首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general formula is derived for calculating the -ray spectrum resulting from the annihilation of cosmic-ray positrons. This formula is used to calculate annihilation--ray spectra from various equilibrium spectra of secondary galactic positrons. These spectra are then compared with the -ray spectra produced by other astrophysical processes.Particular attention is paid to the form of the -ray spectrum resulting from the annihilation of positrons having kinetic energies below 5 keV. It is found that for mean leakage times out of the galaxy of less than 400 million years, most of the positrons annihilating near rest come from the -decay of unstable nuclei produced in cosmic-ray p-C12, p-N14, and p-O16 interactions, rather than from pi-meson decay. It is further found that the large majority of these positrons will annihilate from an S state of positronium and that 3/4 of these will produce a three-photon annihilation continuum rather than the two-photon line spectrum at 0.51 MeV. The results of numerical calculations of the -ray fluxes from these processes are given. It is concluded that annihilation -rays from the galactic halo may remain forever masked by a metagalactic continuum. However, an 0.51 MeV line from the disk may well be detectable. It is most reasonable to assume that this line is formed predominantly by the annihilation of the CNO -decay positrons. Under this assumption, the intensity of the line becomes a sensitive measure of the galactic cosmic-ray flux below 1000 MeV/nucleon.  相似文献   

2.
A rotating Supermassive Magnetized Disk is proposed as a model for all the violent phenomena occurring in the nuclei of galaxies, in the form of quasars, Lacertids, radio galaxies, Seyferts, exploding galaxies, etc. The cold disk feeds a fast-rotating supermassive core (some 103 Schwarzschild radii in extent), which emits (1) an unsteady thermal wind of filamentary geometry, (2) Low-Frequency magnetic Waves, and (3) relativistic electrons and positrons. The latter reach high -factors by phase-riding the LFWs, emit synchro-Compton radiation on crossing scattered waves (from -ray energies down to radio frequencies), and are eventually focused into two antipodal relativistic beams by their frozen-in toroidal magnetic field. Torsional oscillations between the core and disk give rise to a pulsed injection, and a breathing double-onion shape of the LFW windzone can explain the superluminal jetlike appearance. A big nuclear explosion ends each duty cycle, but many smaller explosions prevent the settling core from collapsing. In this model, the helium production of galactic centres is comparable to the observed cosmic helium.  相似文献   

3.
Number-flux relations at -ray energies for active galactic nuclei have been computed, starting from their X-ray luminosity function and making different assumptions on the spectral shape and cosmological evolution of these sources.The radiation resulting from their integrated emission has been computed and compared to the observed intensity and spectrum of the extragalactic -ray diffuse background (0.3–20 MeV), in order to derive quantitative constraints on the evolution and spectral properties of active galactic nuclei at -ray energies.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

4.
Radio-emission of pulsars is investigated through computer simulation. We assume that electronpositron plasma is thermal and beam particles have b in the plasma rest frame. The main purpose of this study is to search for unstable electromagnetic waves which may be caused by beam-plasma interactions. We obtain the dominant waves in the range of radio frequencies in the observer frame. The results show that transverse electromagnetic waves grow rapidly, while electrostatic waves have very slow growth.  相似文献   

5.
Lockwood  J. A.  Debrunner  H.  Ryan  J. M. 《Solar physics》1997,173(1):151-176
We have examined six solar neutron events measured by satellite instruments and/or neutron monitors (NM) to understand the relationship between the intensity–time profiles of the -ray lines, the pion-related -rays, and the neutron production. In all six events the solar neutron production was clearly time-extended. We find that neutron emission as detected by NMs most closely follows the emission of pion-related -rays, whereas lower energy neutron production may follow that of nuclear -ray line emissions. Although this distinction is not unexpected, it is safe to say that the 2.223 MeV -ray line from neutron capture on hydrogen is a poor measure of the neutron production at energies >200 MeV. During the three events on 1982, June 3, 1990, May 24 and 1991, June 4 solar neutrons with energies greater than 200 MeV were recorded by NMs. The NM increases on 1982, June 3 and 1990, May 24 can be modeled using the time profile of the pion-related -rays. For the 1991, June 4 event the NM signal was small but lasted for 60 min and the high-energy -ray data available to us are insufficient to conclude unambiguously that the high-energy neutron production followed the pion-related -rays. In the other three events on 1991, June 9, 11, and 15 solar neutrons with energies 10–100 MeV were observed by the COMPTEL -ray instrument on the Compton Gamma Ray Observatory. The duration of the low-energy neutron production on 1991, June 9 corresponded clearly to the high-energy and not to the low-energy -ray emission.  相似文献   

