首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanol 72–81 A + is mapped for the first time in Orion KL. Analysing the observed data and solving the statistical equilibrium and radiative transfer equations, it is concluded that line series ofJ 2–(J+1)1 A + (J=7,8,9) is in quasi-thermal emission rather than the masers in Orion KL. The maser spots of methanolJ 2J 1 E (J=6,7) and 80–71 A + are distributed in the northeast part of the contour plot of 72–81 A +. The physical conditions of the regions of maser seriesJ 0–(J–1)1 A + (J=7,8,9) are discussed. Also from the calculation results another maser seriesJ 1–(J–1)2 A (J=10,11,12) that might coexist with maser seriesJ 2J 1 E, is found. The sizes of the 2-dimension Gaussian fit plots of methanol 72–81 A + and HCOOCH3 10(0,10)–9(0,9)A are almost the same, and the main parts overlap each other.  相似文献   

2.
The masers of E-type methanol in orion KL and SGR B2   总被引:2,自引:0,他引:2  
Using a simplified model the statistical equilibrium and radiative transfer equations of E-type-CH3OH are solved for Orion KL and SgrB2. According to our calculation results and the observation data taken by Matsakiset al. (1980) and Morimotoet al. (1985a, b), the physical conditions of both sources are estimated. In theJ 2-J 1 E methanol maser region of Orion KL, the density, kinetic temperature, dust temperature, and the fractional abundance are 0.8–2×106 cm–3, 150, 30–90 K, 0.8–8×10–6. In the 4–1-30 E and 5–1-40 E methanol maser region of Sgr B2 the correspondance physical conditions above are 104 cm3, 45, 23 K, and 7×10–7, respectively.  相似文献   

3.
We searched for the CSJ = 2 – 1 emission towards 29 southern H2O and H2O/OH masers and 1 OH maser with the SEST radio telescope. We detected and mapped 24 CS emitting regions probably associated with 27 H2O masers. The C34SJ = 2 – 1 and COJ = 1 – 0 lines were also observed at the grid positions closest to the CS peaks. Four cores were mapped in the CSJ = 5 – 4 and C34SJ = 2 – 1 lines.  相似文献   

4.
Recent solar observations at Pic du Midi are reported that yield a value of J 2=(2.57 ± 2.36) x 10–6 for the quadrupole moment of the Sun. These observations were conducted from July 1993 to July 1994 after several improvements of the scanning heliometer. This instrument operates by fast photoelectric scans of opposite limbs of the Sun quasi-simultaneously, which provides the distance between both inflection points of the limb profiles. Any number of solar diameters in any position angle can be measured within a time interval short enough to minimize the scattering of the observational parameters. Errors due to atmospheric deterioration are discussed. From our results, compared to previous values obtained by other authors, it can be concluded than an upper limit for J 2 is probably 1.0 × 10-5.  相似文献   

5.
We compute the perturbations on the motion of the Moon due to the shape of the Earth. The zonal terms inJ 2,J 3, andJ 4 are considered. The accuracy is estimated at 3×10–5 and the results compared with previous theories.  相似文献   

6.
We present simple two-layer models of Uranus with rocky core and polytropic envelope satisfying exactly the observed mass, radius and the gravitational moments. The models show that the value of the fourth order zonal harmonic isJ 4 –38×10–6, whileJ 6 10–6. More elaborate threelayer models fail to satisfy the observational constraints of the ice/rock ratio and/or of the rotation period. We conclude that three-layer models with uniform chemical composition in each layer may be too restrictive. More realistic models should account for variable chemical composition within each layer.  相似文献   

7.
Soft X-rays (0.2–1.0 keV) have been detected from the high galactic latitude source MX 2140-60 in a rocket experiment. The measured flux of 10–10 erg cm–2 s–1 combined with OSO-7 measurements in 2–40 keV X-rays, are best fit by a power law photon spectrum with spectral index 2.3 and a neutral hydrogen column densityN H=(3–7) 1020 atoms cm–2. The observations support the source identification with the cluster of galaxies SC 2146-594, as suggested by Lugger.  相似文献   

