来需要重点从新观测技术及观测资料同化应用、城市系统模式研究、城市化对天气气候的影响机理、城市化对大气环境和人体健康的影响、城市水文气象气候与环境综合服务等方面开展科学研究与应用,为中国城市化、生态文明建设、防灾减灾和应对气候变化等国家需求提供科技支撑。   相似文献   

5.
A microscale air pollutant dispersion model system is developed for emergency response purposes. The model includes a diagnostic wind field model to simulate the wind field and a random-walk air pollutant dispersion model to simulate the pollutant concentration through consideration of the influence of urban buildings. Numerical experiments are designed to evaluate the model's performance, using CEDVAL(Compilation of Experimental Data for Validation of Microscale Dispersion Models) wind tunnel experiment data, including wind fields and air pollutant dispersion around a single building. The results show that the wind model can reproduce the vortexes triggered by urban buildings and the dispersion model simulates the pollutant concentration around buildings well. Typically, the simulation errors come from the determination of the key zones around a building or building cluster. This model has the potential for multiple applications; for example, the prediction of air pollutant dispersion and the evaluation of environmental impacts in emergency situations; urban planning scenarios;and the assessment of microscale air quality in urban areas.  相似文献   

6.
A series of sixteen atmospheric tracer experiments using sulfur hexafluoride (SF6), chemical smoke and meteorological balloons was conducted to explore the transport of airborne contaminants in the boundary layer over the ocean surface and in the separating boundary layer over an isolated island cape. The immediate objective of the tests was to determine the impact of local pollutant sources on a background air quality sampling program conducted in the South Pacific from elevated towers on Tutuila Island, American Samoa. In addition to satisfying this objective, the tests are of interest in that they illustrate the local behavior of pollutants in a complex natural atmospheric flow.Offshore tracer tests indicated that the crosswind dispersion of pollutants over the ocean surface can be approximately modeled using the simple Gaussian plume model. The observed crosswind dispersion of the tracer corresponded to that expected under neutrally stable atmospheric conditions, consistent with the near equilibration of the ocean surface and air temperature in the South Pacific. Local, or near-field, tests indicated that tracer released into the wake downwind of the leading edge of the cape mixed rapidly to a height of about 8 m above the surface (i.e., 30–40% of the cape height). Due to decoupling between the boundary layer over the cape and the freestream flow, however, very little of the tracer was observed above this height. This suggests that the impact of local pollutant sources (i.e., on the cape) would be minimized if the proposed sampling towers were elevated significantly above an 8 m altitude (e.g., twice that height).  相似文献   

7.
8.
Over the past decades, a large number of studies have been carried out in the field of urban meteorology in China. This paper summarizes the main progress in urban meteorology research from four aspects: urban meteorological observation network and field campaign, multi-scale model of urban meteorology, interaction between urban meteorology and atmospheric environment, and the impacts of urbanization on weather and climate. Major advances are as follows. China’s major cities have established or are improving comprehensive urban meteorological observation networks characterized by multi-platform, multi-variable, multi-scale, multi-link, and multi-function. Beijing, Nanjing, Shanghai, and other cities carried out urban meteorological field campaigns, which were included in the WMO research demonstration project. Wind tunnel experiments and scale-model outdoor experiments were successfully conducted. Multi-scale urban meteorological and air quality prediction numerical model systems have been developed and put into operational use. The urban heat island effect; urban impacts on precipitation, regional climate, and air quality; urban planning; and interaction between urban meteorology and atmospheric environment are extensively investigated. Finally, efforts to improve observational technology, data assimilation, and urban system modeling, to explore the impacts of urbanization on environment and human health, and to provide integrated urban hydro-meteorological climate and environmental services are planned ahead.  相似文献   

9.
The inertial subrange of the atmospheric turbulence spectrum extends downward from some 25 m in linear size. Energy is supplied to large eddies and cascades down the size range. The physics implies a certain concentration pattern for material being dispersed. The concentration frequency distribution (for very many ‘equal’ samples) should be log-normal with invariant slope, independent even of sample size. Correlations should be invariant if time lag or distance is measured in units proportional to linear sample size. Even sources with different characteristics might produce similar features. Turbulent dispersion data with air ions as tracer provide a means for testing the theory. Digitized and statistically processed data from 4 instantaneous-source and 8 continuous-source experiments agree well with the theory. Two other experiments, where analog data only are available, also support the conclusions.  相似文献   

