首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Mount Erebus, Ross Island, Antarctica, is an active, intraplate,alkaline volcano. The strongly undersaturated sodic lavas rangefrom basanite to anorthoclase phonolite, and are termed theErebus lineage (EL). The lavas are porphyritic with olivine(Fo88–51), clinopyroxene (Wo45–53En36–41Fs8–30),opaque oxides (Usp31–76), feldspar (An72–11), andapatite. Rare earth element (REE) contents increase only slightlywith increasing differentiation compared with other incompatibleelements. The light REE are enriched (LaN/YbN= 14–20)and there are no significant Eu anomalies. 87Sr/86Sr is uniformand low ({small tilde} 0.7030) throughout the EL, suggestingderivation of the basanites from a depleted asthenospheric mantlesource, and lack of significant crustal contamination duringfractionation of the basanite. Regular geochemical trends indicatethat the EL evolved from the basanites by fractional crystallization.Major element mass balance calculations and trace element modelsshow that fractionation of 16% olivine, 52% clinopyroxene, 14%Fe-Ti oxides, 11% feldspar, 3% nepheline, and 3% apatite froma basanite parent leaves 23.5% anorthoclase phonolite. Minor volumes of less undersaturated, more iron-rich benmoreite,phonolite, and trachyte are termed the enriched iron series(EFS). The trachytes have 87Sr/86Sr of 0.704, higher than otherEFS and EL rocks, and they probably evolved by a combined assimilation-fractionalcrystallization process. The large volume of phonolite at Mt. Erebus requires significantbasanite production. This occurs by low degrees of partial meltingin a mantle plume (here termed the Erebus plume) rising at arate of about 6 cm/yr.  相似文献   

2.
辽河盆地沙三期火山-侵入岩地球化学与岩石成因   总被引:8,自引:0,他引:8  
辽河盆地沙三期火山-侵入岩为一套偏碱性的双峰式岩系,其基性端元为碱性玄武岩,中偏碱性端元为粗面质熔岩和侵入岩。碱性玄武岩富集高场强元素(如Nb、Th、Zr、Hf、V等)和轻稀土、Sr、Ba等大离子亲石元素,而亏损Rb和K,具有与板内碱性玄武岩和洋岛玄武岩类似的特征。粗面质岩石显示与基性端元相似的地球化学特征,其不相容元素含量总体上高于碱性玄武岩,但具强烈的Sr和Eu亏损。矿物学、岩石学及地球化学证据表明,玄武质岩石是软流圈地幔低程度部分熔融的产物,并经历了橄榄石和辉石的分离结晶作用,其源区可能有金云母和石榴石残留。玄武质岩浆上升到较浅部位后进一步发生橄榄石、辉石、斜长石和磁铁矿等的分离结晶作用而形成粗面质岩浆,地壳物质混染作用不显著。  相似文献   

3.
Basalts dredged from the south wall of a fracture zone transecting the southern Mid-Atlantic Ridge (SMAR) at 54° S are unusual in that they include a suite of highly olivine phyric basalts, sampled along with more normal sparsely plagioclase phyric basalts, and a highly plagioclase phyric basalt. Four basalt types (olivine phyric, sparsely plagioclase phyric, evolved sparsely plagioclase phyric and highly plagioclase phyric) are readily distinguished on the basis of petrography, mineralogy and bulk composition. They range from primitive to evolved, with the olivine phyric basalts having elevated MgO (up to 15.5%) and the plagioclase phyric basalt having elevated Al2O3 (19.3%) and CaO (13.1%) contents. Compositional variations are extremely consistant, with the olivine phyric basalts and the sparsely plagioclase phyric basalts defining coherent linear trends. On the basis of the ratios and covariation of the incompatible trace elements Zr, Nb, Y and Ba, distinct parental magmas for each basalt type are required. An investigation of Fe-Mg and Mg-Ni distribution coefficients between olivine and magma indicates that olivines from the olivine phyric basalts are on average too forsteritic and too Ni poor to have crystallized in a magma corresponding to the host bulk rock composition. This implies that these basalts are enriched in xenocrystic olivine. Olivines from the other basalt types are mostly of equilibrium composition, although there are some exceptions. Petrogenetic models for the formation of the different basalt types are quantitatively evaluated in terms of fractional crystallization/crystal accumulation processes. These indicate that (1) the olivine phyric basalts are the products of olivine and minor Cr-spinel accumulation and do not represent analogues of primary magma, or a liquid fractionation trend; (2) that the sparsely plagioclase phyric basalts were formed by polybaric fractional crystallization of olivine, plagioclase and clinopyroxene; and (3) that the evolved sparsely plagioclase phyric basalts are not readily related to one another. The single highly plagioclase phyric basalt is unrelated to the other basalt types and is cumulus enriched in plagioclase.The different basalt types are unrelated to one another and document the presence of at least four distinct magma types erupted in close proximity at this ridge/transform intersection on the southern end of the Mid-Atlantic Ridge.  相似文献   

