首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The differential equations of planetary theory are solved analytically to first order for the two-dimensional case, using only Jacobian elliptic functions and the elliptic integrals of the first and second kind. This choice of functions leads to several new features potentially of importance for planetary theory. The first of these is that the solutions do not require the expansion of the reciprocal of the distance between two planets, even for those variables which depend on two angular arguments. A second result is that the solution is free from small divisors with the exception of two special resonances. In fact, not only are the solutions for resonant orbits free from small divisors, the perturbations for all variables are expressible in closed form. A subset of the resonant orbits maintains this form and in addition has the remarkable feature that the first order perturbations are purely periodic; they contain no secular terms. A solution for the 13 resonance case is given as an example.  相似文献   

2.
T.A. Michtchenko  R. Malhotra 《Icarus》2004,168(2):237-248
The discovery of extra-solar planetary systems with multiple planets in highly eccentric orbits (∼0.1-0.6), in contrast with our own Solar System, makes classical secular perturbation analysis very limited. In this paper, we use a semi-numerical approach to study the secular behavior of a system composed of a central star and two massive planets in co-planar orbits. We show that the secular dynamics of this system can be described using only two parameters, the ratios of the semi-major axes and the planetary masses. The main dynamical features of the system are presented in geometrical pictures that allows us to investigate a large domain of the phase space of this three-body problem without time-expensive numerical integrations of the equations of motion, and without any restriction on the magnitude of the planetary eccentricities. The topology of the phase space is also investigated in detail by means of spectral map techniques, which allow us to detect the separatrix of a non-linear secular apsidal resonance. Finally, the qualitative study is supplemented by direct numerical integrations. Three different regimes of secular motion with respect to the secular angle Δ? are possible: they are circulation, oscillation (around 0° and 180°), and high eccentricity libration in a non-linear secular resonance. The first two regimes are a continuous extension of the classical linear secular perturbation theory; the last is a new feature, hitherto unknown, in the secular dynamics of the three-body problem. We apply the analysis to the case of the two outer planets in the υ Andromedae system, and obtain its periodic and ordinary orbits, the general structure of its secular phase space, and the boundaries of its secular stability; we find that this system is secularly stable over a large domain of eccentricities. Applying this analysis to a wide range of planetary mass and semi-major axis ratios (centered about the υ Andromedae parameters), we find that apsidal oscillation dominates the secular phase space of the three-body coplanar system, and that the non-linear secular resonance is also a common feature.  相似文献   

3.
4.
The 1:1 mean motion resonance may be referred to as the lowest order mean motion resonance in restricted or planetary three-body problems. The five well-known libration points of the circular restricted three-body problem are five equilibriums of the 1:1 resonance. Coorbital motion may take different shapes of trajectory. In case of small orbital eccentricities and inclinations, tadpole-shape and horseshoe-shape orbits are well-known. Other 1:1 libration modes different from the elementary ones can exist at moderate or large eccentricities and inclinations. Coorbital objects are not rare in our solar system, for example the Trojans asteroids and the coorbital satellite systems of Saturn. Recently, dozens of coorbital bodies have been identified among the near-Earth asteroids. These coorbital asteroids are believed to transit recurrently between different 1:1 libration modes mainly due to orbital precessions, planetary perturbations, and other possible effects. The Hamiltonian system and the Hill’s three-body problem are two effective approaches to study coorbital motions. To apply the perturbation theory to the Hamiltonian system, standard procedures involve the development of the disturbing function, averaging and normalization, theory of ideal resonance model, secular perturbation theory, etc. Global dynamics of coorbital motion can be revealed by the Hamiltonian approach with a suitable expansion. The Hill’s problem is particularly suitable for the studies on the relative motion of two coorbital bodies during their close encounter. The Hill’s equation derived from the circular restricted three-body problem is well known. However, the general Hill’s problem whose equation of motion takes exactly the same form applies to the non-restricted case where the mass of each body is non-negligible, namely the planetary case. The Hill’s problem can be transformed into a “canonical shape” so that the averaging principle can be applied to construct a secular perturbation theory. Besides the two analytical theories, numerical methods may be consulted, for example the approach of periodic orbit, the surface of section, and the computation of invariant manifolds carried by equilibriums or periodic orbits.  相似文献   