10.
11.
凹坑地形风流结构对污染物散布的模拟研究   总被引:1,自引:0,他引:1  
利用建立的三维非静力高分辨率高阶湍流闭合模式与随机游动扩散模式研究了一个深凹露天矿区污染物散布的规律,同时在风洞中进行了示踪实验。结果表明,由于凹坑内复环流结构的存在,使得坑内污染物浓度较大,且浓度最大值出现在源的上风侧。数值试验与风洞试验结果吻合较好。  相似文献   

12.
A new scaling approach, based on the convective velocity obtained from the sun-exposed eastern slopes and thus suited for steep and narrow Alpine valleys, is investigated with respect to pollutant dispersion. The capability of the new method is demonstrated with the operational emergency response system of MeteoSwiss, which consists of the COSMO (COnsortium for Small-scale MOdelling) numerical weather prediction model coupled with a Lagrangian particle dispersion model (LPDM). The new scaling approach is introduced to the interface between COSMO and LPDM, and is compared to results of a classical similarity theory approach and to the operational coupling type, which uses the turbulent kinetic energy (TKE) from the COSMO model directly. For the validation of the modelling system, the TRANSALP-89 tracer experiment is used, which was conducted in highly complex terrain in southern Switzerland. The ability of the COSMO model to simulate the valley wind system is assessed with several meteorological surface stations, and the dispersion simulation is evaluated with the measurements from 25 surface samplers. The sensitivity of the modelling system towards the soil moisture, horizontal grid resolution, and boundary-layer height determination is investigated, and it is shown that, if the flow field is correctly reproduced, the new scaling approach improves the tracer concentration simulation when compared to classical coupling methods.  相似文献   

13.
Experimental Study of Pollutant Dispersion Within a Network of Streets   总被引:2,自引:2,他引:0  
We investigate the dispersion of a passive scalar within an idealised urban district made up of a building-like obstacle array. We focus on a street network in which the lateral dimension of the buildings exceeds the street width, a geometry representative of many European cities. To investigate the effect of different geometries and wind directions upon the pollutant dispersion process, we have performed a series of wind-tunnel experiments. Concentration measurements of a passive tracer have enabled us to infer the main features characterising its dispersion within the street network. We describe this by focusing on the roles of different transfer processes. These are the channelling of the tracer along the street axes, the mixing at street intersections, and the mass exchange between the streets and the overlying atmospheric flow. Our experiments provide evidence of the dependence of these processes on the geometrical properties of the array and the direction of the overlying atmospheric flow.  相似文献   

14.
We investigate the influence of the regional-scale weather types on the atmospheric dispersion processes of the air pollutants originated from point sources. Hypothetical accidents were simulated with two different dispersion models. During a year’s test period, the 6-h emission of a radionuclide from the Paks Nuclear Power Plant (Paks NPP, Hungary) was assumed every day and the transport and deposition of the radionuclide was simulated by the Eulerian TREX dispersion model over the Central European region. In addition, the ALOHA Gaussian air dispersion model was also used for the local environment of the Paks NPP to simulate hypothetical hourly releases of ammonia during a 10-year period. During both types of model simulations, the dispersion of the plume for each time was analysed and tested with consideration of 13 circulation types corresponding to daily weather patterns over the Carpathian Basin. There are significant correlations between circulation types and plume directions and structures both in local and regional scales. The daily circulation pattern can be easily obtained from weather analyses; the expected size and direction of polluted area after an accidental release can be quickly estimated even before an accident occurs. However, this fast method cannot replace or neglect dispersion model simulations. It gives a ‘first guess’ and a fast estimation on the direction of the plume and can provide sufficient information for decision-making strategies.  相似文献   