4.
In the southern Gregory Rift valley a series of transitional basalt, ferrobasalt, and benmoreite flows (1.65–1.4 Myr) is overlain by flood trachyte lavas (1.3–0.9 Myr). Mass balance calculations for major element compositions of rocks of this suite and their phenocrysts and microphenocrysts suggest that the ferrobasalts and benmoreites formed from magma resembling the most primitive basalt by closed system fractionation of plagioclase, clinopyroxene, olivine, titanomagnetite, and apatite. The trachytes formed from evolved magmas largely by alkali feldspar fractionation. Estimates of phenocryst and liquid densities and Rayleigh-law modelling of trace element contents support these conclusions. From Rayleigh-law modelling, we derived a set of effective distribution coefficients. Partial melting of crustal rocks or volatile transfer processes had no significant effect on the petrogenesis of this suite. The duration of the eruptive cycle, cooling time calculations, and mass balance calculations suggest that fractionation occurred in a magma reservoir with volume of at least 3 × 104 km3 during an interval of about 0.8 Myr. Temperatures during fractionation probably ranged from about 1200 °C to 900 °C, and pressures may have been roughly 5 to 8 Kb. We suggest that rift development was accompanied by large-scale injection of basaltic magma and dilation of the crust, extensive fractionation, preferential eruption of low-density and fluid trachytic flood lavas, and by several episodes of normal faulting.  相似文献   

5.
Reported in this paper are the chemical compositions and trace element (REE,Ba,Rb,Sr,Nb,Zr,Ni,Cr,V,Ga,Y,Sc,Zn,Cu,etc)abundances of Tertiary continental alkali basalts from the Liube-yizheng area,Jiangsu Province,China.The olivine basalt,alkali olivine basalt and basanite are all derived from evolved melts which were once af-fected by different degrees of fractional crystallization of olivine and clinopyroxene(1:2)under high pres-sures.The initial melts were derived from the garnet lherzolite-type mantle source through low-degree par-tial melting.The mantle source has been affected by recent mantle-enrichment events(e.g.mantle metasomatism),resulting in incompatible trace element enrichment and long-term depletion of radiogenic isotopic compositions of Sr and Nd.  相似文献   

6.
位于中国东南部的三水盆地、珠江口盆地、雷琼半岛和北部湾地区广泛分布新生代火山岩。火山岩的形成时间具有从内陆向沿海变新的特点,早第三纪三水和珠江口盆地火山岩具有由玄武岩与粗面岩-流纹岩构成的双峰式特点。其中玄武岩和粗面岩的微量元素和稀土元素的配分形式相似,富集大离子亲石元素并且有相似的εNd(T)同位素组成(2.34~6.4),说明它们来自相同的地幔源区,为同源岩浆演化的产物。玄武岩和粗面岩经历了不同的结晶分异过程,其中玄武岩在较深部岩浆房中经历橄榄石和单斜辉石为主的分离结晶作用,而粗面岩则是在浅部岩浆房中由玄武岩浆分异形成的过渡性岩浆再经过强烈的钾长石和斜长石、以及磷灰石的结晶分异形成的。晚第三纪珠江口盆地和北部湾火山岩、雷琼半岛第四纪火山岩则由碱性和拉斑玄武岩构成。这些火山岩的形成时间和地球化学和同位素特征表明它们经历了连续的软流圈地幔上涌和部分熔融过程,受控于自晚中生代以来的地幔柱构造。南海的形成是地幔柱活动引起的地幔上涌和大陆裂解作用的结果。  相似文献   

