首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inversion of DC resistivity data using neural networks   总被引:9,自引:0,他引:9  
The inversion of geoelectrical resistivity data is a difficult task due to its non-linear nature. In this work, the neural network (NN) approach is studied to solve both 1D and 2D resistivity inverse problems. The efficiency of a widespread, supervised training network, the back-propagation technique and its applicability to the resistivity problem, is investigated. Several NN paradigms have been tried on a basis of trial-and-error for two types of data set. In the 1D problem, the batch back-propagation paradigm was efficient while another paradigm, called resilient propagation, was used in the 2D problem. The network was trained with synthetic examples and tested on another set of synthetic data as well as on the field data. The neural network gave a result highly correlated with that of conventional serial algorithms. It proved to be a fast, accurate and objective method for depth and resistivity estimation of both 1D and 2D DC resistivity data. The main advantage of using NN for resistivity inversion is that once the network has been trained it can perform the inversion of any vertical electrical sounding data set very rapidly.  相似文献   

2.
This study discusses site-specific system optimization efforts related to the capability of a coastal video station to monitor intertidal topography. The system consists of two video cameras connected to a PC, and is operating at the meso-tidal, reflective Faro Beach (Algarve coast, S. Portugal). Measurements from the period February 4, 2009 to May 30, 2010 are discussed in this study. Shoreline detection was based on the processing of variance images, considering pixel intensity thresholds for feature extraction, provided by a specially trained artificial neural network (ANN). The obtained shoreline data return rate was 83%, with an average horizontal cross-shore root mean square error (RMSE) of 1.06 m. Several empirical parameterizations and ANN models were tested to estimate the elevations of shoreline contours, using wave and tidal data. Using a manually validated shoreline set, the lowest RMSE (0.18 m) for the vertical elevation was obtained using an ANN while empirical parameterizations based on the tidal elevation and wave run-up height resulted in an RMSE of 0.26 m. These errors were reduced to 0.22 m after applying 3-D data filtering and interpolation of the topographic information generated for each tidal cycle. Average beach-face slope tan(β) RMSE were around 0.02. Tests for a 5-month period of fully automated operation applying the ANN model resulted in an optimal, average, vertical elevation RMSE of 0.22 m, obtained using a one tidal cycle time window and a time-varying beach-face slope. The findings indicate that the use of an ANN in such systems has considerable potential, especially for sites where long-term field data allow efficient training.  相似文献   

3.
The very low frequency-electromagnetic (VLF-EM) technique was used to delineate two sub-parallel lava tubes, faults and dikes in Umm El-Quttein area, NE Jordan. The investigation of the lava tubes was conducted through 22 VLF-EM profiles across lava strike; the length of profiles ranged from 700 to 1700 m. The lava tubes outcrop at two sites: Azzam cave and Al-Howa tunnel, characterized by slightly weathered basalt, columnar joints and fissure zones; qualitative interpretation of Fraser and Karous-Hjelt maps differentiate those zones as linear, elongated and circular anomalous zones. The 2-D tipper inversion of VLF-EM data and resistivity imaging had the potential to screen out three anomalous zones of likely resistivity contrast: the lava tube body with resistivity over 2500 Θ·m, the fractured zones with resistivity less than 500 Θ·m, and the host vesicular basalt with resistivity of 1500 Θ·m. The strike of lava tubes varied from SW to NE direction with depth less than 20 m and width from 10 to 30 m.  相似文献   

4.
基于遗传神经网络的大地电磁反演   总被引:2,自引:0,他引:2       下载免费PDF全文
为进一步提高大地电磁非线性反演的稳定性、运算效率及准确度,将遗传神经网络算法引入大地电磁反演.首先针对大地电磁二维地电模型建立BP(Back Propagation)神经网络基本框架进行学习训练,网络输入为已知地电模型的视电阻率参数,输出为该地电模型参数;再利用遗传算法对神经网络学习训练过程进行优化,计算出多种地电模型网络连接权值和阈值的最优解;最后将最优连接权值和阈值对未知模型进行反演测试,网络输入为未知地电模型的视电阻率参数,输出为该地电模型参数.模型实验表明:遗传神经网络算法充分结合了遗传算法的全局寻优性和神经网络的局部寻优性,相比单一神经网络算法,在网络学习训练中提高了解的收敛成功率和计算速度,在反演测试中能更准确地逼近真实模型.将遗传神经网络算法与最小二乘正则化反演进行对比,理论模型和实测数据都验证了遗传神经网络算法在大地电磁反演中的可行性和有效性.  相似文献   

