首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper is interested in the hydro‐mechanical behaviour of an underground cavity abandoned at the end of its service life. It is an extension of a previous study that accounted for a poro‐elastic behaviour of the rock mass (Int. J. Comput. Geomech. 2007; DOI: 10.1016/j.compgeo.2007.11.003 ). Deterioration of the lining support with time leads to the transfer of the loading from the exterior massif to the interior backfill. The in situ material has a poro‐visco‐elastic constitutive behaviour while the backfill is poro‐elastic, both saturated with water. This loading transfer is accompanied by an inward cavity convergence, thereby compressing the backfill, and induces an outward water flow. This leads to a complex space–time evolution of pore pressures, displacements and stresses, which is not always intuitive. In its general setting, a semi‐explicit solution to this problem is developed, using Laplace transform, the inversion being performed numerically. Analytical inversion leading to a quasi‐explicit solution in the time domain is possible by identifying the characteristic creep and relaxation times of volumetric strains with those of the deviatoric strains, on the basis of a parametric study. A few numerical examples are given to illustrate the hydro‐mechanical behaviour of the cavity and highlight the influence of key parameters (e.g. stiffness of backfill, lining deterioration rate, etc.). Further studies accounting for more general material behaviours for the backfill and external ground are ongoing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This study investigates the effect of a heat‐treatment upon the thermo‐mechanical behaviour of a model cement‐based material, i.e. a normalized mortar, with a (w/c) ratio of 0.5. First, a whole set of varied experimental results is provided, in order to either identify or validate a thermo‐mechanical constitutive model, presented in the second paper part. Experimental responses of both hydraulic and mechanical behaviour are given after different heating/cooling cycling levels (105, 200, 300, 400°C). The reference state, used for comparison purposes, is taken after mass stabilization at 60°C. Typical uniaxial compression tests are provided, and original triaxial deviatoric compressive test responses are also given. Hydraulic behaviour is identified simultaneously to triaxial deviatoric compressive loading through gas permeability Kgas assessment. Kgas is well correlated with volumetric strain evolution: gas permeability increases hugely when εv testifies of a dilatant material behaviour, instead of contractile from the test start. Finally, the thermo‐mechanical model, based on a thermodynamics approach, is identified using the experimental results on uniaxial and triaxial deviatoric compression. It is also positively validated at residual state for triaxial deviatoric compression, but also by using a different stress path in lateral extension, which is at the origin of noticeable plasticity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The instantaneous response of saturated low permeability grounds to tunnel excavation is important for deformations and stability close to the tunnel face. It is characterized by zero volume change in combination with the development of excess pore pressures. In tunnelling through poor quality ground under great depth of cover and high in situ pore pressure, heavily squeezing conditions (characterized by very large convergences) may occur soon after excavation. This paper presents exact finite strain analytical solutions for the undrained ground response around cylindrical and spherical openings that are unloaded from uniform and isotropic initial stress states, on the basis of the Modified Cam Clay (MCC) model and the Mohr–Coulomb (MC) model. The solution for a Drucker–Prager material is also given as it requires only a very small modification to the MC solution. The so‐called ground response curve, that is, the relationship between the support pressure and the cavity wall displacement, is derived in closed form for the MC model. The solution for the MCC problem is semi‐analytical in that it uses the trapezium rule for the computation of a definite integral. The influence of the significant parameters of the problem on the predicted deformation behaviour is shown by means of dimensionless charts. Finally, the practical usefulness of the solutions presented is illustrated by applying them to the breccia zones of the planned Gibraltar Strait tunnel – an extreme case of weak, low permeability ground under high pore pressure. The solutions can serve as a trustworthy benchmark for numerical procedures that incorporate material and geometric nonlinearities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A numerical model is presented to describe the evolution of fracture aperture (and related permeability) mediated by the competing chemical processes of pressure solution and free‐face dissolution/precipitation; pressure (dis)solution and precipitation effect net‐reduction in aperture and free‐face dissolution effects net‐increase. These processes are incorporated to examine coupled thermo‐hydro‐mechano‐chemo responses during a flow‐through experiment, and applied to reckon the effect of forced fluid injection within rock fractures at geothermal and petroleum sites. The model accommodates advection‐dominant transport systems by employing the Lagrangian–Eulerian method. This enables changes in aperture and solute concentration within a fracture to be followed with time for arbitrary driving effective stresses, fluid and rock temperatures, and fluid flow rates. This allows a systematic evaluation of evolving linked mechanical and chemical processes. Changes in fracture aperture and solute concentration tracked within a well‐constrained flow‐through test completed on a natural fracture in novaculite (Earth Planet. Sci. Lett. 2006, in press) are compared with the distributed parameter model. These results show relatively good agreement, excepting an enigmatic abrupt reduction in fracture aperture in the early experimental period, suggesting that other mechanisms such as mechanical creep and clogging induced by unanticipated local precipitation need to be quantified and incorporated. The model is applied to examine the evolution in fracture permeability for different inlet conditions, including localized (rather than