首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary ?Detailed petrographic, electron microprobe and ion probe studies of Archaean hydromagmatic amphiboles from the Abitibi greenstone belt, Canada, yield new insights into the origin of Al-undepleted komatiitic and Al-depleted tholeiitic and ferropicritic melts. The amphiboles are present in peridotite layers and basal chill zones of thick differentiated basic and ultrabasic sills and flows, and are titanian pargasite–hastingsite in composition. They can be grouped into two petrographic types: (1) amphibole in the groundmass; and (2) amphibole-bearing melt inclusions. The groundmass amphiboles are oikocrysts, rims and interstitial grains, present in minor to major amounts. The oikocrysts host cumulus olivines (Fo83–84) that are rounded in shape, embayed, and smaller in size. The amphibole-bearing melt inclusions are hosted in cumulus olivines (Fo83–84 in komatiitic rocks and Fo79 in tholeiitic rocks), spherical to ovoid in shape, 50–500 μm in size, and dominated modally by amphibole. The melt inclusions also contain euhedral chromite and aluminous spinel and micrometric clinopyroxene and glass, and sub-micrometric iron–nickel sulphide, chloro-apatite and ilmenite. In-situ ion probe analyses indicate the amphibole is: (1) enriched in Nb, LREE and Zr and depleted in Sr and HREE relative to primitive mantle; (2) contains up to 1–3 wt% H2O; and (3) overall displays δD values from 50‰ to −140‰, including many values in the accepted magmatic range of −60‰ to −90‰. The petrographic relationships and geochemical compositions, and comparisons to experimental systems, indicate amphibole formation by subsolidus reaction of residual hydrous silicate melt with olivine and clinopyroxene. Some of the hydrous melt intruded and was entrapped as secondary melt inclusions within relict olivine. Rapid crystallization of the hydrous melt inclusions formed amphibole+clinopyroxene±glass±spinel or solely glass. Bulk compositions of the melt inclusions, comparisons to experimental phase equilibria, and presence of magmatic water suggest amphibole crystallisation from olivine → pyroxene residual melts with at least 2–3 wt% H2O during rapid solidification of the host units. Adjustment for anhydrous phase crystallization (mainly olivine) suggests the initial melts contained 1–2 wt% H2O. Such high H2O contents and the magmatic δD compositions are consistent with the participation of H2O in melt petrogenesis. However, most Abitibi komatiites and tholeiites lack hydromagmatic minerals, making it difficult to attribute all basic and ultrabasic melts to melting in hydrous Archaean mantle. The favoured model is that some Abitibi basic and ultrabasic melts were wet and some were dry, as well as Al-depleted or Al-undepleted. Received July 24, 2001; revised version accepted January 9, 2002  相似文献   

2.
Summary ?This work examines the luminescence of zircon studied by laser-induced time-resolved methods. This method allows the differentiation between luminescence centers of similar emission wavelengths, but different decay times. Samples include a suite of natural zircons, nominally pure synthetic ZrSiO4, and ZrSiO4 artificially doped by Mn, Fe, Cr, Ni, Co, Pb, Sb, Ti, Ta, V, Sc, U, U-P, and Th-P. In addition, pure ZrSiO4 samples irradiated by thermal neutrons have been studied. We have clarified the nature of several luminescence bands reported previously from time independent studies, and suggest the following as the causes of luminescence in zircon systems: 1) the yellow band with peak wavelength (λmax) = 575 nm, peak half-width (Δ) = 120–130 nm, and decay time (τ) = 30–35 μs is connected with neutron and alpha irradiation, 2) the green band with λmax = 505 nm and vibrational structure is linked to the presence of the uranyl ion, but it is only observed in artificial samples with co-doping by U and P, 3) the red band with λmax = 750 nm, Δ = 110–120 nm and τ = 3–5 ms is connected with Fe3+. We have also identified new luminescence bands, obscured by stronger emissions. These are: emission a) with λmax = 480 nm, Δ = 70–80 nm and τ = 300–325 μs, emission b) with λmax = 515 nm, Δ = 90–100 nm and τ = 500–520 μs, emission c) with λmax = 605 nm, Δ = 110–125 nm and τ = 8–10 μs. These emissions have not been detected in synthetic doped zircons and their interpretation remains the subject of further investigation. Received November 16, 2001; revised version accepted March 15, 2002  相似文献   