7.
U-series disequilibria analyses have been combined with chemical and petrographic analyses in order to assess both the timescales and processes involved in the formation of the chemically zoned Fogo A trachytes. Least squares major element modelling demonstrates that the mafic trachytes could have evolved from a parental alkali basalt via trachybasalt with 70% fractionation of augite (35–36%), plagioclase (23%), magnetite (16%), kaersutite (15%), olivine (8%) and apatite (2–3%). Derivation of the mafic trachytes from a basanite parent is inconsistent with calculated fractionation paths. Major and trace element variations in 25 pumice samples collected from throughout the stratigraphic extent of the Fogo A deposit show that the trachytes represent the inverted, extrusive equivalent of a strongly chemically zoned magma chamber. The zonation is attributed to 70–75% Rayleigh fractional crystallization of the observed phenocryst phases. Wallrock assimilation and magma mixing did not contribute significantly to the observed chemical trends. The maximum age of the Fogo A trachytic magma based on radioactive disequilibria between 230Th and 238U is 300000 years. However, a calculated model age suggests that the time of evolution of the Fogo A trachytes from a parent alkali basalt is only 90000 years. Constant element variations and Th-isotopic ratios in Fogo C, Fogo A and 1563 A.D. trachytes suggest that a single long-lived trachytic magma chamber has been the source of at least the past 15.2 Ka of trachytic volcanism from Agua de Pao. After each eruption an evolved cupola reformed and became zoned prior to the next eruption. The maximum time necessary to form the zonation is 4600 years, the time between the Fogo A and 1563 A.D. eruptions. Low (226Ra)/(230Th)i ratios in the Fogo A and 1563 A.D. trachytes suggest that alkali feldspar fractionation continued up to the time of the respective eruptions.  相似文献   

8.
There is little concensus on the relative importance of crystal fractionation and differential partial melting to the chemical diversity observed within most types of volcanic suites. A resolution to this controversy is best sought in suites containing high MgO lavas such as the Chukotat volcanics of the Proterozoic Cape Smith foldbelt, Ungava, Quebec. The succession of this volcanic suite consists of repetitive sequences, each beginning with olivine-phyric basalt (19-12 wt% MgO), grading upwards to pyroxene-phyric basalt (12-8 wt% MgO) and then, in later sequences, to plagioclase-phyric basalt (7-4 wt% MgO). Only the olivine-phyric basalts have compositions capable of equilibrating with the upper mantle and are believed to represent parental magmas for the suite. The pyroxene-phyric and plagioclase-phyric basalts represent magmas derived from these parents by the crystal fractionation of olivine, with minor chromite, clinopyroxene and plagioclase. The order of extrusion in each volcanic sequence is interpreted to reflect a density effect in which successively lighter, more evolved magmas are erupted as hydrostatic pressure wanes. The pyroxene-phyric basalts appear to have evolved at high levels in the active part of the conduit system as the eruption of their parents was in progress. The plagioclase-phyric basalts may represent residual liquids expelled from isolated reservoirs along the crust-mantle interface during the late stages of volcanic activity.A positive correlation between FeO and MgO in the early, most basic olivine-phyric basalts is interpreted to reflect progressive adiabatic partial melting in the upper mantle. Although this complicates the chemistry, it is not a significant factor in the compositional diversification of the volcanic suite. The preservation of such compositional melting effects, however, suggests that the most basic olivine-phyric basalts represent primitive magmas. The trace element characteristics of these magmas, and their derivatives, indicate that the mantle source for the Chukotat volcanics had experienced a previous melting event.  相似文献   