6.
A spatially homogeneous and isotropic Robertson-Walker model withzero-curvature of the universe is studied within the frame-work of Lyra'smanifold. The gauge-function in Lyra's manifold is taken to betime-dependent. Exact solutions of Einstein equations are obtained for twodifferent early phases of the universe viz. Inflationary phase andradiation-dominated phase by using `gamma-law' equation of statep = ( - 1) . The -index, describing the material content,varies continuously with cosmic time so that in the course of itsevolution, the universe goes through a transition from an inflationaryphase to a radiation-dominated phase. The physical properties of themodels are also discussed.  相似文献   

7.
A rapidly spinning, slowly accreting magnetic white dwarf (or X-ray pulsar) in hibernation is expected to result in rapid spindown as a result of the stretching and reconnection of magnetic field lines, leading to particle acceleration at the magnetospheric radiusoutside the corotation radius, and the propeller type ejection of magnetized synchrotron-emitting clouds. This may explain the non-thermal (radio and-rays) emission seen from the unique nearby AE Aquarii. Moving to Galactic distances we show how TeV-ray observations of pulsar-driven supernova remnants (with well-measured synchrotron X-ray spectra) allow us to obtain a direct measurement of the average magnetic field strength in the nebula. Finally, GeV to TeV observations of-ray blazars out to redshifts of 2 allow us to probe the intergalactic infrared radiation field, the Hubble constant and possibly the parameter of the Universe.  相似文献   

8.
Radio-silent -ray flares are solar flares that lack any significant emission in the (non-thermal) radio wave band during their impulsive hard X-ray and -ray emission phases. Flares with extremely suppressed long-wavelength spectra have previously been reported by White et al. (1992) and have been discussed in different context by Hudson and Ryan (1995). A striking example of a radio-silent flare was observed by SMM during the onset of the 6 March 1989 energetic -ray flare. We argue that the absence of radio emission at wavelengths longer than microwave wavelengths is an indication of the compactness of the flare rather than that the flare did not exhibit non-thermal properties. Probably the flare site was restricted to altitudes above the photosphere in a newly emerging loop configuration lower than the equivalent altitude corresponding to an emission frequency of 1.4 GHz. This implies the presence of a dense and highly magnetized closed field configuration confining the electron component which causes the impulsive -ray continuum. Reconnection in such a configuration did not lead to open magnetic fields and streamer formation. Acceleration of particles in the and hard X-ray bursts was restricted to closed field lines. Thermal expansion of the loop system may subsequently lead to the generation of radially propagating blast waves in the solar corona which are accompanied by type II solar radio bursts and decimetre emissions. The emission during the onset of the flare was dominated by a continuum originating from electron bremsstrahlung at X-ray and -ray energies with only little evidence for the presence of energetic ions. It is, therefore, concluded that energetic electrons have been primary and not secondary products of the particle acceleration process.  相似文献   

9.
Analysis of the anisotropy of the -ray background observed by Clarket al. (1968) has lead to the suggestion that part of the anisotropy be due to a source at the Galactic Centre. The complex structure of radio and infrared emission of the region of Sgr A is considered. The -ray flux arising from Compton scattering and 0 decay is calculated. For a value of the magnetic field H10–4 Gauss, corresponding to equipartition, the -ray flux above 100 MeV at Earth from the Sgr A source is expected to lie between 10–6 and 10–5 gamma/cm2 sec. Such a source should be detectable in the near future.  相似文献   