5.
We study symmetric relative periodic orbits in the isosceles three-body problem using theoretical and numerical approaches. We first prove that another family of symmetric relative periodic orbits is born from the circular Euler solution besides the elliptic Euler solutions. Previous studies also showed that there exist infinitely many families of symmetric relative periodic orbits which are born from heteroclinic connections between triple collisions as well as planar periodic orbits with binary collisions. We carry out numerical continuation analyses of symmetric relative periodic orbits, and observe abundant families of symmetric relative periodic orbits bifurcating from the two families born from the circular Euler solution. As the angular momentum tends to zero, many of the numerically observed families converge to heteroclinic connections between triple collisions or planar periodic orbits with binary collisions described in the previous results, while some of them converge to “previously unknown” periodic orbits in the planar problem.  相似文献   

6.
We investigate the secular dynamics of a planetary system composed of the parent star and two massive planets in mutually inclined orbits. The dynamics are investigated in wide ranges of semimajor axes ratios (0.1–0.667) and planetary masses ratios (0.25–2), as well as in the whole permitted ranges of the energy and total angular momentum. The secular model is constructed by semi-analytic averaging of the three-body system. We focus on equilibria of the secular Hamiltonian (periodic solutions of the full system) and we analyze their stability. We attempt to classify families of these solutions in terms of the angular momentum integral. We identified new equilibria, yet unknown in the literature. Our results are general and may be applied to a wide class of three-body systems, including configurations with a star and brown dwarfs and substellar objects. We also describe some technical aspects of the seminumerical averaging. The HD 12661 planetary system is investigated as an example configuration.  相似文献   

7.
In order to generate an analytical theory of the motion of the Moon by considering planetary perturbations, a procedure of general planetary theory (GPT) is used. In this case, the Moon is considered as an addition planet to the eight principal planets. Therefore, according to the GPT procedure, the theory of the Moon’s orbital motion can be presented in the form of series with respect to the evolution of eccentric and oblique variables with quasi-periodic coefficients, which are the functions of mean longitudes for principal planets and the Moon. The relationship between evolution variables and the time is determined by a trigonometric solution for the independent secular system that describes the secular motion of a perigee and the Moon node by considering secular planetary inequalities. Principal planetary coordinates required for generating the theory of the motion of the Moon includes only Keplerian terms, the intermediate orbit, and the linear theory with respect to eccentricities and inclinations in the first order relative to the masses. All analytical calculations are performed by means of the specialized echeloned Poisson Series Processor EPSP.  相似文献   

8.
This paper concerns a model problem illustrating the techniques needed to analyze weakly nonlinear oscillator systems wherein two small divisors (resonances) may occur separately or simultaneously. The method of multiple scales in combination with singular perturbation methods is used to construct a uniformly valid asymptotic solution to the proposed model equation. It is shown that matching is necessary in order to establish a composite solution uniformly valid for the entire phase plane. The model equation does not encompass the class of problems where occurrence of two simultaneous small divisors leads to Kolmogorov-Arnol'd-Moser amplitude instability.This work was supported in part by the National Science Foundation under NSF Grant Number GP-32030.  相似文献   

9.
We present the secular theory of coplanar N -planet system, in the absence of mean motion resonances between the planets. This theory relies on the averaging of a perturbation to the two-body problem over the mean longitudes. We expand the perturbing Hamiltonian in Taylor series with respect to the ratios of semimajor axes which are considered as small parameters, without direct restrictions on the eccentricities. Next, we average out the resulting series term by term. This is possible thanks to a particular but in fact quite elementary choice of the integration variables. It makes it possible to avoid Fourier expansions of the perturbing Hamiltonian. We derive high-order expansions of the averaged secular Hamiltonian (here, up to the order of 24) with respect to the semimajor axes ratio. The resulting secular theory is a generalization of the octupole theory. The analytical results are compared with the results of numerical (i.e. practically exact) averaging. We estimate the convergence radius of the derived expansions, and we propose a further improvement of the algorithm. As a particular application of the method, we consider the secular dynamics of three-planet coplanar system. We focus on stationary solutions in the HD 37124 planetary system.  相似文献   

10.
This paper derives the contributionF 2 * by the great inequality to the secular disturbing function of the principal planets. Andoyer's expansion of the planetary disturbing function and von Zeipel's method of eliminating the periodic terms is employed; thereby, the corrected secular disturbing function for the planetary system is derived. An earlier solution suggested by Hill is based on Leverrier's equations for the variation of elements of Jupiter and Saturn and on the semi-empirical adjustment of the coefficients in the secular disturbing function. Nowadays there are several modern methods of eliminating periodic terms from the Hamiltonian and deriving a purely secular disturbing function. Von Zeipel's method is especially suitable. The conclusion is drawn that the canonicity of the equations for the secular variation of the heliocentric elements can be preserved if there be retained, in the secular disturbing function, terms only of the second and fourth order relative to the eccentricity and inclinations.The Krylov-Bogolubov method is suggested for eliminating periodic terms, if it is desired to include the secular perturbations of the fifth and higher order in the heliocentric elements. The additional part of the secular disturbing functionF 2 * derived in this paper can be included in existing theories of the secular effects of principal planets. A better approach would be to preserve the homogeneity of the theory and rederive all the secular perturbations of principal planets using Andoyer's symbolism, including the part produced by the great inequality.  相似文献   

