首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Chemical analyses of over seventy lavas or dykes containing spinel lherzolite inclusions of high pressure mineralogy, show that most host magmas are of alkali olivine basalt or basanite composition with relatively rare olivine nephelinites, and olivine melilitites. The 100 Mg/Mg+Fe++ ratios of host magmas display a strong maximum at about Mg70 consistent with partial melting of source peridotite with olivine of Fo88–90. In contrast to these primary magmas, there occur some host magmas with 100 Mg/Mg+Fe++<60 and with chemical compositions resembling those of classical hawaiite, mugearite, and nepheline benmoreite magmas. It is inferred that these magmas have been produced by crystal fractionation, within the upper mantle, of parental basanites or alkali olivine basalts. The presence of kaersutitic hornblende xenocrysts accompanying the lherzolite inclusions, and the nature of the chemical variation between associated basanites and nepheline benmoreites suggests that crystal fractionation has been dominated by kaersutitic hornblende, together with olivine and, in some cases, probably clinopyroxene. The mantle-derived nepheline benmoreite magmas also show similarities to some plutonic nepheline syenites.  相似文献   

2.
Experimental study of natural alkalic lava compositions at low pressures (pO2QFM) reveals that crystallization of primitive lavas often occurs in the sequence olivine, plagioclase, clinopyroxene, nepheline without obvious reaction relation. Pseudoternary liquidus projections of multiply saturated liquids coexisting with plagioclase (±olivine±clinopyroxene±nepheline) have been prepared to facilitate graphical analysis of the evolution of lava compositions during hypabyssal cooling. Use of (TiAl2)(MgSi2)–1 and Fe3+ (Al)–1 exchange components is a key aspect of the projection procedure which is succesful in reducing a wide range of compositions to a systematic graphical representation. These projections, and the experiments on which they are based, show that low pressure fractionation plays a significant role in the petrogenesis of many alkalic lava suites from both continental and oceanic settings. However, the role of polybaric fractionation is more evident in the major element chemistry of these lava suites than in many tholeiitic suites of comparable extent. For example, the lavas of Karisimbi, East Africa, show a range of compositions reflecting a polybaric petrogenesis from primitive picrites at 1360° C/18 kb and leading to advanced low pressure differentiates. Evolved leucite-bearing potassic members of this and other suites may be treated in a nepheline-diopside-kspar (+olivine+leucite) projection. Compositional curvature on the plagioclase+clinopyroxene+olivine+leucite cotectic offers a mechanism to explain resorption of plagioclase in alkalic groundmass assemblages and the incompatibility of albite and leucite. This projection is useful for evaluating the extent of assimilation of the alkalic portions of crustal granulites. Assimilation appears to have played some role in the advanced differentiates from Karisimbi.  相似文献   

3.
The results of experimental studies and examination of variations in major elements, trace elements and Sr isotopes indicate that fractionation, assimilation and magma mixing combined to produce the lavas at Medicine Lake Highland. Some characteristics of the compositional differences among the members of the calc-alkalic association (basalt-andesite-dacite-rhyolite) can be produced by fractional crystallization, and a fractionation model reproduces the major element trends. Other variations are inconsistent with a fractionation origin. Elevated incompatible element abundances (K and Rb) observed in lavas intermediate between basalt and rhyolite can be produced through assimilation of a crustal component. An accompanying increase in 87Sr/86Sr from ∼ 0.07030 in basalt to ∼0.7040 in rhyolite is also consistent with crustal assimilation. The compatible trace element contents (Ni and Sr) of intermediate lavas can not be produced by fractional crystallization, and suggest a magma-mixing origin for some lavas. Unusual phenocryst assemblages and textural criteria in these lavas provide additional evidence for magma mixing. A phase diagram constructed from the low pressure melting experiments identifies a distributary reaction point, where olivine+augite react to pigeonite. Parental basalts reach this point at low pressures and undergo iron-enrichment at constant SiO2 content. The resulting liquid line of descent is characteristic of the tholeiitic trend. Calc-alkalic differentiation trends circumvent the distributary reaction point by three processes: fractionation at elevated pH2O, assimilation and magma mixing.  相似文献   