10.
During a balloon flight in September 1979 of the MISO low-energy -ray telescope, the BL Lac-object MkN 501 was studied in the hard X-ray range above 30 keV and in the low energy -ray range up to 19 MeV. No statistically significant X- and -ray fluxes were detected. The implications of the upper limits obtained are discussed in the light of the relativistic jet theories recently proposed.  相似文献   

11.
Durney  Bernard R. 《Solar physics》1998,180(1-2):1-17
The power in the different modes of an expansion of the solar radial magnetic field at the surface in terms of Legendre polynomials,P , is calculated with the help of a solar dynamo model studied earlier. The model is of the Babcock–Leighton type, i.e., the surface eruptions of the toroidal magnetic field – through the tilt angle, , formed by the magnetic axis of a bipolar magnetic region with the east-west line – are the sources for the poloidal field. In this paper it is assumed that the tilt angle is subject to fluctuations of the form, = ()+ <> where <> is the average value and () is a random normal fluctuation with standard deviation which is taken from Howard's observations of the distribution of tilt angles. For numerical considerations, negative values of were not allowed. If this occurred, was recalculated. The numerical integrations were started with a toroidal magnetic field antisymmetric across the equator, large enough to generate eruptions, and a negligible poloidal field. The fluctuations in the tilt angle destroy the antisymmetry as time increases. The power of the antisymmetric modes across the equator (i.e., odd values of ) is concentrated in frequencies, p, corresponding to the cycle period. The maximum power lies in the =3 mode with considerable power in the =5 mode, in broad agreement with Stenflo's results who finds a maximum power at =5. For the symmetric modes, there is considerable power in frequencies larger than p, again in broad agreement with Stenflo's power spectrum.  相似文献   

12.
The Orion cloud complex in the Milky Way is a source of-rays attributable to cosmic-ray interactions with ambient thermal gas. Quantities upon which the-ray flux depends can be scaled to the QSO 3C273. This result supports the hypothesis that at least some of the-rays from this object and other QSOs may also be attributed to a similarpp-interaction scenario.  相似文献   

13.
Exact solutions of the gravitational field equations for a Bianchi type I anisotropic space-time, filled with a viscous cosmological fluid obeying an equation of state of the form p = , 0 1, are obtained. We investigate both the viscous Zeldovich ( = 1) and < 1 fluid cases, with constant and time varying (proportional to the mean Hubble factor) shear and bulk viscosity coefficients. It is shown that independently of the matter content, the equation of state and the time dependence of the shear and bulk viscosity coefficients, a viscous Bianchi type I universe experiences a transition to an inflationary era. Due to dissipative processes, the mean anisotropy and the shear of the Bianchi type I universe tend very rapidly to zero.  相似文献   

14.
We determine empirical damping constants for 73 selected Fe i lines following the method of Gurtovenko and Kondrashova (1980), employing high-quality observations and the accurate list of Fe i oscillator strengths by Gurtovenko and Kostik (1980).The results show: (i) No increase of the enhancement factor to van der Waals broadening with excitation potential, as predicted by Edmunds (1975), and with the frequency of the transition (Figure 1); (ii) a substantial part of the commonly-used enhancement factor for weaker lines is not due to collisional damping (Figure 2), but to a misrepresentation of the inhomogeneous structure of the deep photosphere. This false damping effect is not seen in the stronger lines which yield an average damping constant : 1.36 1.5 6.  相似文献   

15.
The oscillations of a homogeneous, compressible, self gravitating fluid spheroid in static equilibrium with a poloidal magnetic field inside and a dipole type field outside are studied using the second order tensor virial equations. It is found that for small values of the eccentricity, the equilibrium model is dynamically stable provided the usual criterion of pulsative stability in the absence of a magnetic field (>4/3) is satisfied. The magnetic field removes the accidental degeneracy of the radial and the non-radial modes of oscillation which exists for =1.6 in the absence of a magnetic field.  相似文献   