9.
Melting experiments carried out at 1-atm and at 2 kbar on mid-ocean ridge basalts dredged from the mid-Atlantic ridge near the Kane Fracture Zone (KFZ, 22° to 25° N. latitude) provide a basis for evaluating the role of crystal fractionation in generating compositional variability observed in normal mid-ocean ridge basalt. The 1-atm olivine-plagioclase-clinopyroxene saturation boundary for KFZ lavas defines a path in mineral projection schemes and in oxide-oxide diagrams that is displaced from the same experimentally determined boundaries in FAMOUS (Grove and Bryan 1983) and Oceanographer Fracture Zone (Walker et al. 1979) basalts. The glass margins of sparsely phyric KFZ lavas record small amounts of near surface, low pressure fractional crystallization, and their glass and bulk rock compositions are similar. An important signature of low pressure differentiation is recorded in the quenched glass margins of moderately phyric KFZ lavas compared to their bulk rock compositions, and the glass has evolved along low-pressure fractionation paths that are similar to those produced in the 1-atm experiments. Many of the lavas have retained phenocrysts in equilibrium proportions, so that their bulk rock compositions represent liquid compositions. When the effects of near-surface differentiation and crystal accumulation are removed from the Kane data set, and only liquid compositions are considered, a suite of basalt magmas can be identified that forms a trend in mineral component projection schemes parallel to the 1-atm oliv-plag-cpx multiple saturation boundary, but displaced from it toward olivine. These basalts have only olivine and plagioclase as phenocrysts, and are well removed from clinopyroxene saturation at low pressure. The compositional variation can not be generated by mixing any primary liquid composition with a low pressure liquid that has evolved along the oliv-plag-cpx multiple saturation boundary. Major and trace element models of this trend using olivine, plagioclase and clinopyroxene as fractionating phases match the compositional variability. This compositional trend is generated by fractionation at pressures greater than 2 kbar, but within the plagioclase stability field. A review of the data for other normal MORB suites from this part of the mid-Atlantic ridge reveals a similar elevated pressure fractionation signature which persists when the effects of low pressure magma mixing are removed from the data set.  相似文献   

10.
The Palaeocene magnesian transitional basalts of the Main LavaSeries (SMLS) of Skye, NW Scotland, have concentration rangesof K, Ti, P, Rb, Sr, Ba, Nb, Ta, Zr, Hf, Th and light REE varyingby a factor of up to two at a given value of (FeO + Fe2O3)/(FeO+ Fe2O3 + MgO). Their chondrite-normalized REE patterns varywidely in slope and cuvature, with (Ce/Yb)N=2.2–4.7. Theabundances of Ti, P, Zr, Hf, Eu, Gd and Tb correlate negativelywith Si-saturation and are thought to be primary, reflectingvariable localized partial melting (5 per cent) for each magmabatch at about 60 km depth of a spinel-lherzolite upper mantle,leaving a lherzolitic residuum. Y and the heavy REE vary littlewith Si-saturation, due to their partial retention in residualmantle diopside. The large abundance ranges of Rb, Sr, Ba, Nb,Th, La, Ce and Nd in the SMLS basalts, uncorrelated with Si-saturation,may reflect local upper-mantle variability in the concentrationsof the ultra-incompatible elements beneath Skye, caused by thepre-Palaeocene extraction of small quantities of alkalic, incompatible-element-richmagma, such as formed the Permian lamprophyre dykes of westernScotland. The trace element data confirm major-element, least-squaresmodels, which show that fractional crystallization of SMLS magnesianbasalt to less-magnesian basalt residua involved the separationof 10 per cent olivine and 4 per cent plagioclase, whilst thefractionation of SMLS less-magnesian basalt to hawaiite occurredat about 35 km depth by precipitation of 8 per cent olivine,15 per cent plagioclase and 21 per cent aluminous sub-calcicaugite. The variation of Nb and Ta abundances in hawaiites,mugearites and low-Fe intermediate lavas suggests that theseelements partitioned strongly into liquidus titanomagnetitemicrophenocrysts. Zircon fractionation occurred during the finalstages of evolution of benmoreites and trachytes, the latterrepresenting the residuum of at least 90 per cent fractionalcrystallization of SMLS basalt magma. High-Ca, low-alkali olivine tholeiites of the Preshal Mhor magmatype occur near the top of the present lava field erosionalremnant and predominate in the dyke swarm transecting it. Theyhave low incompatible trace-element abundances and REE patternswith (Ce/Yb)N 0.6, similar to those of many mid-ocean ridgebasalts. Models attempting to explain the genesis and relationsof the contrasting SMLS and Preshal Mhor basalts by postulatingseparate mantle sources, arranged in plumes, blobs or layers,fail to account satisfactorily for: (1) the constant incompatible-elementratio ranges of all Skye basalt lavas, (2) the partial interstratificationof SMLS and Preshal Mhor basalts and (3) the appearance of PreshalMhor magmas at the climax of crustal extension in the dyke swarm.The contrasting REE patterns of SMLS transitional basalts andPreshal Mhor tholeiites, and the high Ca/Al, Ca/Na and Ca/Tiof the latter, can be explained if they were produced by furtherlimited partial fusion of the lherzolitic residuum (with a trappedmelt fraction) from SMLS genesis, leaving a final harzburgiticresiduum. The petrogenesis of the Skye lavas provides a localshort-timespan analogue of worldwide processes involved in thegeneration of mid-ocean ridge basalts.  相似文献   