3.
Summary The coexistence of a colourless and a yellow garnet was observed in eclogite-facies manganese concentrations of the Mesozoic ophiolitic Zermatt-Saas Unit, at the Praborna mine near Saint-Marcel, Val d’Aoste, Italy, and in the upper Maurienne Valley, France. They occur both in oxidised metachert with hematite and braunite (+ minor Mn-pyroxenoid and tirodite, rare tiragalloite; with ardennite or piemontite in distinct layers), and in more reduced, carbonate-rich boudins included in it. The co-occurrence takes a variety of textural aspects, from coexisting euhedral garnets (10–100 μm in size for the calderite to mm-size for spessartine) to sharp overgrowths of yellow calderitic garnet on colourless spessartine, to yellow cauliflower-like masses (a few hundreds of μm in size) overgrowing colourless spessartine and showing evidence of oscillatory zoning, resorption stages and resumed growth. Sector zoning and anisotropy are common, although not consistent features. Compositions can be expressed to 95% in the quadrilateral system (Ca, Mn2+)3 (Al, Fe3+)2 Si3O12, with less than 1.0 wt% MgO and 0.8 wt% TiO2 in colourless spessartine, and less than 0.2 wt% MgO and 1.6 wt% TiO2 in yellow garnet. Calcium partitions into the ferric garnet. Coexisting pairs define two compositional gaps, bounded by values of the Fe3+/(Al + Fe3+) ratio of 10 and 15% for the first one, of 40 and 65% for the other. The optically obvious discontinuity (colour change and Becke’s line) corresponds to the narrower gap, between colourless spessartine and yellow spessartine, whereas the broad compositional gap occurs within yellow garnet, between yellow spessartine and yellow calderite, and is only revealed by back-scattered electron images. Only the latter can be a candidate for a miscibility gap, if any. Present address: Centre de Géochimie de la Surface – EOST, 1 rue Blessig, 67083 Strasbourg Cedex, France  相似文献   

4.
Trace elements and rare earth elements (REE) of the sulfide minerals were determined by inductively-coupled plasma mass spectrometry. The results indicate that V, Cu, Sn, Ga, Cd, In, and Se are concentrated in sphalerite, Sb, As, Ge, and Tl are concentrated in galena, and almost all trace elements in pyrite are low. The Ga and Cd contents in the light-yellow sphalerites are higher than that in the brown and the black sphalerites. The contents of Ge, Tl, In, and Se in brown sphalerites are higher than that in light-yellow sphalerites and black sphalerites. It shows that REE concentrations are higher in pyrite than in sphalerite, and galena. In sphalerites, the REE concentration decreases from light-yellow sphalerites, brown sphalerites, to black sphalerites. The ratios of Ga/In are more than 10, and Co/Ni are less than 1 in the studied sphalerites and pyrites, respectively, indicating that the genesis of the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis associated with hydrothermal genesis. The relationship between LnGa and LnIn in sphalerite, and between LnBi and LnSb in galena, indicates that the Tianqiao Pb–Zn ore deposit might belong to sedimentary-reformed genesis. Based on the chondrite-normalized REE patterns, δEu is a negative anomaly (0.13–0.88), and δCe does not show obvious anomaly (0.88–1.31); all the samples have low total REE concentrations (<3 ppm) and a wide range of light rare earth element/high rare earth element ratios (1.12–12.35). These results indicate that the ore-forming fluids occur under a reducing environment. Comparison REE compositions and parameters of sphalerites, galenas, pyrites, ores, altered dolostone rocks, strata carbonates, and the pyrite from Lower Carboniferous Datang Formation showed that the ore-forming fluids might come from polycomponent systems, that is, different chronostratigraphic units could make an important contribution to the ore-forming fluids. Combined with the tectonic setting and previous isotopic geochemistry evidence, we conclude that the ore-deposit genesis is hydrothermal, sedimentary reformed, with multisources characteristics of ore-forming fluids.  相似文献   