5.
传统上,时间域航空电磁数据通过拟合迭代反演计算得到大地模型,然而,由于航空电磁数据道间的较强相关性,导致病态反演,并引起超定问题;同时电磁数据的相关性使其与模型参数的映射关系复杂,增加了反演的复杂度。采用主成分分析法将航空电磁数据变换为正交的较少数量的主成分,不仅降低了数据道间的相关性,减小了数据量,同时压制了数据的不相关噪声。本文利用人工神经网络(ANN)逼近主成分与大地模型参数间的映射关系,避免了传统反演算法中雅克比矩阵的复杂计算。层状模型的主成分神经网络与数据神经网络的反演结果对比显示,主成分神经网络反演方法网络结构简单,训练步数少,反演结果好,特别是对于含噪数据。准二维模型的主成分ANN、数据ANN以及Zhody方法的反演结果显示了主成分神经网络具有更接近真实模型的反演效果,进一步证明了主成分神经网络反演方法适合海量航空电磁探测数据反演。  相似文献   

6.
An extension of an artificial neural network (ANN) approach to solve the magnetotelluric (MT) inverse problem for azimuthally anisotropic resistivities is presented and applied for a real dataset. Three different model classes, containing general 1-D and 2-D azimuthally anisotropic features, have been considered. For each model class, characteristics of three-layer feed forward ANNs trained through an error back propagation algorithm have been adjusted to approximate the inverse modeling function. It appears that, at least for synthetic models, reasonable results would be obtained by applying the amplitudes of the complex impedance tensor elements as inputs. Furthermore, the Levenberg-Marquart algorithm possesses optimal performance as a learning paradigm for this problem. The evaluation of applicability of the trained ANNs for unknown data sets excluded from the learning procedure reveals that the trained ANNs possess acceptable interpolation and extrapolation abilities to estimate model parameters accurately. This method was also successfully used for a field dataset wherein anisotropy had been previously recognized.  相似文献   

7.
An application of the artificial neural network (ANN) approach for predicting mean grain size using electric resistivity data from Bam city is presented. A feed forward back propagation network was developed employing 45 sets of input data. The input variables in the ANN model are the electrical resistivity, water table as a Boolean value and depth; the output is the mean grain size. To demonstrate the authenticity of this approach, the network predictions are compared with those from interpolation methods and the same data. This comparison shows that the ANN approach performs better results. The predicted and observed mean grain size values were compared and show high correlation coefficients. The ANN approach maps show a high degree of correlation with well data based grain size maps and can therefore be used conservatively to better understand the influence of input parameters on sedimentological predictions.  相似文献   

8.
Borehole-wall imaging is currently the most reliable means of mapping discontinuities within boreholes. As these imaging techniques are expensive and thus not always included in a logging run, a method of predicting fracture frequency directly from traditional logging tool responses would be very useful and cost effective. Artificial neural networks (ANNs) show great potential in this area. ANNs are computational systems that attempt to mimic natural biological neural networks. They have the ability to recognize patterns and develop their own generalizations about a given data set. Neural networks are trained on data sets for which the solution is known and tested on data not previously seen in order to validate the network result. We show that artificial neural networks, due to their pattern recognition capabilities, are able to assess the signal strength of fracture-related heterogeneity in a borehole log and thus fracture frequency within a borehole. A combination of wireline logs (neutron porosity, bulk density, P-sonic, S-sonic, deep resistivity and shallow resistivity) were used as input parameters to the ANN. Fracture frequency calculated from borehole televiewer data was used as the single output parameter. The ANN was trained using a back-propagation algorithm with a momentum learning function. In addition to fracture frequency within a single borehole, an ANN trained on a subset of boreholes in an area could be used for prediction over the entire set of boreholes, thus allowing the lateral correlation of fracture zones.  相似文献   