11.
Hawaiite-type lavas were erupted in three cycles (3.7, 1.2, and 0.3 M.y.) at Crater Flat, Nevada. The compositions of all three cycles, considered together, form a straddling alkalic series as defined by Miyashiro, in which the less evolved basalts plot near the normative olivine-diopside divide and the more evolved basalts project into hypersthene or nepheline fields. Fractionation modeling based on the oldest cycle allows the removal of olivine, clinopyroxene, and amphibole to arrive at the more evolved hawaiite compositions. In general, fractionation of phlogo-pite or feldspar is limited by the fractionation modeling and by Eu/REE relations. In detail, all hawaiites within one cycle (3.7 M.y.) need not be derived from a single parent magma. Varied parentage is more evident between cycles although all cycles are consistently of hawaiite composition. Basalts of the youngest two cycles are generally enriched in trace elements. Superimposed on this enrichment is a lack of Rb variation, leading to Rb/Sr ratios far lower than required to generate the high 87Sr/86Sr ratio (0.707) typical of basalts in this region. The very low Rb/Sr ratios limit processes that may lead to trace-element enrichment during magma evolution (cyclic recharge of a fractionating magma chamber). Decreased fractions of mantle melting leaving phlogopite in the residuum or an earlier event of metasomatic transport from phlogopite-bearing mantle rocks into a phlogopite-absent mantle assemblage might explain the observed trace-element enrichment with low Rb/Sr.  相似文献   

12.
STRONG  D. F. 《Journal of Petrology》1972,13(2):181-218
The four volcanic islands comprising the Comores archipelagoform a linear rise across the northern end of the MozambiqueChannel. Volcanism migrated westward from the now deeply dissectedand partially submerged Mayotte to the active Kartala volcanoon Grande Comore. The volcanic rocks on all the islands consistof silica–undersaturated basalts and their derivatives. Grande Comore is formed of two coaleseing shield volcanoes,La Grille in the north and Kartala in the south. The lavas ofKartala are entirely alkali basalts, with abundant ankaramiticand oceanitic varieties, containing an average of 3.7 wt percent normative nepheline. They represent a series resultingfrom low–pressure (< 8kb) fractional crystallizationof alkali basalt parent magma. The formation of this parentmagma can be explained as resulting from more than 10 per centpartial melting of garnet lherzolite upper mantle at pressuresaround 30 kb, with some high–pressure (> 25 kb) fractionationof harzburgite, garnet harzburgite, and either garnet wehrliteor ecogite, followed by polybaric fractionation of olivine±clinopyroxene during ascent. They La Grille lavas are basanitie, with an average of 11–5wt per cent normative nepheline and some normative leucite,and contain only olivine as an important phenocryst phase. Theyare explicable as originating from less than 10 per cent partialmelting of garnet I herzolite upper mantle, with substantialhigh–pressure (> 25 kb) fractionation of garnet wehrliteor eclogite. Interuption of this high–pressure(> 25kb) fractionation at different stages resulted in one trendof chemical variation, on which was superimposed a second trendby polybaric fractionation of lherzolite, wehrlite, and dunite,now found as inclusions in the lavas.  相似文献   