11.
We investigate the dynamics of putative Earth-mass planets in the habitable zone (HZ) of the extrasolar planetary system OGLE-2006-BLG-109L, a close analogue of the Solar system. Our work is inspired by the work of Malhotra & Minton. Using the linear Laplace–Lagrange theory, they identified a strong secular resonance that may excite large eccentricity of orbits in the HZ. However, due to uncertain or unconstrained orbital parameters, the subsystem of Jupiters may be found in a dynamically active region of the phase space spanned by low-order mean-motion resonances. To generalize this secular model, we construct a semi-analytical averaging method in terms of the restricted problem. The secular orbits of large planets are approximated by numerically averaged osculating elements. They are used to calculate the mean orbits of terrestrial planets by means of a high-order analytic secular theory developed in our previous works. We found regions in the parameter space of the problem in which stable, quasi-circular orbits in the HZ are permitted. The excitation of eccentricity in the HZ strongly depends on the apsidal angle of jovian orbits. For some combinations of that angle, eccentricities and semimajor axes consistent with the observations, a terrestrial planet may survive in low eccentric orbits. We also study the effect of post-Newtonian gravity correction on the innermost secular resonance.  相似文献   

12.
The problem of diffuse reflection and transmission of solar radiation through a planetary atmosphere bounded from below by a reflecting surface is solved. The solution method based on rewriting the solution of the proposed problem in terms of the well known standard problem solution, where the planetary surface does not reflect. The solution of the standard problem can be found elsewhere or as we did by using the maximum entropy method. Numerical results for the angular radiation intensity and for the reflection and transmission coefficients are presented and compared with those obtained by Chandrasekhar's method.  相似文献   

13.
The Gauss-Newton method, and calculating a mass that minimizes the variation of residuals are standard techniques for determining planetary masses, but both may fail under certain circums tances. The Gauss-Newton method, in particular, may diverge, and when it converges may converge to a local, rather than global, minimum of the nonlinear regression problem. The simplex method of nonlinear optimization needs no initial estimate for the solution and can be made to converge to a global minimum. It may also be used with non-least squares criteria, such as the L1 criterion, for greater robustness. But the simplex method achieves these advantages at a high computational price. To test the method as a tool for dynamical astronomy, over 12,000 observations of Neptune were used to calculate Pluto's mass. From an initial estimate of 1/1, 812,000 the Gauss-Newton method diverged. The simplex method converged to a more satisfactory 1/22,000,000 with a range of 1/47,000,000 to 1/14,000,000 as indicated by the mean error. Because the simplex method is considerably slower than competing methods, it should be reserved for refractory problems that do not yield facil solutions when tackled by other methods.  相似文献   

14.
We use the global construction which was made in [6, 7] of the secular systems of the planar three-body problem, with regularized double inner collisions. These normal forms describe the slow deformations of the Keplerian ellipses which each of the bodies would describe if it underwent the universal attraction of only one fictitious other body. They are parametrized by the masses and the semi-major axes of the bodies and are completely integrable on a fixed transversally Cantor set of the parameter space. We study this global integrable dynamics reduced by the symmetry of rotation and determine its bifurcation diagram when the semi-major axes ratio is small enough. In particular it is shown that there are some new secular hyperbolic or elliptic singularities, some of which do not belong to the subset of aligned ellipses. The bifurcation diagram may be used to prove the existence of some new families of 2-, 3- or 4-frequency quasiperiodic motions in the planar three-body problem [7], as well as some drift orbits in the planar n-body problem [8].  相似文献   

15.
Circumstellar dust particles can be captured in a mean-motion resonance (MMR) with a planet and simultaneously be affected by non-gravitational effects. It is possible to describe the secular variations of a particle orbit in the MMR analytically using averaged resonant equations. We derive the averaged resonant equations from the equations of motion in near-canonical form. The secular variations of the particle orbit depending on the orientation of the orbit in space are taken into account. The averaged resonant equations can be derived/confirmed also from Lagrange’s planetary equations. We apply the derived theory to the case when the non-gravitational effects are the Poynting–Robertson effect, the radial stellar wind, and an interstellar wind. The analytical and numerical results obtained are in excellent agreement. We found that the types of orbits correspond to libration centers of the conservative problem. The averaged resonant equations can lead to a system of equations which holds for stationary points in a subset of resonant variables. Using this system we show analytically that for the considered non-gravitational effects, all stationary points should correspond to orbits which are stationary in interplanetary space after an averaging over a synodic period. In an exact resonance, the stationary orbits are stable. The stability is achieved by a periodic repetition of the evolution during the synodic period. Numerical solutions of this system show that there are no stationary orbits for either the exact or non-exact resonances.  相似文献   