9.
Artificial neural networks (ANN) have been used in a variety of problems in the fields of science and engineering. Applications of ANN to the geophysical problems have increased within the last decade. In particular, it has been used to solve such inversion problems as seismic, electromagnetic, resistivity. There are also some other applications such as parameter estimation, prediction, and classification. In this study, multilayer perceptron neural networks (MLPNN) and radial basis function neural networks (RBFNN) were applied to synthetic gravity data and Seferihisar gravity data to investigate the applicability and performance of these networks for the method of gravity. Additionally performance of MLPNN and RBFNN were tested by adding random noise to the same synthetic test data. The structure parameters, such as the depths, the density contrasts, and the locations of the structures were obtained closely for different signal-to-noise ratios (S/N). Bouguer data of Seferihisar area were analyzed by MLPNN and RBFNN to estimate depth, density contrast, and location of the structure. The results of MLPNN, RBFNN, and classical inversion method were compared for real data obtained from Seferihisar Geothermal area and similar structure parameters were obtained. The experiments show that in general RBFNN not only increases the speed of the training stage enormously, but also provides slightly better performance.  相似文献   

10.
In this paper, we discuss the effects of anomalous out‐of‐plane bodies in two‐dimensional (2D) borehole‐to‐surface electrical resistivity tomography with numerical resistivity modelling and synthetic inversion tests. The results of the two groups of synthetic resistivity model tests illustrate that anomalous bodies out of the plane of interest have an effect on two‐dimensional inversion and that the degree of influence of out‐of‐plane body on inverted images varies. The different influences are derived from two cases. One case is different resistivity models with the same electrode array, and the other case is the same resistivity model with different electrode arrays. Qualitative interpretation based on the inversion tests shows that we cannot find a reasonable electrode array to determine the best inverse solution and reveal the subsurface resistivity distribution for all types of geoelectrical models. Because of the three‐dimensional effect arising from neighbouring anomalous bodies, the qualitative interpretation of inverted images from the two‐dimensional inversion of electrical resistivity tomography data without prior information can be misleading. Two‐dimensional inversion with drilling data can decrease the three‐dimensional effect. We employed two‐ and three‐dimensional borehole‐to‐surface electrical resistivity tomography methods with a pole–pole array and a bipole–bipole array for mineral exploration at Abag Banner and Hexigten Banner in Inner Mongolia, China. Different inverse schemes were carried out for different cases. The subsurface resistivity distribution obtained from the two‐dimensional inversion of the field electrical resistivity tomography data with sufficient prior information, such as drilling data and other non‐electrical data, can better describe the actual geological situation. When there is not enough prior information to carry out constrained two‐dimensional inversion, the three‐dimensional electrical resistivity tomography survey is the better choice.  相似文献   

11.
Conventional artificial neural networks used to solve electrical resistivity imaging (ERI) inversion problem suffer from overfitting and local minima. To solve these problems, we propose to use a pruning Bayesian neural network (PBNN) nonlinear inversion method and a sample design method based on the K-medoids clustering algorithm. In the sample design method, the training samples of the neural network are designed according to the prior information provided by the K-medoids clustering results; thus, the training process of the neural network is well guided. The proposed PBNN, based on Bayesian regularization, is used to select the hidden layer structure by assessing the effect of each hidden neuron to the inversion results. Then, the hyperparameter α k , which is based on the generalized mean, is chosen to guide the pruning process according to the prior distribution of the training samples under the small-sample condition. The proposed algorithm is more efficient than other common adaptive regularization methods in geophysics. The inversion of synthetic data and field data suggests that the proposed method suppresses the noise in the neural network training stage and enhances the generalization. The inversion results with the proposed method are better than those of the BPNN, RBFNN, and RRBFNN inversion methods as well as the conventional least squares inversion.  相似文献   

12.
《Journal of Hydrology》2006,316(1-4):281-289
In this paper, an artificial neural network (ANN) approach to the determination of aquifer parameters is developed. The approach is based on the combination of an ANN and the Theis solution. The proposed ANN approach has advantages over the existing ANN approach. It avoids inappropriate setting of a trained range. It also determines the aquifer parameters more accurately and needs less required training time. Testing the existing and the proposed ANN approaches by 1000 sets of synthetic data also demonstrates these advantages. As to the comparison between the proposed ANN approach and the type-curve graphical method, an application to actual time-drawdown data shows that the proposed ANN approach determines the aquifer parameters more precisely. The proposed ANN approach is recommended as an alternative to the type-curve graphical method and the existing ANN approach.  相似文献   