5.
Olivine in spinel peridotite xenoliths from the Bismarck Archipelago northeast of Papua New Guinea, which were transported to the surface by Quaternary basalts, shows spinel inclusions up to 25 μm long and 200 nm wide. These inclusions mainly occur as inhomogeneously distributed needles and subordinately as octahedral grains in olivine of veined metasomatic peridotites as well as peridotites without obvious metasomatism. The needles very often occur in swarms with irregular spacing in between them. Similar spinel inclusions in olivine have only previously been reported from ultramafites of meteoritic origin. Composition and orientation of the spinel inclusions were determined by transmission electron microscopy (TEM) and analytical electron microscopy (AEM). Both the needles and the grains display a uniform crystallographic orientation in the host olivine with [001]O1//[1ˉ10]Spl and (100)Ol// (111)Spl. The needles eare elongated parallel [010] in olivine, which is the same in all olivine grains. As these needles have no relation to the metasomatic sections in the peridotite, it is concluded that they are primary features of the rock. Although the composition of the spinel needles is often very similar to the large chromian spinel octahedra in the matrix, the small octahedral spinel inclusions in olivine are in part Mg-rich aluminous spinel and sometimes almost pure magnetite. The spinel needles are suggested to have formed by exsolution processes during cooling of Al- and Cr-rich, high-temperature olivine during the initial formation of the lithospheric mantle at the mid-ocean ridge. The Al-rich spinel octahedra probably formed by the breakdown of an Al-rich phase such as phlogopite or by metasomatism, whereas the magnetite was generated by oxidizing fluids. These oxidizing fluids may either have been set free by dehydration of the underlying, subducted plate or by the Quaternary magmatism responsible for the transport of the xenoliths to the seafloor. Received: 25 May 2000 / Accepted: 12 July 2000  相似文献   

6.
Summary We have undertaken a detailed study of platinum group element (PGE) mineralogy and geochemistry of disseminated sulfides associated with the marginal zone of the Chineisky layered mafic intrusion. Towards an intrusive contact the marginal zone reveals a gradual progression from gabbro-gabbronorites towards monzodiorite. Sulfides occur in all the rocks of the marginal zone including exocontact sandstone. They occur mainly as pyrrhotite, chalcopyrite, and pentlandite and show progressive enrichment in Cu towards the intrusive contact. In the same direction, PGE mineralogy reveals the following systematic changes: (1) size of PGE mineral grains decreases from 50 μm up to 1 μm; (2) the association of Pd minerals with Ni and Co arsenide and sulfarsenides becomes stronger; and (3) the composition of PGE minerals changes for palladium: Pd-Sn → Pd-As → Pd-Sb → Pd-Te → Pd-Bi; for platinum: Pt-Fe + PtAs2 → PtS + PtAs2 → PtAs2. This zoning pattern is interpreted as the result of fractional crystallization of an immiscible sulfide melt, with the residual liquid, enriched in Cu, PGE, and volatile elements, being expelled towards the periphery of the intrusive body. PGE minerals also decompose in an oxidation zone. The most stable of them are paolovite and sperrylite, which both accumulated in placers derived from the massif. Pd is removed from the decomposed minerals, and then absorbed by brown iron and goethite in the oxidation zone. Author’s address: Nadezhda Tolstykh, Institute of Geology and Mineralogy SB RUS, pr. Ak. Koptyga 3, Novosibirsk 630090, Russia  相似文献   

7.
The Shitoukengde Ni-Cu deposit, located in the Eastern Kunlun Orogen, comprises three mafic–ultramafic complexes, with the No. I complex hosting six Ni-Cu orebodies found recently. The deposit is hosted in the small ultramafic bodies intruding Proterozoic metamorphic rocks. Complexes at Shitoukengde contain all kinds of mafic-ultramafic rocks, and olivine websterite and pyroxene peridotite are the most important Ni-Cu-hosted rocks. Zircon U-Pb dating suggests that the Shitoukengde Ni-Cu deposit formed in late Silurian(426–422 Ma), and their zircons have εHf(t) values of-9.4 to 5.9 with the older T_(DM1) ages(0.80–1.42 Ga). Mafic-ultramafic rocks from the No. I complex show the similar rare earth and trace element patterns, which are enriched in light rare earth elements and large ion lithophile elements(e.g., K, Rb, Th) and depleted in heavy rare earth elements and high field strength elements(e.g., Ta, Nb, Zr, Ti). Sulfides from the deposit have the slightly higher δ~(34)S values of 1.9–4.3‰ than the mantle(0 ± 2‰). The major and trace element characteristics, and Sr-Nd-Pb and Hf, S isotopes indicate that their parental magmas originated from a metasomatised, asthenospheric mantle source which had previously been modified by subduction-related fluids, and experienced significant crustal contamination both in the magma chamber and during ascent triggering S oversaturation by addition of S and Si, that resulted in the deposition and enrichment of sulfides. Combined with the tectonic evolution, we suggest that the Shitoukengde Ni-Cu deposit formed in the post-collisional, extensional regime related to the subducted oceanic slab break-off after the Wanbaogou oceanic basalt plateau collaged northward to the Qaidam Block in late Silurian.  相似文献   