13.
The Ueno Basalts of central Japan comprise a monogenetic volcaniccone complex that was active between 2·76 and 1·34Ma. Basalts were erupted at more than 14 centers scattered overa region 40 km in diameter. Alkali basalt was erupted first,followed by sub-alkaline basalt. Quasi-concentric expansionof eruption centers coinciding with uplift and with decreasingalkalinity of the lavas suggests that Ueno magmatism originatedfrom a mantle diapir as it mushroomed at the base of the lithosphere.Depleted asthenospheric mantle (alkali basalt), enriched lithosphericmantle (sub-alkaline basalt), and crustal components are identifiedas chemical end-members in the petrogenesis of the Ueno Basalts.Incompatible trace element abundances indicate that the Uenoalkali basalts are typical within-plate basalts, whereas thesub-alkaline basalts show strong affinities with normal arclavas. Sr–Nd–Pb isotopic compositions indicate thatthe mantle source of the alkali basalts was more depleted thanthat of the sub-alkaline basalts. About 7% melting of asthenosphericmantle in the garnet-lherzolite stability field produced theprimitive alkali basalts and 12% melting of spinel lherzolitewithin the subcontinental lithosphere produced the primitivesub-alkaline basalts. Isotopic compositions and fluid mobile/immobileelement ratios broadly covary with SiO2 contents in the sub-alkalinesuite, and increasing silica content is associated with strongerEMII (Enriched Mantle II) isotope affinities and fluid mobileelement abundances. A progressive AFC (assimilation–fractionalcrystallization) model assuming assimilation of a low-K silicicmelt reproduces the chemical variations observed in the sub-alkalinesuite. Melting of a flattening mantle diapir at the base ofthe lithosphere is the dominant cause of Ueno magmatism, accompaniedby the assimilation of older arc crust. KEY WORDS: arc basalt; crustal assimilation; mantle heterogeneity; Ueno Basalts  相似文献   

14.
Petrology of the Western Reykjanes Peninsula, Iceland   总被引:3,自引:3,他引:3  
The active tholeiitic volcanic zone of the Reykjanes Peninsulaconsists of five volcanic fissure swarms, the two westernmostof which are the subject of this petrological study. The recent(less than 12,000 years) extrusives of the swarms group morphologicallyand petrographically into small picrite basalt lava shields,large olivine tholeiite lava shields and tholeiite fissure lavas;formed in that chronological succession. The picrite basalts exhibit a primitive mineralogy with chromite,olivine (Fo 89) and plagioclase (An 90) as phenocrysts and mayrepresent a primary liquid from the mantle. Simultaneous crystallizationof olivine, plagioclase and augite to form glomerocrysts inthe fissure lavas indicate low pressure cotectic crystallizationconditions. Twenty-eight new major element chemical analyses of the lavasare presented. They are generally characterized by a low contentof alkalies and high CaO. The lavas constitute two main suites,a lava shield suite and a fissure lava suite. There is a positivecorrelation between the volume of individual lavas and the contentof incompatible elements of the lavas within each group. Likewisethere is an overall chemical trend through time demonstrated,for example, by a rise in K2O from about 0.02 per cent to 0.24per cent during the last, approximately, 12,000 years. There is an apparent chemical zoning within each volcanic swarmsuch that the most evolved and youngest lavas are found in thecentral axial area of the swarm. This central area is also characterizedby graben subsidence, high magnetic anomalies and high temperaturethermal areas, all indicative of shallow magma reservoir(s).In spite of indications of fractional crystallization in theevolution of the olivine tholeiites and tholeiites, some otherprocesses must be sought to explain the volume chemistry relations.Cyclic volcanic activity is tentatively suggested to explainthe observed regular temporal variations within the swarm, eachcycle starting with the formation of picrite basalts.  相似文献   