13.
A 3D electrical resistivity imaging survey is presented in this paper. The objective was to investigate an underground wastewater system at the University of Malaya, Malaysia. Apparent resistivity data were collected along ten parallel lines using a Wenner-Schlumberger configuration; electrode cables were oriented in the x-direction with 3 m spacing. Roll-along measurements using a line spacing of 3 m were carried out covering a grid of 20 × 10 electrodes. All data sets were merged into a single data file in order to perform a 3D inversion. Two different 3D least squares algorithms, based on the robust inversion method and the smoothness-constrained technique, were used for the inversion of the apparent resistivity data. Both the horizontal and vertical extents of the anomalous zones found by inversion are displayed. The results indicate the superiority of the robust inversion method over the smoothness-constrained technique at this site. The results are in sufficient accordance with previously known information about the investigation area. The results show that 3D electrical resistivity imaging surveys, in combination with an appropriate 3D inversion method, can be highly useful for engineering and archaeological investigations as well as for environmental applications.  相似文献   

14.
This paper evaluates the feasibility of using an artificial neural network (ANN) methodology for estimating the groundwater levels in some piezometers placed in an aquifer in north‐western Iran. This aquifer is multilayer and has a high groundwater level in urban areas. Spatiotemporal groundwater level simulation in a multilayer aquifer is regarded as difficult in hydrogeology due to the complexity of the different aquifer materials. In the present research the performance of different neural networks for groundwater level forecasting is examined in order to identify an optimal ANN architecture that can simulate the piezometers water levels. Six different types of network architectures and training algorithms are investigated and compared in terms of model prediction efficiency and accuracy. The results of different experiments show that accurate predictions can be achieved with a standard feedforward neural network trained usung the Levenberg–Marquardt algorithm. The structure and spatial regressions of the ANN parameters (weights and biases) are then used for spatiotemporal model presentation. The efficiency of the spatio‐temporal ANN (STANN) model is compared with two hybrid neural‐geostatistics (NG) and multivariate time series‐geostatistics (TSG) models. It is found in this study that the ANNs provide the most accurate predictions in comparison with the other models. Based on the nonlinear intrinsic ANN approach, the developed STANN model gives acceptable results for the Tabriz multilayer aquifer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
 An efficient numerical solution for the two-dimensional groundwater flow problem using artificial neural networks (ANNs) is presented. Under stationary velocity conditions with unidirectional mean flow, the conductivity realizations and the head gradients, obtained by a traditional finite difference solution to the flow equation, are given as input-output pairs to train a neural network. The ANN is trained successfully and a certain level of recognition of the relationship between input conductivity patterns and output head gradients is achieved. The trained network produced velocity realizations that are physically plausible without solving the flow equation for each of the conductivity realizations. This is achieved in a small fraction of the time necessary for solving the flow equations. The prediction accuracy of the ANN reaches 97.5% for the longitudinal head gradient and 94.7% for the transverse gradient. Head-gradient and velocity statistics in terms of the first two moments are obtained with a very high accuracy. The cross covariances between head gradients and the fluctuating log-conductivity (log-K) and between velocity and log-K obtained with the ANN approach match very closely those obtained by a traditional numerical solution. The same is true for the velocity components auto-covariances. The results are also extended to transport simulations with very good accuracy. Spatial moments (up to the fourth) of mean-concentration plumes obtained using ANNs are in very good agreement with the traditional Monte Carlo simulations. Furthermore, the concentration second moment (concentration variance) is very close between the two approaches. Considering the fact that higher moments of concentration need more computational effort in numerical simulations, the advantage of the presented approach in saving long computational times is evident. Another advantage of the ANNs approach is the ability to generalize a trained network to conductivity distributions different from those used in training. However, the accuracy of the approach in cases with higher conductivity variances is being investigated.  相似文献   