distributed) injection. Predictions show the evolution of preferential flow paths driven by dissolution, and also define the sense of permeability evolution at field scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Selected gas pulse tests on initially saturated claystone samples under isotropic confinement pressure are simulated using a 3D thermo‐hydro‐mechanical code. The constitutive model considers the hydro‐mechanical anisotropy of argillaceous rocks. A cross‐anisotropic linear elastic law is adopted for the mechanical behaviour. Elements for a proper modelling of gas flow along preferential paths include an embedded fracture permeability model. Rock permeability and its retention curve depend on strains through a fracture aperture. The hydraulic and mechanical behaviours have a common anisotropic structure. Small‐scale heterogeneity is considered to enhance the initiation of flow through preferential paths, following the direction of the bedding planes. The numerical simulations were performed considering two different bedding orientations, parallel and normal to the imposed flow in the test. Simulations are in agreement with recorded upstream and downstream pressures in the tests. The evolution of fluid pressures, degree of saturation, element permeability and stress paths are presented for each case analysed. This information provides a good insight into the mechanisms of gas transport. Different flow patterns are obtained depending on bedding orientation, and the results provide an explanation for the results obtained in the tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A significant increase of the permeability of concrete upon micro‐cracking and a good correlation between the evolution of damage (material stiffness) and permeability are observed experimentally. The present contribution investigates this correlation theoretically, with the help of lattice analyses. Scaling analysis of lattices which contain elastic brittle bonds has shown that the material degradation should be described by the evolution of the material stiffness, or compliance, in a continuum setting (damage models). This result is reviewed and further documented in the first part of the paper. In the second part, hydro‐mechanical problems are considered with the construction of a hydraulic lattice, dual to the mechanical one. We observe that the average permeability upon micro‐cracking is the lattice scale‐independent controlling variable in the hydraulic problem. Additionally, results show that in a continuum poro‐mechanical approach, the evolution of the material permeability ought to be related to the elastic unloading stiffness, described e.g. with the help of continuum damage variables. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the analytical dual‐porosity dual‐permeability poromechanics solution for saturated cylinders is extended to account for electrokinetic effects and material transverse isotropy, which simulate the responses of chemically active naturally fractured shale under time‐dependent mechanical loading and ionic solution exposure. The solution addresses the stresses, fracture pore pressure, matrix pore pressure, fluid fluxes, ion concentration evolution, and displacements due to the applied stress, pore pressure, and solute concentration difference between the sample and the circulation fluid. The presented solution will not only help validate numerical simulations but also assist in calibrating and interpreting laboratory results on dual‐porosity dual‐permeability shale. It is recommended that the analytical solutions of radial and axial displacements be used to match the corresponding laboratory‐recorded data to determine shale dual permeability and chemo‐electrical parameters including membrane coefficient, ions diffusion coefficients, and electro‐osmotic permeability.  相似文献   

8.
Deep geological repository involving a multibarrier system constitutes one of the most promising options for isolating high‐level radioactive waste from the human environment. To certify the efficiency of waste isolation, it is essential to understand the behaviour of confining geomaterial under a variety of environmental conditions. To this end, results from a near‐to‐real experiment, the full‐scale engineered barriers in situ experiment, are studied by means of a thermo–hydro–mechanical finite element approach, including a consistent thermoplastic constitutive model for unsaturated soils. Laboratory tests are simulated to calibrate model parameters. The results of the numerical simulations are compared with sensor measurements and show the ability of the model to reproduce the main behavioural features of the system. The influence of the hysteretic and temperature‐dependent retention of water on the mechanical response is exhibited. Finally, those results are interpreted in the light of thermoplasticity of unsaturated soils, which reveals the highly coupled and non‐linear characters of the processes encountered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi‐analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element‐free Galerkin (EFG) mesh‐less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity equations, considers the hydro‐mechanical coupling between the crack and its surrounding porous medium. Therefore, the developed EFG model is capable of simulating fluid leak‐off and fluid lag phenomena. To create the discrete equation system, the Galerkin technique is applied, and the essential boundary conditions are imposed via penalty method. Then, the resultant constrained integral equations are discretized in space using EFG shape functions. For temporal discretization, a fully implicit scheme is employed. The final set of algebraic equations that forms a non‐linear equation system is solved using the direct iterative procedure. Modeling of cracks is performed on the basis of linear elastic fracture mechanics, and for this purpose, the so‐called diffraction method is employed. For verification of the model, a number of problems are solved. According to the obtained results, the developed EFG computer program can successfully be applied for simulating the complex process of hydraulic fracture propagation in porous media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