8.
The space mission of the laser ranging of asteroid Icarus is that a laser reflector and a timer are placed on the No.1566 asteroid and the laser interference ranging is conducted between the asteroid and the ground-based station for making the precise measurements of the PPN parameters γ and β, solar quadrupolar moment J2, time rate of change ?/G of the gravitational constant and barycentric gravitational constant of the solar system objects. With the development of laser techniques, the timing accuracy of 10 ps (or 3 mm expressed by the amount of ranging) can be realized. In 2015 the asteroid Icarus will be close to the earth, which provides a better launch window for the Icarus lander. In the present article the 2003 interplanetary ephemeris frame of the PMOE is adopted to simulate the laser ranging between the ground-based station and the asteroid for 800 days from 2015 September 25 on and obtain the indeterminacies of 18 parameters, among which those of γ, β, J2 and ?/G are respectively 7.8 × 10−8, 9.0 × 10−7, 9.8 × 10−11 and 7.0 × 10−15yr−1, with each being 1 to 3 orders higher than the available experimental accuracy. The simulated result shows that this space mission is of scientific significance to the test of the theory of relativity, determination of the fundamental parameters of solar system and test of the space-time fundamental laws.  相似文献   

9.
E. Kirsch 《Solar physics》1973,28(1):233-246
Solar neutron emission during large flares is investigated by using neutron monitor data from the mountain stations Chacaltaya (Bolivia), Mina Aguilar (Argentine), Pic-du-Midi (France) and Jungfraujoch (Switzerland). Registrations from such days on which large flares appeared around the local noon time of the monitor station are superimposed with the time of the optical flare as reference point.No positive evidence for a solar neutron emission was found with this method, However, by using an extrapolation of the neutron transport functions given by Alsmiller and Boughner a rough estimation of mean upper limits for the solar neutron flux is possible. The flux limits are compared with Lingenfelter's model calculations.From the Chacaltaya measurements it follows: N 02.8 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P0 = 125 MV N 01.4 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV and from Pic-du-Midi measurements: N 06.7 × 10–3 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 125 MV N 04 × 10–2 N cm–2 s–1 per proton flare, E > 50 MeV, if P 0 = 60 MV P 0 = characteristic rigidity of the producing proton spectrum on the Sun.The flux limits estimated for some special proton flares are consistent with Lingenfelter's predictions for the acceleration phase but are too small for the slowing down phase. Therefore it is believed that Lingenfelter's assumption of isotropic proton emission from the flare region is not fulfilled.  相似文献   

10.
On the basis of Sobolev's method, the population of 30 levels of hydrogen atom is determined allowing for the radiative and collision processes of the heating and ionization of the medium with velocity gradient gradv=10–9–10–11s–1, electron temperatureT e=104 K-2×104 K and electron densityN e=1010 cm–3–1011 cm–3. The central source radiation is characterized by a power spectrum with spectral indices varying from 0 to 2. A region of possible physical conditions is found where the thermal diffuse radiation of the envelope exceeds the emission in the Balmer H line.  相似文献   

11.
Strong absorption satellite lines of CaI 6572 were found on spectrograms taken on three successive days just after the fourth contact of the 1971–72 eclipse of Zeta Aurigae. The radial velocities of the satellite lines are –88 km s–1, –74 km s–1, and –180 km–1, respectively, relative to the K-type primary star (K4 Ib). These absorptions should be due to a circumstellar cloud in which the column density of neutral calcium atoms is 1×1017 cm–2 and the turbulent velocities come to 20–50 km s–1. It is suggested that the cloud may be formed by the rocket-effect of the Lyman quanta of the B-type component (B6 V). We estimate the density in the cloud to be 2×1011 atoms cm–3 fors=10R K and 2×1010 atoms cm–3 fors=102 R K, wheres denotes the distance of the cloud from the K star andR K the K star's radius. The mass loss rate of the K-type component is also estimated to be about 10–7 M yr–1, assuming that the expansion of the K star occurs isotropically.  相似文献   

12.
Axisymmetrical models for protoplanetary nebulae are produced. We discuss the mechanism for mass loss from evolved cool stars and the characteristics of the gas outflow. By using two-dimensional magnetohydrodynamics, we find that the gas is preferentially ejected in a so-called equatorial plane. For a grid of models, the expansion velocities are found to be of the order ofv escape/2 and the mass loss rates tilde 10–5-10–4 M /year which appear consistent with the available observational data. Magnetic fields intensities in the 10–4 to 10–3 gauss range are obtained in circumstellar envelopes, in good agreement with observations (Nedoluha and Bowers, 1992).  相似文献   

13.
A detailed investigation of the evolution of low-mass binaries is performed for the case when the secondary fills its Roche lobe at the stage of core hydrogen exhaustion. The obtained results are compared with observational data for ultra-short periodic X-ray systems MXB 1820-30 and MXB 1916-05. In the frame of the proposed evolutionary scenario it is possible to obtain for MXB 1820-30 its periodP=11.4 min twice (see Figure 2). In the first case the parameters of the system are:M 2 0.13–0.15M ,X0.05–0.13, |P/P| (3.6–6.2) } 10–7 yr–1, M2 (4.1–9.6) } 10–9 M yr–1, for the second:M 2 0.08–0.09M ,X= 0, |P/P| (1.3–1.5) } 10–7 yr–1, M2 (1.4–1.8) } 10–8 M yr–1. It is suggested that MXB 1916-05 is the progenitor of the system MXB 1820-30 (M 2 = 0.1M,X 0.221,M 2 1.8 × 10–10 M yr–1).  相似文献   