4.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

5.
Basaltic glasses from the three alkalic areas of Iceland (Snaefellsnes Volcanic Zone, Sudurland Volcanic Zone and Vestmannaeyjar Volcanic Area) contain plagioclase, olivine, clinopyroxene, chromian spinel and titanomagnetite as phenocryst phases. The glasses are hypersthene to nepheline normative alkali basaltic with FeO/ MgO ratios between 1.4–4.7. Olivine ranges in composition from Fo90 to Fo55, plagioclase from An90 to An50 and clinopyroxene from En45Fs10Wo45 to En40Fs17Wo43. Clinopyroxene reveals systematic Ti:Al metastable crystallization trends related to the composition of the enclosing glass. Two types of phenocryst are present in most glasses and show a bimodality in size and composition. Microphenocryst phases are those most likely to have crystallized from the enclosing glass, while macrophenocrysts may have crystallized from a liquid of slightly less evolved composition. The glasses show complex phenocryst-glass relations which can be related to a polybaric effect. The normative glass compositions are related to 2-phase cotectic surfaces in the basalt tetrahedron and define the position of the 3-phase cotectic line. In general with increasing FeO/MgO in the glass the phenocryst assemblages vary from clinopyroxene, olivine and plagioclase along a clinopyroxene-olivine surface to olivine and plagioclase along an olivine-plagioclase surface. The normative glass compositions show a deflection from clinopyroxene-bearing to clinopyroxene-free glasses. The appearance of plagioclase together with clinopyroxene and olivine can be explained in the light of experimental investigations of the effect of pressure on phase relations. The major element variation of the glasses is interpreted as representing mantle derived magma batches of primary liquids, modified to some degree by high (6 kbar) and intermediate to low pressure (below 3 kbar) crystal fractionation towards equilibrium phase relations during ascent and residence in crustal magma chambers. The observed deflection in normative compositions of the glasses marks the position of the high pressure 3-phase cotectic line. The bimodality in size and composition of plagioclase and olivine phenocrysts can be related to high pressure crystal fractionation in the melt. The Fe-Ti basalt glasses from Sudurland are believed to be quenched high pressure compositions.  相似文献   

6.
High pressure cognate inclusions in the Newer Volcanics of Victoria   总被引:6,自引:0,他引:6  
High pressure pyroxene- and amphibole-rich inclusions are found in a number of Victorian Newer Volcanics volcanoes. The host lavas range from nepheline basanite to nepheline hawaiite and nepheline mugearite. The wide variation in chemistry and mineralogy of the inclusions is explained by crystallization from basaltic magmas under varying P-T and PH2O conditions at depth. At moderate pressure wehrlite inclusions (ol+cpx) form, whereas at higher pressures pyroxenites (opx+cpx) and genetically related megacrysts form. Under relatively anhydrous conditions the clinopyroxene megacrysts show a trend of Ca enrichment whereas under hydrous conditions, when amphibole is also stable, the pyroxene shows a trend to greater iron enrichment. The trend nepheline basanite to nepheline mugearite has developed by extensive fractionation of amphibole at elevated pressures under hydrous conditions. Under less hydrous conditions where clinopyroxene assumes the dominant role during crystal fractionation, derivative liquids display a trend of increasing K2O/Na2O ratio, with little modification of their level of undersaturation. Olivine plays a decreasing role in crystal fractionation processes with increasing pressure. The available evidence indicates that the only magma which could have been parental to the observed basanites was a more picritic basanite.  相似文献   

7.
Glass inclusions in olivines of the Renazzo, El Djouf 001, and Acfer 182 CR-type chondrites are chemically divers and can be classified into Al-rich, Al-poor, and Na-rich types. The chemical properties of the glasses are independent of the occurrence of the olivine (isolated or part of an aggregate or chondrule) and its composition. The glasses are silica-saturated (Al-rich) or oversaturated (Al-poor, 24% normative quartz). All glasses have chondritic CaO/Al2O3 ratios, unfractionated CI-normalized abundances of refractory trace elements and are depleted in moderately volatile and volatile elements. Thus the glasses are likely to be of a primitive condensate origin whose chemical composition has been established before chondrule formation and accretion, rather then the product of either crystal fractionation from chondrule melts or part melting of chondrules. Rare Na-rich glasses give evidence for elemental exchange between the glass and a vapor phase. Because they have Al2O3 contents and trace element abundances very similar to those of the Al-rich glasses, they likely were derived from the latter by Ca exchange (for Na) with the nebula. Elemental exchange reactions also have affected practically all olivines (e.g., exchange of Mg of olivine for Fe2+, Mn2+, and Cr3+). Glasses formed contemporaneously with the host olivine. As the most likely process for growing nonskeletal olivines from a vapor we consider the VLS (vapor-liquid-solid) growth process, or liquid-phase epitaxy. Glasses are the possible remnants of the liquid interface between growing crystal and the vapor. Such liquids can form stably or metastably in regions with enhanced oxygen fugacity as compared to that of a nebula of solar composition.  相似文献   