16.
Seismically derived amplitude-versus-angle attributes along with well constraints are the base inputs into inverting seismic into subsurface properties. Conditioning the common image gathers is a common workflow in quantitative inversion and leads to a more accurate inversion product due to the removal of post-migration artefacts. Here, we apply a neural network to condition the post-migration gathers. The network is a cycle generative adversarial network, CycleGAN, which was designed for image-to-image translation. This can be considered the same problem as translating an artefact rich seismic gather to an artefact free seismic gather. To assess the feasibility of applying the network to pre-stack conditioning, synthetic data sets were generated to train different networks for different tasks. The networks were trained to remove white noise, residual de-multiples, gather flattening and a combination of the above for conditioning. The results show that a trained network was able remove white noise providing a more robust amplitude-versus-offset calculation. Another network trained using synthetic gathers with and without multiples assisted in multiple removal. However, instability around primary preservation has been observed so the network works better as a residual de-multiple method. For gather conditioning, a network was trained with the unpaired artefact-rich and artefact-free training data where the artefacts included complex moveout, noise and multiples. When applied to the test data sets, the networks cleaned the artefact-rich test data and translated complex moveout into flat gathers whilst preserving the amplitude response. Finally, two networks are applied to real data where a gather based on the well logs is used to quantify the match between the conditioned gathers and the raw gathers. The first network used synthetic data to train the network and, when applied to real data, provided a better tie with the well. The second network was trained with synthetic gathers whose properties were constrained by real seismic gathers from near the well. As anticipated, the network trained on the representative training data outperforms the network trained using the unconstrained data. However, the ability of the first network to condition the gather indicates that a sweep of networks can be trained without the need for real data and applied in a manner analogous to the way parameters are adjusted in traditional geophysical methods. The results show that the different neural networks can offer an alternative or augmentation to the existing geophysical workflow for conditioning pre-stack seismic gathers.  相似文献   

17.
18.
Six artificial neural network (ANN) models are developed to predict various response parameters of kinematic soil pile interaction. These responses include (1) kinematic response factors for free and fixed head piles in homogenous soil layer to derive foundation input motion (2) normalized bending moment at fixed head of pile in homogenous soil layer (3) normalized kinematic pile moment at the interface of two soil layers of sharply different soil stiffnesses. These ANN models represent simple solutions that can be implemented in a simple calculator capable of matrix operation and bypass the site response analysis and the complex wave diffraction analysis. The data required for ANN training is generated using beam on dynamic Winkler formulation (BDWF). Fifty percent of the data is used to train the ANN models while remaining 50% is used to test the ANN models. The trained ANN models show good agreement with BDWF results.  相似文献   

19.
In this technical note, we investigate the hypothesis that ‘non-linearity matters in the spatial mapping of complex patterns of groundwater arsenic contamination’. The spatial mapping pertained to data-driven techniques of spatial interpolation based on sampling data at finite locations. Using the well known example of extensive groundwater contamination by arsenic in Bangladesh, we find that the use of a highly non-linear pattern learning technique in the form of an artificial neural network (ANN) can yield more accurate results under the same set of constraints when compared to the ordinary kriging method. One ANN and a variogram model were used to represent the spatial structure of arsenic contamination for the whole country. The probability for successful detection of a well as safe or unsafe was found to be atleast 15% larger than that by kriging under the country-wide scenario. The probability of false hopes, which is a serious issue in public health monitoring was found to be significantly lower (by more than 10%) than that by kriging.  相似文献   

20.
为了有效解决目前大地电磁和地震走时资料单方法反演结果一致性不好的问题,同时克服基于岩石不同物性参数间关系耦合约束联合反演的局限性,本文研究了基于交叉梯度耦合约束的大地电磁与地震走时资料的三维联合反演算法.以较为成熟的天然地震走时资料三维正反演和大地电磁三维正反演算法为基础,实现了具有共同的反演网格,以交叉梯度结构耦合约束,并能同时获得电阻率和速度模型的三维联合反演算法.分别利用单棱柱体模型和双棱柱体模型合成数据进行了联合反演试算.结果表明:无论是单棱柱体模型还是双棱柱体模型,联合反演结果比单独反演对异常体的空间形态都有更好的恢复,其中单棱柱体模型反演的异常体电阻率更接近于真实电阻率,双棱柱体模型的联合反演结果不仅消除了围岩的部分电阻率假异常,而且增强了对异常体深部速度结构特征的恢复程度.联合反演还能同时改善电阻率和速度反向变化异常体的单独反演结果,进一步证明交叉梯度耦合不依赖于岩石物性关系,而强调地下结构的相似性,具有更普遍的适用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号