16.
In TeV -ray astronomy, large mirrors are used to collect erenkov light from electromagnetic cascades in the atmosphere in order to obtain low energy thresholds. The flux sensitivity of TeV -ray detectors is limited by background due to erenkov light bursts from isotropic, cosmic-ray showers which are much more numerous than -ray showers. It has recently been established that most of this background can be eliminated on the basis of the shapes of erenkov light images on the focal plane of a telescope. In order for this technique to work, the light collector must have adequate resolution over a relatively wide field of view. In this paper, the optical characteristics of the 10 m reflector used in the imaging detection of the Crab Nebula are examined and contrasted with those of a standard parabolic design. This 10 m reflector has a unique (Davies-Cotton) design with small spherical facet mirrors placed on spherical support structure with radius equal to exactly 1/2 the curvature radius of the facet mirrors. The off-axis focusing properties of this type of telescope have not been examined previously.  相似文献   

17.
The forthcoming collision by debris of P/Shoemaker-Levy 9 comet with Jupiter during the week of July 18, 1994 has generated considerable scientific and public interest. This collision may release an amount of energy ranging from 1025-1031 ergs in the Jovian atmosphere. Two possible phenomena associated with this event are described in this Letter to the Editor. The first one is the likely display of deformed Jovian magnetic field lines as the comet interacts with the Jovian magnetosphere. The second one is electromagnetic radiation outbursts during comet explosions over a wide frequency range from radio up to gamma ray emissions. If relativistic electrons with energies up to ~ 1000 MeV could be produced during comet explosions, then synchrotron radiations with frequencies from radio up to infrared range could be detectable. Hard X-rays and gamma rays could be produced by bremsstrahlung and inverse Compton processes. Since one cannot exclude the possible transient presence of relativistic electrons with Lorentz factor 2 × 106, synchrotron radiation component might even be extended into gamma ray frequency range during intermittent short time intervals.  相似文献   

18.
Up to 1039 ergs of elastic energy might be released in a neutron star crustquake. The sound waves produced by such a quake will transform into a shock near the surface owing to the dramatic decrease in density. A thin surface layer will then be blown off radiating -rays. We discuss the temporal structure and spectrum of such an event, and suggest some future observational tests.Paper presented at the COSPAR Symposium on Fast Transients in X- and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

19.
Charged particle acceleration is considered by a radiation flux from a star or hot spot in X-ray pulsars. It is shown that for any distance from the star there exists the upper velocity limit up to which a particle can be accelerated by radiation. This critical velocity does not depend on the luminosity of the spot. Near the hot spot surface the critical velocityv0.65c. These results are applied to plasma acceleration inX-ray pulsars. The mechanism is advanced, of -ray generation in the course of plasma accretion, onto a neutron star. It is shown that in the presence of a large magnetic field and high luminosity of the spot the relativistic electron-position avalanche may appear. The optical depth of the electron-positron cloud achieves the value of order one. The X-ray quanta emitted by the spot are scattered by relativistic (2.6) electron-positron pairs and are transformed into -radiation. Hard quanta with energy 1 MeV leave the generation region in the narrow cone 0.25.  相似文献   

20.
G. Thejappa 《Solar physics》1991,132(1):173-193
A self-consistent theoretical model for storm continuum and bursts is presented. We propose that the Langmuir waves are emitted spontaneously by an anisotropic loss-cone distribution of electrons trapped in the magnetic field above active regions. These high-frequency electrostatic waves are assumed to coalesce with lower-hybrid waves excited either by the trapped protons or by weak shocks, making the observed brightness temperature equal to the effective temperature of the Langmuir waves.It is shown that whenever the collisional damping ( c ) is more than the negative damping (- A ) due to the anisotropic distribution, there is a steady emission of Langmuir waves responsible for the storm continuum. The type I bursts are generated randomly whenever the collisional damping ( c ) is balanced by the negative damping (- A ) at the threshold density of the trapped particles, since it causes the effective temperature of Langmuir waves to rise steeply. The number density of the particles responsible for the storm radiation is estimated. The randomness of type I bursts, brightness temperature, bandwidth and transition from type I to type III storm are self-consistently explained.On leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号