8.
A statistical study of motions of images of distant extragalactic sources, such as quasars on the celestial sphere, due to the action of weak gravitational microlensing is presented. It was assumed that the parallax of the lens was 10 milliarcseconds (mas), the mass of the lens was 1 M , and the proper motion was μ = 30 mas. The initial point for the motion of the lens (a star in our Galaxy) was taken to be the boundary of a region with a radius of ϑ = 100 mas and its center coincident with the distant source. The simulations for each trajectory were carried out in steps, with the time step being 0.1 year. The number of sources “launched” over the computational period was 5000. The appearance of the trajectories for the source images is presented; 57% of the total number of sources that participated in the simulations showed motions of 0.7–1.0 mas. Original Russian Text ? T.A. Kalinina, M.S. Pshirkov, 2006, published in Astronomicheskiĭ Zhurnal, 2006, Vol. 83, No. 6, pp. 483–488.  相似文献   

9.
The angles of the magnetic moment μ and the line of sight L to the rotation axis Ω are estimated for the pulsar PSR B1921+24, which displays “on” and “off” periods in its radio emission. It is shown that this object is an orthogonal rotator, i.e., the angle β between μ and Ω is equal to 88°.2 and the angle between L and Ω is ζ = 98.7°, and that its rotation period should be twice the usually adopted value (P = 1.626 s). One possible reason for the peculiarities of this pulsar could be the precession of a relic disk in the equatorial region of the object. Further observations (in particular, in the infrared) are required to confirm the existence of such a disk. Polarization data for other pulsars whose radiation switches on and off (transients) are also required, to determine if they are likewise orthogonal rotators. Calculations for PSR B0656+14 show that β ∼ 20°, and the sharp increase of its pulse intensities is due to intrinsic reasons, and is not associated with a relic disk. Original Russian Text ? I.F. Malov, 2007, published in Astronomicheskiĭ Zhurnal, 2007, Vol. 84, No. 6, pp. 531–535.  相似文献   

10.
Summary Garavellite, FeSbBiS4, was found in a sample of the mineralogical collection of the Natural History Museum of the University of Florence. The sample is from the Cu–Fe deposit of Caspari, Saverland, North Rhine-Westphalia, Germany. Garavellite occurs as very rare, elongated prismatic crystals up to 100 μm in length, spatially associated with large berthierite crystals, bismuthinite, chalcopyrite, and siderite. It does not contain inclusions of or intergrowths with other minerals. Macroscopically garavellite is grey in colour and shows a grey-black streak. The Vickers hardness (VHN50) is 206 kg/mm2. In plane-polarized incident light garavellite is grey in colour, with distinct bireflectance. Reflectance percentages for Rmin and Rmax are 33.8, 41.8 (471.1 nm), 33.3, 40.9 (548.3 nm), 32.7, 39.5 (586.6 nm), and 32.4, 38.8 (652.3 nm), respectively. Garavellite is orthorhombic, space group Pnam, with the following unit-cell parameters: a = 11.413(1) ?, b = 14.164(1) ?, c = 3.759(1) ?, V = 607.7(2) ?3, and Z = 4. Electron microprobe analyses give the chemical formula Fe0.94Cu0.01As0.01Sb1.02Bi0.99S4.03. The crystal structure has been solved and refined to R = 2.38%. It consists of FeS6 octahedra forming edge-sharing chains parallel to [001] with the Sb3+ and Bi3+ cations inserted between the chains. The crystal-chemical relationships with berthierite as well as the different lone-pair stereochemical activities of antimony and bismuth in the two structures are discussed.  相似文献   