14.
By processing 494 observations of Comet Harrington–Abell, we obtained a unified system of elements that includes its turn around the Sun during which it closely approached Jupiter to a minimum distance of 0.037 AU in 1974. A study of the cometary orbit before and after the approach showed that, probably, at the approach of the comet to Jupiter, apart from the well-known gravitational perturbations, its motion was affected by an additional force. An improvement of the cometary orbit by assuming that an additional acceleration inversely proportional to the square of the distance to Jupiter exists in its motion yielded the following values: (4.57 ± 0.42) × 10–10 and (–7.20 ± 0.42) × 10–10 AU day–2 for the radial and transversal acceleration components, respectively. As a plausible explanation of the changes in the cometary orbit, we additionally considered a model based on the hypothesis of partial disintegration of the cometary nucleus. The parameter that characterizes the instant displacement of the center of inertia along the jovicentric radius vector was estimated to be –1.83 ± 0.75 km. Based on a unified numerical theory of cometary motion, we determined the nongravitational parameters using Marsden's model for two periods: A 1 = (11.68 ± 1.74) × 10–10 AU day–2, A 2 = (0.53 ± 0.0357) × 10–10 AU day–2 for 1975–1999 and A 1 = (5.92 ± 5.86) × 10–10 AU day–2, A 2 = (0.08 ± 0.028) × 10–10 AU day–2 for 1955–1969, under the assumption that the nongravitational acceleration changed at the approach of the comet to Jupiter.  相似文献   

15.
BF3 counters on OSO-1 were used to look for solar neutrons by trying to observe a diurnal variation in count rate. No effect was observed and an upper limit was placed on the solar neutron flux at the earth of J n < 2 × 10–3 neut/cm2/sec of 10 keV < E n < 10 meV for the period March to May 1962. No proton-producing flares occurred during this time, so the most obvious source of solar neutrons could not be studied. The emulsion experiment of Apparao et al., flown during this period, which seemed to indicate solar neutrons has probably been misinterpreted.  相似文献   

16.
Low-resolution spectra of the Io plasma torus have been obtained on 10 and 11 February 1992 (2 days after the Ulysses encounter) using the 2 m telescope of the Bulgarian National Observatory. The spectra show the forbidden line emissions of S+ (λλ 6716, 6731 Å) and S2+ (λ 6312 Å). Measured intensities are compared with a Voyager-type model. The intensity distribution of [SII] is found to deviate from the model predictions which indicates a change in the torus at the Ulysses encounter when compared with the Voyager epoch. A corotating structure was observed, both in [SII] and [SIII], at λIII = 170°, showing that the torus was not azimuthally symmetric. The λ 6716/λ 6731 and λ 6731/ λ 6312 line ratios indicate a higher electron density at the time of the Ulysses observations. Additionally, the shift of the torus caused by the dawn-dusk electric field could be observed. Peak intensities in [SII] were found at 5.66 ± 0.02 RJ on the West ansa and 5.91 ± 0.04 RJ on the East.  相似文献   