15.
16.
Summary Dispersion and transport over complex terrain have been recognized as an important research field. In July 1988, for studying atmospheric dispersion in a mountain area, a tracer experiment has been performed in south alpine valleys near a mountain (Campo dei Fiori, 1226 m.a.s.l.). In this area air masses circulation in wind breeze conditions is frequent. This paper analyses the meteorological situation and the tracer dispersion during those experiments. First a reconstruction of the three-dimensional wind fields overCampo dei Fiori area, taking into account the effects of orography, surface thermal gradients, atmospheric stability and energy of air masses, has been performed. Then the tracer concentrations have been evaluated by means of suitable models and the results have been discussed.With 11 Figures  相似文献   

17.
城市化极大地改变了城市下垫面的性质,这有可能增加灰霾天气发生的概率和强度.利用Landsat-7 ETM+和HJ-1A卫星多光谱遥感数据,通过人工解译获得2002年和2012年武汉市土地利用情况,并对武汉市土地利用规划图进行数字化和尺度转换.在此基础上,针对武汉市典型灰霾天气过程,对不同土地类型(历史、现状和规划)利用WRF-NAQPMS空气质量数值模式进行了不同情景的模拟.同时,对比分析和揭示了不同情境下,大气风场和主要大气污染物浓度场的变化,解析了下垫面对灰霾天气的影响.可为从灰霾天气防治的角度完善城市土地规划和建设提供科学依据.  相似文献   

18.
Profiles of velocity variances based on observations in flat rural areas are well established, and are used for modelling turbulent dispersion in all types of regions including those of complex terrain and urban areas. Surface-based and balloon observations are used to assess the profiles in both rural and urban areas. It is shown that, with good meteorological inputs for the locality of friction velocity and surface sensible heat flux, the profiles are equally well suited to urban areas. The sensitivity of the profiles to the input meteorological data, in particular using numerical weather prediction (NWP) data, is discussed. This highlights the limitations of NWP data for dispersion modelling and stresses the importance of schemes for modelling urban meteorology.The British Crowns right to retain a non-exclusive royalty-free license in and to any copyright is acknowledged.  相似文献   

19.
A small town close to a lead/zinc smelter was experiencing unusually high concentrations of sulfur dioxide during certain drainage flow conditions. The episodes occurred in situations where the buoyant plume rise should have been sufficient to eliminate any excessive ground level concentrations resulting from building wake effects. A field study was initiated using visible oil fog, tracer gas releases, and constant volume balloons. The resulting data revealed that a standing wave was being induced in the flow across the smelter bringing pollutants from as high as 150m agl down to 30m agl over the nearby town. The existence of the wave is attributed to the combined effects of the smelter buildings and the thermal forcing supplied by smelter operations. Data are presented characterizing the wavelike disturbance and documenting the meteorological conditions under which it occurs. A comparison is made between the simulated pollutant impacts using the tracer gas data and model predictions using the Industrial Source Complex dispersion model.  相似文献   

20.
Air circulation due to the urban heat island (UHI) effect can influence the dispersion of air pollutants in a metropolis. This study focusses on the influence of the UHI effect on particulate matter (PM; including PM2.5 and PM2.5–10) between May and September 2010–2012 in the Taipei basin. Meteorological and PM data were obtained from the sites, owned by the governmental authorities. The analysis was carried out using t test, relative indices (RIs), Pearson product–moment correlation and stepwise regression. The results show that the RI values for PM were the highest at moderate UHI intensity (MUI; 2 °C ≤ UHI < 4 °C) rather than at strong UHI intensity (SUI; 4 °C ≤ UHI) during the peak time for anthropogenic emissions (20:00 LST). Neither the accumulation of PM nor the surface convergence occurred in the hot centre, as shown by the case study. At MUI, more than 89 % of the synoptic weather patterns showed that the weather was clear and hot or that the atmosphere was stable. The variation in PM was associated with horizontal and vertical air dispersion. Poor horizontal air dispersion, with subsidence, caused an increase in PM at MUI. However, the updraft motion diluted the PM at SUI. The stepwise regression models show that the cloud index and surface air pressure determined the variation in PM2.5–10, while cloud index, wind speed and mixing height influenced the variation in PM2.5. In conclusion, a direct relationship between UHI effect and PM was not obvious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号