11.
High-pressure(HP)or ultrahigh-pressure(UHP)rutile-quartz veins that form at mantle depths due to fluid-rock interaction can be used to trace the properties and behavior of natural fluids in subduction zones.To explore the fluid flow and the associated element mobility during deep subduction and exhumation of the continental crust,we investigated the major and trace elements of Ti-rich minerals.Additionally,U–Pb dating,trace element contents,and Lu–Hf isotopic composition of zircon grains in the UHP eclogite and associated rutile-quartz veins were examined in the North Qaidam UHP metamorphic belt,Yuka terrane.The zircon grains in the rutile-quartz veins have unzoned or weak oscillatory zonings,and show low Th/U ratios,steep chondrite-normalized patterns of heavy rare earth elements(HREEs),and insignificant negative Eu anomalies,indicating their growth in metamorphic fluids.These zircon grains formed in 4313 Ma,which is consistent with the 4322 Ma age of the host eclogite.As for the zircons in the rutile-quartz veins,they showed steep HREE patterns on one hand,and were different from the zircons present in the host eclogite on the other.This demonstrates that their formation might have been related to the breakdown of the early stage of garnet,which corresponds to the abundance of fluids during the early exhumation stage.The core-rim profile analyses of rutile recorded a two-stage rutile growth across a large rutile grain;the rutile core has higher Nb,Ta,W,and Zr contents and lower Nb/Ta ratios than the rim,indicating that the rutile domains grew in different metamorphic fluids from the core towards the rim.The significant enrichment of high field strength elements(HFSEs)in the rutile core suggests that the peak fluids have high solubility and transportation capacity of these HFSEs.Furthermore,variations in the Nb vs.Cr trends in rutile indicate a connection of rutile to mafic protolith.The zircon grains from both the rutile-quartz veins and the host eclogite have similar Hf isotopic compositions,indicating that the vein-forming fluids are internally derived from the host eclogite.These fluids accumulated in the subduction channel and were triggered by local dehydration of the deeply subducted eclogite during the early exhumation conditions.  相似文献   

12.
Summary Gold mineralization occurs in the Şoimuş Ilii vein, the main Cu prospect in the Highiş Massif, Western Apuseni Mts., Romania. The Highiş Massif is part of the Highiş Biharia Shear Zone, a 320–300 Ma Variscan greenschist belt, with a 114–100 Ma Alpine overprint. In Highiş, phyllonites enclose an igneous core consisting of an Early Permian basic complex intruded by Middle Permian granitoids. The vein is hosted within basalt hornfels at its contact with the 264 Ma Jernova granite. Gold is not only present as native gold, but also as jonassonite (ideally AuBi5S4). The latter occurs as inclusions 1–30 μm in size in chalcopyrite; microanalysis gives the empirical formulae Au1.02(Pb0.47Bi4.51)4.98S4. The two Au minerals are spatially associated with Bi–(Pb) sulfosalts (oversubstituted bismuthinite, cosalite) and sulfotellurides/selenides (ingodite, ikunolite and laitakarite) in blebs/patches, mainly hosted in chalcopyrite. This Au–Bi–Te association overprints an earlier, chalcopyrite-quartz assemblage, occurring as trails along discrete zones of brecciation that crosscut former mineral boundaries. Curvilinear and cuspate boundary textures within the blebs/patches suggest deposition in a molten form. Mineral associations in combination with phase relations indicate that the Au–Bi–Te association formed as a result of melting of pre-existing native Bi (and possibly sulfosalts) at 400 °C under sulfidation conditions. These melts incorporated Au, Pb, Te and S as they moved in the vein during shearing and were locked within dilational sites. Native Bi occurs as coarse aggregates along vein margins, but in the Au–Bi–Te association, it is present only as small droplets in shear gashes, never together with other Bi- and Au-minerals. The Bi-derived melts are part of an internal remobilizate which also includes chlorite and adularia. Minerals in the system Au–Bi–Te were deposited from a neutral low reducing fluid during Alpine shearing in the Early Cretaceous. The fluid also assisted solid-state mobilisation of chalcopyrite and cobaltite. This study illustrates the significant potential of Bi, a low melting-point chalcophile element (LMCE), to act as Au scavenger at temperatures as low as 400 °C.  相似文献   