15.
Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization.The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%).Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 453223. It is suggested that the most primitive olivine basalts can be derived from a pristine mantle composition by approximately 17% equilibrium partial melting. Although distinguished by its higher Zr/Nb ratio and lower NiO content of phenocryst phases, the magma parental to the picritic basalts can be derived from a similar source composition by approximately 27% equilibrium partial melting. It is suggested that the parental magma to the plagioclase-pyroxene and plagioclase phyric basalts might have been derived from greater depth resulting in the fractionation of the Zr/Nb ratio by equilibration with residual garnet.C.O.B. Contribution No. 722  相似文献   

16.
The major and trace element chemistry of phonolites containing spinel Iherzolite xenoliths from Bokkos (Nigeria), Phonolite Hill (northeastern Australia) and Heldburg (East Germany) is consistent with an origin by fractional crystallization of basanitic magmas at upper mantle pressures (10–15 kbar). At Bokkos, spatially associated lavas ranging from hawaiitic nepheline mugearite to nepheline benmoreite can be modeled very well by fractional crystallization of kaersutitic amphibole + olivine + Fe-Ti-spinel + apatite, a crystal extract consistent with experimentally-determined near-liquidus phase relationships for mugearitic liquids. Further fractional crystallization of aluminous clinopyroxene + mica + apatite will yield the phonolites. A similar model relating the unusual Iherzolite-bearing mafic nepheline benmoreite from Pigroot (New Zealand) to basanitic lavas of the East Otago province is not supported by major and trace element data. The Pigroot lava is possibly the product of melting of a mantle source region previously enriched in Sr and light rare earth elements, with subsequent minor fractional crystallization of olivine + kaersutite. Dynamic flow crystallization processes operating within conduit systems from mantle pressures are capable of yielding large volumes of evolved phonolitic liquids from primary basanitic liquids, if magma flow rates are appropriate. This mechanism may provide an explanation for the volumetric bias towards salic differentiates in some alkalic provinces.  相似文献   

17.
Most Ruapehu lavas and those of related vents (Taupo VolcanicZone, New Zealand) are calc-alkaline, medium-K basic and acidandesites, though minor volumes of basalt and dacite occur.Nearly all are porphyritic with phenocrysts of plagioclase,augite, olivine (mainly in basalts and basic andesites), orthopyroxene(mainly in acid andesites and dacites), and titanomagnetite(chrome spinel in basic lavas). The lavas have been subdividedinto six groups, each petrographically, geochemically and isotopicallydistinct: Type 1 plagioclase-pyroxene phyric lavas dominate,and range from basalt to dacite. Least squares mass balancecalculations indicate that these lavas were probably generatedfrom low-alumina basalt by combined crystal fractionation (15–55per cent) and crustal assimilation (1–30 per cent). Xenolithstudies indicate that the assimilant is most likely to be apartial melt of gneiss, originally Torlesse terrane greywacke.Crystal accumulation occurs to a minor extent in Type 1 lavasand becomes important in Type 2 (plagioclase-phyric) and Type3 (pyroxene-phyric) lavas. Type 4 lavas are rare and of unknownorigin, though they may be similar to rare hornblende-bearingandesites from nearby Maungakatote volcano. Type 5 lavas areclinopyroxene-olivine-phyric andesites which were probably generatedfrom a primitive basalt by crystal fractionation without crustalassimilation. Type 6 lavas show strong evidence of disequilibriumand were probably generated by mixing Type 5 basalt with Type1 dacite in proportions of between 60:40 and 50:50. The assertion that the assimilant involved in contaminationof most Ruapehu andesites is a partial melt of basement greywackeis a significant departure from previously published theoriesand has important implications for trace element and isotopicmodelling.  相似文献   