A new formulation of the element‐free Galerkin (EFG) method is developed for solving coupled hydro‐mechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the developed formulation is examined in order to achieve appropriate accuracy of the EFG solution for coupled hydro‐mechanical problems. Examples are studied and compared with closed‐form or finite element method solutions to demonstrate the validity of the developed model and its capabilities. The results indicate that the EFG method is capable of handling coupled problems in saturated porous media and can predict well both the soil deformation and variation of pore water pressure over time. Some guidelines are proposed to guarantee the accuracy of the EFG solution for coupled hydro‐mechanical problems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a new interpretation method for pulse tests, a field permeability test that allows for rapid measurements of hydraulic conductivity k in aquitards. This new method applies to soft clay deposits. To initiate a pulse test, a known volume of water is injected into the sand filter of a monitoring well isolated by a packer. The resulting pressure increase yields an outward movement of the sand filter cavity wall. After presenting the usual interpretation methods and their limits, this paper proposes a new interpretation method based on a coupled analysis of the pressure and displacement fields in the soil using the Biot–Darcy formulation. A series of analytical and numerical non‐dimensional velocity graphs, normalized plots of the mean hydraulic head difference versus its rate of change, are given. For a linear elastic material, these type curves show relatively small variations with the sand filter aspect ratio and the Poisson ratio of the tested clay. The type curves are also found to be independent of the clay compressibility (mv) and k, an important result. A series of pulse tests conducted in a soft marine clay deposit near Montreal, Canada, are interpreted with the proposed method. The hydraulic conductivity values calculated from these tests are closely correlated with independent estimates obtained using long‐duration variable‐head tests. Compared with previous interpretation methods, the proposed method allows soil volume changes to be reconciled with cavity expansion phenomena and the range of type curves available for the interpretation of test data to be constrained. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The volumetric compaction due to wetting processes is a phenomenon observed quite often in unsaturated soils. Under certain circumstances, saturation events can result into a sudden and unexpected collapse of the system. These phenomena are usually referred to as wetting‐induced collapses, without providing any detailed theoretical justification for this terminology. In order to predict in a general fashion the occurrence of coupled instabilities induced by saturation processes, a generalization of the theoretical approaches usually employed for saturated geomaterials is here provided. More specifically, this paper addresses the problem of hydro‐mechanical instability in unsaturated soils from an energy standpoint. For this purpose, an extension of the definition of the second‐order work is here suggested for the case of unsaturated porous media. On the basis of some examples of numerical simulations of laboratory tests, coupled hydro‐mechanical instabilities are then interpreted in the light of this second‐order energy measure. Finally, the implications of the theoretical results here presented are commented from a constitutive modelling perspective. Two possible alternative approaches to formulate incremental coupled constitutive relations are indeed discussed, showing how the onset of hydro‐mechanical instabilities can be predicted using an extended form of Hill's stability criterion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A large strain analysis of undrained expansion of a spherical/cylindrical cavity in a soil modelled as non‐linear elastic modified Cam clay material is presented. The stress–strain response of the soil is assumed to obey non‐linear elasticity until yielding. A power‐law characteristic or a hyperbolic stress–strain curve is used to describe the gradual reduction of soil stiffness with shear strain. It is assumed that, after yielding, the elasto‐plastic behaviour of the soil can be described by the modified Cam clay model. Based on a closed‐form stress–strain response in undrained condition, a numerical solution is obtained with the aid of simple numerical integration technique. The results show that the stresses and the pore pressure in the soil around an expanded cavity are significantly affected by the non‐linear elasticity, especially if the soil is overconsolidated. The difference between large strain and small strain solutions in the elastic zone is not significant. The stresses and the pore pressure at the cavity wall can be expressed as an approximate closed‐form solution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
Engineered barriers are basic elements in the design of repositories for the isolation of high‐level radioactive waste. This paper presents the thermo‐hydro‐mechanical (THM) analysis of a clay barrier subjected to heating and hydration. The study focuses on an ongoing large‐scale heating test, at almost full scale, which is being carried out at the CIEMAT laboratory under well‐controlled boundary conditions. The test is intensely instrumented and it has provided the opportunity to study in detail the evolution of the main THM variables over a long period of time. Comprehensive laboratory tests carried out in the context of the FEBEX and NF‐PRO projects have allowed the identification of the model parameters to describe the THM behaviour of the compacted expansive clay. A conventional THM approach that assumes the swelling clay as a single porosity medium has been initially adopted to analyse the evolution of the test. The model was able to predict correctly the global THM behaviour of the clay barrier in the short term (i.e. for times shorter than three years), but some model limitations were detected concerning the prediction of the long‐term hydration rate. An additional analysis of the test has been carried out using a double structure model to describe the actual behaviour of expansive clays. The double structure model explicitly considers the two dominant pore levels that actually exist in the FEBEX bentonite and it is able to account for the evolution of the material fabric. The simulation of the experiment using this enhanced model provides a more satisfactory reproduction of the long‐term experimental results. It also contributes to a better understanding of the observed test behaviour and it provides a physically based explanation for the very slow hydration of the barrier. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a numerical procedure of material parameter identification for the coupled hydro‐mechanical boundary value problem (BVP) of the self‐boring pressuremeter test (SBPT) in clay. First, the neural network (NN) technique is applied to obtain an initial estimate of model parameters, taking into account the possible drainage conditions during the expansion test. This technique is used to avoid potential pitfalls related to the conventional gradient‐based optimization techniques, considered here as a corrector that improves predicted parameters. Parameter identification based on measurements obtained through the pressuremeter expansion test and two types of holding tests is illustrated on the Modified Cam clay model. NNs are trained using a set of test samples, which are generated by means of finite element simulations of SBPT. The measurements obtained through expansion and consolidation tests are normalized so that NN predictors operate independently of the testing depth. Examples of parameter determination are demonstrated on both numerical and field data. The efficiency of the combined parameter identification in terms of accuracy, effectiveness and computational effort is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
For civil engineering structures with a tightness role, structural permeability is a key issue. In this context, this paper presents a new proposition of a numerical modelling of leakage rate through a cracked concrete structure undergoing mode I cracking. The mechanical state of the material, considered in the framework of continuum mechanics based on finite element modelling, is described by means of the stress‐based nonlocal damage model which takes into account the stress state and provides realistic local mechanical fields. A semi‐discrete method based on the strong discontinuity approach to estimate crack opening is then considered in the post‐treatment phase. Using a Poiseuille's like relation, the coupling between the mechanical state of the material and its dry gas conductivity is performed. For validation purposes, an original experimental campaign is conducted on a dry concrete disc loaded in a splitting setup. During the loading, gas conductivity and digital image correlation analysis are performed. The comparison with the 3D experimental mechanical global response highlights the performance of the mechanical model. The comparison between crack openings measured by digital image correlation and estimated by the strong discontinuity method shows a good agreement. Finally, the results of the semi‐discrete approach coupled with the gas conductivity compared with experimental data show a good estimation of the structural conductivity. Consequently, if the mechanical problem is well modelled at the global scale, then the proposed approach provides good estimation of gas conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
The geothermal use of concrete geostructures (piles, walls and slabs) is an environmentally friendly way of cooling and heating buildings. With such geothermal structures, it is possible to transfer energy from the ground to fluid‐filled pipes cast in concrete and then to building environments. To improve the knowledge in the field of geothermal structures, the behaviour of a pile subjected to thermo‐mechanical loads is studied in situ. The aim is to study the increased loads on pile due to thermal effects. The maximum thermal increment applied to the pile is on the order of 21°C and the mechanical load reached 1300 kN. Coupled multi‐physical finite element modelling is carried out to simulate the observed experimental results. It is shown that the numerical model is able to reproduce the most significant thermo‐mechanical effects. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
In recent years, the authors have proposed a new double‐node zero‐thickness interface element for diffusion analysis via the finite element method (FEM) (Int. J. Numer. Anal. Meth. Geomech. 2004; 28 (9): 947–962). In the present paper, that formulation is combined with an existing mechanical formulation in order to obtain a fully coupled hydro‐mechanical (or HM) model applicable to fractured/fracturing geomaterials. Each element (continuum or interface) is formulated in terms of the displacements (u) and the fluid pressure (p) at the nodes. After assembly, a particular expression of the traditional ‘up’ system of coupled equations is obtained, which is highly non‐linear due to the strong dependence between the permeability and the aperture of discontinuities. The formulation is valid for both pre‐existing and developing discontinuities by using the appropriate constitutive model that relates effective stresses to relative displacements in the interface. The system of coupled equations is solved following two different numerical approaches: staggered and fully coupled. In the latter, the Newton–Raphson method is used, and it is shown that the Jacobian matrix becomes non‐symmetric due to the dependence of the discontinuity permeability on the aperture. In the part II companion paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.730 ), the formulation proposed is verified and illustrated with some application examples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
A fully coupled formulation of a hydro‐thermo‐poro‐mechanical model for a three‐phase black oil reservoir model is presented. The model is based upon the approach proposed by one of the authors which fully couples geomechanical effects to multiphase flow. Their work is extended here to include non‐isothermal effects. The gas phase contribution to the energy equation has been neglected based on a set of assumptions. The coupled formulation given herein differs in several ways when compared to the earlier work and an attempt is made to link the flow based formulation and mixture theory. The Finite Element Method is employed for the numerical treatment and essential algorithmic implementation is discussed. Numerical examples are presented to provide further understanding of the current methodology. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号