13.
Rare earth element compositions of Lower Ordovician dolomites in the Central and Northern Tarim Basin are studied. Most dolomite samples are more or less contaminated by clay minerals. Their rare earth element compositions have been consequently changed, showing both seawater-like and non-seawater-like features. The clay contamination should be disposed before the REE data are used. Through ICP-MS and ICP-AES analyses, the REE features are well documented. The clay contamination is quantitatively determined by microscopic investigation, trace elements and REE contents. The dolomites, at least in the Tarim Basin, are thought to be pure when their total LREE contents are less than 3×10^-6. Through comparison, the pure dolomites show similarities in REE patterns but differences in REE contents with co-existing pure limestone, which indicates that dolomitization may slightly change the REE compositions. Nevertheless, whatever the change is, the pure dolomites may act as a potential REE proxy for Ordovician seawater, which would be significant for ancient massive dolomite strata that lack limestone.  相似文献   

14.
REE and other trace elements in the altered marbles, massive skarns and ores, as well as garnet and quartz were determined in order to examine the behaviors of trace elements during hydrothermal alteration. It is demonstrated that the high-field-strength (HFS) elements Zr, Hf, Th and Nb were immobile while other trace elements were mobile during the formation of skarns and related deposits. REE and ore-forming elements such as Cu and Ag in hydrothermally-altered marbles and skarns were provided primarily by hydrothermal fluids. In the direction transverse of the strata, the more deeply the marbles were altered, the higher the total REE abundance and the larger the negative Eu anomalies would be. The chondrite-normalized REE patterns of skarns are similar to those of the marbles, but the former are distinguished by much higher REE contents and more remarkable negative Eu anomalies. Those patterns were apparently not inherited from the marble protolith, but were controlled by garnets, which were determine  相似文献   

15.
Summary Dolomitic marbles from the Organi and Pandrosos areas of the ultrahigh-pressure (UHP) metamorphic Kimi complex in East Rhodope, N.E. Greece have the mineral assemblage: Cal + Dol + Ol + Phl ± Di ± Hbl ± Spl ± Ti–Chu + retrograde Srp and Chl. Several generations of calcite and dolomite with variable composition and texture represent different stages of the PT evolution: The first stage is represented by matrix dolomite ( = 0.48) and relic domains of homogenous composition in matrix calcite ( = 0.11–0.13); the second stage is evident from precipitation of lath-shaped and vermicular dolomite in matrix calcite. The third stage is represented by veinlets of almost pure CaCO3 and domainal replacement of prior calcite by nearly pure CaCO3 + Ca-rich dolomite ( = 0.34–0.43). Matrix dolomite adjacent to CaCO3 veinlets also becomes Ca-rich ( = 0.42). In fact, Ca-rich dolomites with in the range of 0.40–0.34 are reported for the first time from metamorphic marbles. Coexisting Ca-rich dolomite and Mg-poor calcite cannot be explained by the calcite-dolomite miscibility gap. This assemblage rather suggests that Mg-poor calcite was aragonite originally, which formed together with Ca-rich dolomite according to the reaction Mg–Cal → Arg + Dol (1) at ultrahigh pressures and temperatures above at least 850 °C, when dolomite becomes disordered and incorporates more Ca than coexisting aragonite does in terms of Mg. The simplest explanation of these observations probably is to suggest two metamorphic events: The first one represented by relic matrix carbonates at relatively low to moderate pressures and temperatures of ca. 750 °C, and the second one limited by the minimum temperatures for dolomite disorder (ca. 850 °C) and in the aragonite + dolomite stability field, i.e. at a minimum pressure of 3 GPa and, if the presence of diamond-bearing metapelites nearby is considered, at conditions of at least 850 °C and 4.3 GPa in the diamond stability field. As there is hardly any back-reaction of Ca-rich dolomite + Mg-poor calcite to Mg-rich calcite, peak temperatures remained below the reaction (1) and the exhumation path probably crossed the aragonite-calcite transition at much lower than peak temperature. Cooling and decompression must have both occurred extremely fast in order for the μm-sized Ca-rich dolomite textures to be preserved. An alternative explanation of the formation of “UHP”-textures and compositions is by a fluid influx that not only caused serpentinisation and chloritisation of silicates but also Mg-leaching from carbonates, particularly from Mg-rich calcite and its fine grained dolomite-precipitates, thus transforming them into Mg-poor calcite + Ca-rich dolomite.  相似文献   