18.
本文对天池火山玄武岩盾,粗面质-碱流质层状锥体以及顶部的粗面质-碱流质碎屑岩类及熔岩的岩石矿物成分做了系统分析,发现在玄武岩类中的主要矿物组合为斜长石、富钙辉石以及富镁橄榄石,而粗面岩-碱流岩类的主要矿物组合为碱性长石、富铁的辉石及橄榄石,并开始出现石英、独居石以及大量的铁钛氧化物,符合结晶分异的演化趋势。同时在玄武岩类及粗面-碱流岩类中均存在不平衡矿物,再结合矿物环带的成分变化、矿物的熔蚀现象及不同特征的岩石条带等,认为天池火山在黑石沟玄武岩、第一、三造锥阶段粗面岩以及千年大喷发的浮岩中均存在岩浆混合作用。根据岩石学及年代学等特征,认为不同时期的玄武质岩浆来自同一地幔源区,经不同程度的结晶分异作用形成,前造锥阶段及造锥阶段的岩石由不同阶段的玄武岩演化而来,全新世的碱流岩类则由造锥阶段粗面岩类演化而来。  相似文献   

19.
We present new geochemical analyses of minerals and whole rocks for a suite of mafic rocks from the crustal section of the Othris Ophiolite in central Greece. The mafic rocks form three chemically distinct groups. Group 1 is characterized by N-MORB-type basalt and basaltic andesite with Na- and Ti-rich clinopyroxenes. These rocks show mild LREE depletion and no HFSE anomalies, consistent with moderate degrees (~15%) of anhydrous partial melting of depleted mantle followed by 30–50% crystal fractionation. Group 2 is represented by E-MORB-type basalt with clinopyroxenes with higher Ti contents than Group 1 basalts. Group 2 basalts also have higher concentrations of incompatible trace elements with slightly lower HREE contents than Group 1 basalts. These chemical features can be explained by ~10% partial melting of an enriched mantle source. Group 3 includes high MgO cumulates with Na- and Ti-poor clinopyroxene, forsteritic olivine, and Cr-rich spinel. The cumulates show strong depletion of HFSE, low HREE contents, and LREE enrichments. These rocks may have formed by olivine accumulation from boninitic magmas. The petrogenesis of the N-MORB-type basalts and basaltic andesites is in excellent agreement with the melting conditions inferred from the MOR-type peridotites in Othris. The occurrence of both N- and E-MORB-type lavas suggests that the mantle generating the lavas of the Othris Ophiolite must have been heterogeneous on a comparatively fine scale. Furthermore, the inferred parental magmas of the SSZ-type cumulates are broadly complementary to the SSZ-type peridotites found in Othris. These results suggest that the crustal section may be genetically related to the mantle section. In the Othris Ophiolite mafic rocks recording magmatic processes characteristic both of mid-ocean ridges and subduction zones occur within close spatial association. These observations are consistent with the formation of the Othris Ophiolite in the upper plate of a newly created intra-oceanic subduction zone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Petrological and geochemical investigations have been conducted on the little studied Neogene basaltic rocks of the Madeiran Islands. The Madeiran suite of minor intrusives and lavas consists of parental, unusually soda rich, alkali olivine basalts with hawaiite, mugearite and essexite derivatives. Olivine and clinopyroxene are dominant phenocryst and cumulus nodule phases. Low pressure fractionation of the parental magma by precipitation of these minerals gave rise to the hawaiitic trend. That olivine settling precedes clinopyroxene in the fractionation process can be deduced from Ca and Ni variations in the analysed rocks and phenocryst separates. Late stage feldspar flotation in a hawaiitic derivative liquid led to extrusive mugearites and an intrusive essexite.Low K/Rb ratios in the Madeiran basalts (ave. 325) point to the influence of phlogopite rather than hornblende in the mantle melting zone. The primitive alkali olivine basalt magma is thought to have arisen by partial melting following water release from small amounts of phlogopite (no more than 1%) at mantle depths around 100 km. A deep level of magma generation is consistent with the low values of heat flow recorded in ocean basins. Many other oceanic alkali basalt provinces remote from ridge systems may have arisen in a similar way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号