17.
Range of values of the Sun's mass quadrupole moment of coefficient J2 arising both from experimental and theoretical determinations enlarge across literature on two orders of magnitude, from around 10-7 until to 10-5. The accurate knowledge of the Moon's physical librations, for which the Lunar Laser Ranging data reach an outstanding precision level, prove to be appropriate to reduce the interval of J2 values by giving an upper bound of J2. A solar quadrupole moment as high as 1.1 10-5 given either from the upper bounds of the error bars of the observations, or from the Roche's theory, is not compatible with the knowledge of the lunar librations accurately modeled and observed with the LLR experiment. The suitable values of J2 have to be smaller than 3.0 10-6. As a consequence, this upper bound of 3.0 10-6 is accepted to study the impact of the Sun's quadrupole moment of mass on the dynamics of the Earth-Moon system. Such as effect (with J2 = 5.5±1.3 × 10-6) has been already tested in 1983 by Campbell & Moffat using analytical approximate equations, and thus for the orbits of Mercury, Venus, the Earth and Icarus. The approximate equations are no longer sufficient compared with present observational data and exact equations are required. As if to compute the effect on the lunar librations, we have used our BJV relativistic model of solar system integration including the spin-orbit coupled motion of the Moon. The model is solved by numerical integration. The BJV model stems from general relativity by using the DSX formalism for purposes of celestial mechanics when it is about to deal with a system of n extended, weakly self-gravitating, rotating and deformable bodies in mutual interactions. The resulting effects on the orbital elements of the Earth have been computed and plotted over 160 and 1600 years. The impact of the quadrupole moment of the Sun on the Earth's orbital motion is mainly characterized by variations of , , and . As a consequence, the Sun's quadrupole moment of mass could play a sensible role over long time periods of integration of solar system models. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
It is shown that cosmic radiation almost follows a Planck distribution, because just as matter is formed, its density of energy is negligible in comparison with that of radiation, and that the present age of the Universe does not depend on the particular manner in which the matter is formed.Thus, if the results of the latest observations (which imply a deceleration parameterq=1.6) are combined with the assumption that the present age of the Universe is at least 12×109 yr, they lead to a hyperbolic oscillating universe with a negative cosmological constant (<–1.53×10–56 cm–2) and a present mass-density m of less than 1.2×10–30 g cm–3. If the cosmological constant is taken to be zero, a solution is only possible if we are prepared to admit a rate of evolution of galaxies with a deceleration parameterq<0.52. Three types of oscillating universe are then possible, but the heperbolic type is the most probable. If Hubble's constant is greater than 63.4 km s–1 Mpc–1, the solutions are only hyperbolic universes with <+0.45×10–56 cm–2 and m <4.8×10-30g cm-3.
Sommaire On montre que le rayonnement cosmique général suit pratiquement une loi de Planck parce que la densité d'énergie de la matière au moment de sa formation est négligeable à côté de celle du rayonnement et que l'âge actuel de l'Univers ne dépend pas du mode de formation de la matière.Dans ces conditions, si l'on combine les derniers résultats d'observations (qui impliquent un paramètre de décélérationq=1.6) avec l'hypothèse que l'âge actuel de l'Univers est au moins de 12×109 années on est conduit à un Univers hyperbolique oscillant à constante cosmologique négative (<–1.53×10–56 cm–2) et où l'actuelle densité de matière m est moindre que 1.2×10–30 g cm–3. Si la constante cosmologique est supposée nulle, une solution ne peut être obtenue que si l'on admet un certain taux d'évolution des Galaxies et un paramètre de décélérationq<0.52. Alors, les trois types d'Univers oscillants sont possibles, mains les Univers hyperboliques paraissent plus probables. Enfin, si la constante de Hubble est plus grande que 63.4 km s–1 Mpc–1 les solutions ne peuvent être que des Univers hyperboliques avec <+0.45×10–56 cm–2 et m <4.8×10-30g cm-3.
  相似文献   

19.
Bogod  V. M.  Grebinskij  A. S. 《Solar physics》1997,176(1):67-86
We present here the results of emission tomography studies, based on a new differential deconvolution method (DDM) of Laplace transform inversion, which we use for reconstruction of the coronal emission measure distributions in the quiet Sun, coronal holes and plage areas. Two methods are explored. The first method is based on the deconvolution of radioemission brightness spectra in a wide wavelength range (1 mm–100 cm) for temperature profile reconstructions from the corona to the deeper chromosphere. The second method uses radio brightness measurements in the cm–dm range to give a coronal column emission measure (EM).Our results are based on RATAN-600 observations in the range 2.0–32 cm supplemented by the data of other observatories during the period near minimum solar activity. This study gives results that agree with known estimates of the coronal EM values, but reveals the absence of any measurable quantities of EM in the transition temperature region 3 × 104 –105 K for all studied large-scale structures. The chromospheric temperature structure (T e = 20,000–5800 K) is quite similar for all objects with extremely low-temperature gradients at deep layers.Some refraction effects were detected in the decimeter range for all Types of large-scale structures, which suggests the presence of dense and compact loops (up to N e =(1–3)× 109 cm-3 number density) for the quiet-Sun coronal regions with temperature T e > 5× 10-5 K.  相似文献   

20.
New theoretical emission line ratios for the Be-sequence ions Mgix and Sixi are presented. A comparison with observational data for two solar flares and an active region loop obtained with the Harvard EUV spectrometer and NRL XUV spectroheliograph aboard Skylab reveals that these plasmas are in ionization equilibrium at coronal temperatures. Unfortunately most of the density diagnostics are not particularly useful under solar plasma conditions, as they vary only slightly over the electron density range 108–1013cm–3. However the Sixi ratioI(3 P e 2 -3 P o 2)/I(3 P o 11 S e 0) is density sensitive in the range 108 to 1010cm–3, which is representative of electron densities found in solar active regions or small flares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号