16.
Zusammenfassung „Grob entmischte“ Peristerit-Plagioklase aus Biotit-Muskowit-Epidot-Gneisen der Zillertaler Alpen (Tirol/?sterreich) wurden mit optischen Methoden (Phasenkontrast- und Interferenzmikroskopie) untersucht. Die entmischten, lamellar oder ellipsoidisch gestalteten Dom?nen bestehen aus Albit (An 0–5). Sie sind in (0–81) der Matrix aus Oligoklas (An 17–25) angeordnet. Die L?nge der entmischten Dom?nen erreicht in Kornschnitten senkrecht [100] maximal 10–15 μ, ihre Breite h?chstens 1 μ.
Peristerite Plagioclases of Gneisses from the Zillertaler Alps (Tirol, Austria)
“Coarse exsolved” peristerite plagioclases of biotite-muscovite-epidote-gneisses from the Zillertaler Alps (Tirol, Austria) have been investigated by optical methods (phase-contrast and interference microscopy). The exsolved domains consist of albite (An 0–5). They are orientated in the (0–81) face of the oligoclase-matrix (An 17–25). The shape of the albite-domains is ellipsoidic or laminar. Their length measured in the plane normal to [100] is ≦10–15 μ, their width ≦ 1 μ.
  相似文献   

17.
The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framework and evolution of the eastern Paleo-Asian Ocean,particularly with respect to its final-stage subduction and closure time.To address these questions,this study presents petrological,zircon U-Pb geochronological,whole-rock geochemical and in situ zircon Hf isotopic data for these Permian mafic intrusions in the northern margin of the NCC.Precise zircon U-Pb dating results indicate that these mafic intrusions were emplaced in the Middle Permian(ca.260 Ma).Geochemically,the studied mafic intrusions have high MgO and transition metals element contents,with high Mg# values,indicating a mantle origin.These mafic intrusions are characterized by enrichments in large ion lithophile elements(LILEs;e.g.,Rb,Ba,and K)and light rare earth elements(LREEs),and depletions in high field strength elements(HFSEs;e.g.,Nb,Ta,and Ti)and heavy rare earth elements(HREEs),indicating that they were formed in a subduction-related setting.These geochemical features,together with zircon εHf(t)values(-1.1 to+11.2),indicate that their parental magmas were derived from partial melting of heterogeneous mantle wedge metasomatized by subduction-related fluids,with the contributions of slab sediments.The studied mafic intrusions also show wide range of major and trace elements contents,and variable Mg# values,Eu and Sr anomalies,suggesting that their parental magmas had undergone variable degrees of fractional crystallization.Together with the E-W trending Permian continental arc along the northern margin of the NCC,we confirm that the generation of the Middle Permian mafic intrusions was related to southward subduction of the Paleo-Asian oceanic lithosphere beneath the NCC and the Paleo-Asian Ocean had not closed prior to the Middle Permian.  相似文献   