16.
Over the last twenty years, the search for extrasolar planets has revealed the rich diversity of outcomes from the formation and evolution of planetary systems. In order to fully understand how these extrasolar planets came to be, however, the orbital and physical data we possess are not enough, and they need to be complemented with information about the composition of the exoplanets. Ground-based and space-based observations provided the first data on the atmospheric composition of a few extrasolar planets, but a larger and more detailed sample is required before we can fully take advantage of it. The primary goal of a dedicated space mission like the Exoplanet Characterization Observatory (EChO) proposal is to fill this gap and to expand the limited data we possess by performing a systematic survey of extrasolar planets. The full exploitation of the data that space-based and ground-based facilities will provide in the near future, however, requires knowledge about the sources and sinks of the chemical species and molecules that will be observed. Luckily, the study of the past history of the Solar System provides several indications about the effects of processes like migration, late accretion and secular impacts, and on the time they occur in the life of planetary systems. In this work we will review what is already known about the factors influencing the composition of planetary atmospheres, focusing on the case of gaseous giant planets, and what instead still need to be investigated.  相似文献   

17.
We investigate the secular dynamics of two-planet coplanar systems evolving under mutual gravitational interactions and dissipative forces. We consider two mechanisms responsible for the planetary migration: star-planet (or planet-satellite) tidal interactions and interactions of a planet with a gaseous disc. We show that each migration mechanism is characterized by a specific law of orbital angular momentum exchange. Calculating stationary solutions of the conservative secular problem and taking into account the orbital angular momentum leakage, we trace the evolutionary routes followed by the planet pairs during the migration process. This procedure allows us to recover the dynamical history of two-planet systems and constrain parameters of the involved physical processes.  相似文献   

18.
In the present paper the equations of the orbital motion of the major planets and the Moon and the equations of the three–axial rigid Earth’s rotation in Euler parameters are reduced to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth’s rotation) and the evolution of the Earth’s rotation (depending on the planetary and lunar evolution). Hence, the theory of the Earth’s rotation can be presented by means of the series in powers of the evolutionary variables with quasi-periodic coefficients with respect to the planetary–lunar mean longitudes. This form of the Earth’s rotation problem is compatible with the general planetary theory involving the separation of the short–period and long–period variables and avoiding the appearance of the non–physical secular terms.  相似文献   

19.
A spacecraft that generates an electrostatic charge on its surface in a planetary magnetic field will be subject to a perturbative Lorentz force. Active modulation of the surface charge can take advantage of this electromagnetic perturbation to modify or to do work on the spacecraft’s orbit. Lagrange’s planetary equations are derived using the Lorentz force as the perturbation on a Keplerian orbit, incorporating orbital inclination and true anomaly for the first time for an electrostatically charged vehicle. The planetary equations reveal that orbital inclination is a second-order effect on the perturbation, explaining results found in earlier studies through numerical integration. All of the orbital elements are coupled, but the coupling notably does not depend on the magnitude of the electrostatic charge or on the strength of the magnetic field. Analytical expressions that characterize this coupling are tested with a propellantless escape example at Jupiter. A closed-form solution exists that constrains the set of equatorial orbits for which planetary escape is possible, and a sufficient condition is identified for escape from inclined orbits. The analytical solutions agree with results from the numerically integrated equations of motion to within a fraction of a percent.  相似文献   

20.
An explicit symplectic integrator is constructed for the problem of a rotating planetary satellite on a Keplerian orbit. The spin vector is fixed perpendicularly to the orbital plane. The integrator is constructed according to the Wisdom-Holman approach: the Hamiltonian is separated in two parts so that one of them is multiplied by a small parameter. The parameter depends on the satellite’s shape or the eccentricity of its orbit. The leading part of the Hamiltonian for small eccentricity orbits is similar to the simple pendulum and hence integrable; the perturbation does not depend on angular momentum which implies a trivial ‘kick’ solution. In spite of the necessity to evaluate elliptic function at each step, the explicit symplectic integrator proves to be quite efficient. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号