8.
Fe-rich tholeiitic liquids are preserved as chilled pillows and as the chilled base of a 27 meter thick macrorhythmic layer in the Pleasant Bay mafic-silicic layered intrusion. The compositions of olivine (Fo1) and plagioclase (An13−8) in these extremely fine grained rocks suggest that they represent nearly end stage liquids that formed by fractionation of tholeiitic basalt. Their major element compositions (∼17.5 wt% FeOT and 54 wt%SiO2) closely resemble highly evolved glasses in the Loch Ba ring dike and some recent estimates of end-stage liquids related to the Skaergaard layered intrusion, and are consistent with recent experimental studies of tholeiite fractionation. Their trace element compositions are consistent with extensive earlier fractionation of plagioclase, olivine, clinopyroxene, ilmenite, magnetite and apatite. The mineral assemblage of the chilled rocks (olivine, clinopyroxene, quartz, ilmenite and magnetite), apatite saturation temperatures, and very low Fe3+/Fe2+indicate conditions of crystallization at temperatures of about 950 °C and f O 2 about two log units below FMQ. Cumulates that lie about 3 meters above the chilled base of the macrorhythmic layer contain cumulus plagioclase, olivine, clinopyroxene, ilmenite, apatite and zircon. This mineral assemblage and the Fe-Mg ratio in clinopyroxene cores suggest that this cumulate was in equilibrium with a liquid having a composition identical to that of the chilled margin which lies directly beneath it. The high FeOT and low SiO2 concentrations of this cumulate (23.3 and 45.8 wt%, respectively) are comparable to those in late stage cumulates of the Skaergaard and Kiglapait intrusions. This association of a chilled liquid and cumulate in the Pleasant Bay intrusion suggests that late stage liquids in tholeiitic layered intrusions may have been more SiO2-rich than field-based models suggest and lends support to recent experimental studies of tholeiite fractionation at low f O2 which indicate that saturation of an Fe-Ti oxide phase should cause FeOT to decrease in the remaining liquid. Received: 17 January 1997 / Accepted: 10 June 1997  相似文献   

9.
Plagioclase in olivine metagabbros metasomatized by nepheline syenite magmas was replaced by intergrowths of nepheline and vesuvianite or salite together with smaller amounts of calcic amphibole. Olivine was simultaneously replaced by diopside. The survival of the gross features of protolith textures and clustering of line intersections in composition-volume diagrams suggest that nephelinization took place at approximately constant volume and oxygen content. Nephelinization involved the introduction of Na, K and Fe3+ in an infiltrating peralkaline fluid and depletion of Fe2+ and Fetot and was promoted by the primary mineral parageneses of the protoliths. Concurrent fenitization of quartzo-feldspathic gneiss without the generation of feld-spathoids shows that the processes of nephelinization and fenitization may result from the same fluid.  相似文献   

10.
Between 1759 and 1774, Jorullo Volcano and four associated cinder cones erupted an estimated 2 km3 of magma which evolved progressively with time from early, hypersthene-normative, primitive basalts to late-stage, quartz-normative, basaltic andesites. All lavas contain <6 vol% phenocrysts of magnesian olivine (Fo90-70) with Cr-Al-Mg-spinel inclusions, and microphenocrysts of plagioclase and augite; late-stage basaltic andesites also carry phenocrysts of plagioclase, augite, and rare orthopyroxene, hornblende pseudomorphs, and microphenocrysts of titanomagnetite. Olivine-melt compositions indicate liquidus temperatures ranging from 1,230° C to 1,070° C in the early- and late-stage lavas, respectively; \(f_{{\text{O}}_{\text{2}} } \) was about 0.6 log units above the Ni-NiO buffer in the early lavas but increased to 2.5 log units above Ni-NiO in the late lavas, perhaps through groundwater-magma interaction. Smooth major and trace element compositional trends in the lavas can be largely modeled by simple crystal fractionation of olivine, augite, plagioclase, and minor spinel. La, Ce, and other incompatible elements (Rb, Sr, Ba, Hf, Th, Ta), however, are anomalously enriched in the latestage lavas, whereas the heavy rare earth elements (Dy, Yb, Lu) are anomalously depleted. The modeled crystal fractionation event must have occurred at lower-crustal to upper-mantle pressures (8–15 kb), although the crystals actually present in the Jorullo lavas appear to have formed at low pressures. Thus, a two-stage crystallization history is implied. Despite the presence of granitic xenoliths in middle-stage lavas from Jorullo, bulk crustal assimilation appears to have played an insignificant role in generating the compositional trends among the lavas. As MgO decreases from 9.3 to 4.3 wt% through the suite, Al2O3 increases from 16.4 to 19.1 wt%. Most highalumina basalts reported in the literature have 18 to 21 wt% Al2O3, but are too depleted in MgO, Ni, and Cr to have been generated directly through mantle partial melting. These high-alumina basalts have probably undergone significant fractionation of olivine, augite, plagioclase, and spinel from primitive parental basalts similar to the early Jorullo lavas. Such primitive basalts are rarely erupted in mature arcs and may be completely absent from mature stratovolcanoes. Cerro La Pilita is a late-Quaternary cinder and lava cone centered just 3 km south of Jorullo. The primitive trachybasalts of Cerro La Pilita, however, are radically different from the Jorullo basalts. They are nepheline normative with high concentrations of K2O (>2.5 wt%), P2O5 (>0.9 wt%), Ba (1,200 ppm), Sr (>2,000 ppm), and many other incompatible elements, and contain crystals of hornblende and apatite in addition to olivine, spinel, augite, and plagioclase. The magmas of these two neighboring volcanoes cannot be related to one another by any simple mechanism, and must represent fundamentally different partial melting events in the mantle. The contrasts between Jorullo and Cerro La Pilita demonstrate the difficulty in defining simple relationships between magma type and distance from the trench in the Mexican Volcanic Belt.  相似文献   