18.
Summary Podiform chromitite bodies occur in serpentinites at Tehuitzingo (Acatlán complex, southern Mexico). Serpentinite and chromitite are believed to represent a fragment of Paleozoic ophiolitic mantle formed in a supra-subduction zone setting. The ophiolitic mantle sequence is associated with eclogitic rocks, enclosed in a metasedimentary sequence. This association suggests that serpentinites, chromitites and eclogitic rocks underwent a common metamorphic evolution, starting from high pressure (eclogite facies) followed by retrogression (epidote-amphibolite and greenschist facies). The chromitites are strongly altered so that chromite grains are transformed to ferrian chromite; no primary silicates (i.e. of magmatic origin) have been preserved. The chromitites are Al-rich, and contain up to 303 ppb platinum group elements (PGE), with a marked predominance of Os + Ir + Ru over Rh + Pd + Pt, resulting in a characteristic negative-slope of the chondrite-normalized PGE pattern. Consistent with the geochemical data the platinum group minerals (PGM) assemblage is dominated by Ru–Os–Ir minerals, occurring both as single-phase or as composite grains generally less than 10 μm in size. The PGM mineralogy includes laurite, osmium, irarsite and Ru–Fe oxide or hydroxide. Based on textural relations, paragenesis and composition, it was possible to establish that Os-rich laurite and irarsite were early liquidus phases, which now occur as inclusions in unaltered chromite. However, most of the PGM are found in the alteration assemblages of the chromitites in close association with ferrian chromite, chlorite, and heazlewoodite. Laurite from the secondary assemblage is Os-poor and commonly shows overgrowths of Os–Ir alloys. Internal zoning of some laurite grains indicates that Os-poor laurite formed from a Os-rich laurite by release of Os and some Ir, that are readily incorporated in the Os–Ir alloys. Such process requires a decrease of sulfur fugacity with decreasing temperature; this is not consistent with the fS2-T trend in magmatic systems. It is proposed, therefore, that the magmatic PGM assemblage underwent mineralogical reworking starting from relatively high temperature during metamorphism. Temperatures, estimated from chlorite geothermometry (399–210 °C), possibly reflect effects of low-grade metamorphism. After that the PGM and the associated sulfides started to be oxidized. Although it is difficult to determine the extent of PGE mobilization on the basis of mineralogical observations, our data suggest that the metamorphism affecting the Tehuitzingo chromitites caused only re-distribution of PGE on a small scale. Thus, we conclude that metamorphism modified the primary PGM assemblage without having changed the whole-rock PGE concentration.  相似文献   

19.
In the Triassic marine sediments, an obvious enrichment of lithium has been found. The source and enrichment mechanism of lithium is unknown. Here, we report trace and rare earth element and isotope analyses for Triassic sedimentary samples from core ZK601, recovered from the Huangjinkou anticline in the Xuanhan basin. Lithium concentrations from the Leikoupo and Jialingjiang formations are much higher than the average concentrations in the crust of eastern China and in other marine sediments. Lithium concentrations are highest at depths of 3300–3360 m (in argillaceous marine sediments), and Li is positively correlated with Rb, Ga, Zr, Nb and other trace elements. The range of δ7Li values in our samples is consistent with that in other Triassic marine carbonate rocks. Lithium concentrations and isotope ratios are negatively correlated in the argillaceous dolomite samples at depths of 3300–3360 m. We compared the results in this study with trace and rare earth elements in the clay from Sichuan and Chongqing, and propose that the clay in the argillaceous marine evaporites from Huangjinkou formed via the hydrolysis of volcanic ash during Early–Middle Triassic volcanic eruptions into brine basins, during which clay adsorbed Li from the brine and formed Li-rich argillaceous dolomites. The addition and hydrolysis of volcanic ash in the evaporative brine is also related to the formation of a new type of polyhalite.  相似文献   

20.
The Alxa region, located in the southernmost part of Central Asian Orogenic Belt, is a key region for understanding the tectonic processes associated with the closure of the Paleo-Asian Ocean. Issues of late Paleozoic tectonic settings and tectonic unit divisions of the Alxa region still remain controversial. In this study, we report a new ophiolitic mélange named the Tepai ophiolitic mélange in the northern Alxa region, northwest of Alxa Youqi. The tectonic blocks in the Tepai ophiolitic mélange are mainly composed of serpentinized peridotites, serpentinites, mylonitized gabbros, gabbros, basalts, and quartzites, with a matrix comprising highly deformed clastic rocks. A gabbro exhibits a zircon LA-ICP-MS Ue Pb age of278.4 ± 3.3 Ma. Gabbros exhibit high Mg O and compatible element contents, but extremely low TiO_2,totally rare earth element and high field strength element contents. These rocks exhibit light rare earth element depleted patterns, and display enriched in large-ion lithophile elements and depleted in high field strength elements. Boninite-like geochemical data show that they were formed in a subductionrelated environment, and derived from an extremely depleted mantle source infiltrated by subduction-derived fluids and/or melts. The Tepai ophiolitic mélange exhibits similar zircon U-Pb-O isotopic compositions and whole-rock geochemical characteristics to those of the Quagan Qulu ophiolite.Therefore, we propose that the Tepai ophiolitic mélange may have been the western continuation of the Quagan Qulu ophiolite. Our new finding proves the final closure of the Paleo-Asian Ocean might have taken place later than the early Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号