11.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

12.
Shombole, a nephelinite-carbonatite volcano in south Kenya, erupted silicate lavas, carbonatite dikes and tuffs, and pyroclastic rocks similar to those at other East African alkaline centres. Shombole lavas containing cpx + nepheline + accessory minerals range from perovskite-bearing nephelinites (43% SiO2, volatile-free) to sphene-bearing and phonolitic nephelinites (46–49% SiO2) and phonolites (49–56% SiO2) and have low peralkalinity ([Na+K]/Al 1.15) which does not correlate with SiO2. Early fractionation of olivine and clinopyroxene strongly depleted Ni and Cr concentrations (10 ppm); fractionation of perovskite, melanite, sphene, and apatite produced negative correlations of all REE with SiO2. Many lavas contain cognate intrusive xenoliths and xenocrysts and oscillatory zoning is a common feature of clinopyroxene, nepheline, and melanite crystals, indicating recycling of intrusive material. Irregular calcite-rich bodies in many samples are interpreted as quenched immiscible Ca-carbonatite liquid, and [Ca-carbonate]-silicate liquid immiscibility is observed in experiments with one nephelinite. Chemical variation in the Shombole suite can be modeled as a combination of crystal fractionation (clinopyroxene and heavy minor phases) and retention of neutral density nepheline derived from disaggregated xenoliths entrained during emplacement of dike swarms. Six newly analyzed lavas from Oldoinyo L'engai, northern Tanzania, are geochemically similar to Shombole nephelinites except that they have relatively high Na2O+K2O (average 18% vs 12%) and Zr (average 680 ppm vs 400 ppm). They are extremely peralkaline and are not typical of nephelinites from other centres. Three with [Na+K]/Al1.5 contain euhedral wollastonite phenocrysts; three with [Na+K]/Al2.0 contain combeite (Na2Ca2Si3O9) phenocrysts and pseudomorphs after wollastonite. Both types contain abundant sodalite phenocrysts (+nepheline+clinopyroxene+melanite+sphene). Seven other wollastonite nephelinite samples from L'engai have been described, but it is a lava type rarely seen in other centres. Combeite has been described from only two other locations (Mt. Shaheru, Zaire; Mayener Feld, Eifel). The hyperalkaline L'engai nephelinites have compositions similar to those of experimental silicate liquids immiscible with natrocarbonatite. Textural evidence for both carbonate-silicate (as carbonate globules) and silicate-silicate (as two optically discrete glasses with distinct compositions) liquid immiscibility is observed in the samples.  相似文献   

13.
The exsolutious of diopside and magnetite occur as intergrowth and orient within olivine from the mantle dunite, Luobusa ophiolite, Tibet. The dunite is very fresh with a mineral assemblage of olivine (〉95%) + chromite (1%-4%) + diopside (〈1%). Two types of olivine are found in thin sections: one (Fo = 94) is coarse-grained, elongated with development of kink bands, wavy extinction and irregular margins; and the other (Fo = 96) is fine-grained and poly-angied. Some of the olivine grains contain minor Ca, Cr and Ni. Besides the exsolutions in olivine, three micron-size inclusions are also discovered. Analyzed through energy dispersive system (EDS) with unitary analytical method, the average compositions of the inclusions are: Na20, 3.12%-3.84%; MgO, 19.51%-23.79%; Al2O3, 9.33%-11.31%; SiO2, 44.89%-46.29%; CaO, 11.46%-12.90%; Cr2O3, 0.74%-2.29%; FeO, 4.26%- 5.27%, which is quite similar to those of amphibole. Diopside is anhedral f'dling between olivines, or as micro-inclusions oriented in olivines. Chromite appears euhedral distributed between olivines, sometimes with apparent compositional zone. From core to rim of the chromite, Fe content increases and Cr decreases; and A! and Mg drop greatly on the rim. There is always incomplete magnetite zone around the chromite. Compared with the nodular chromite in the same section, the euhedral chromite has higher Fe3O4 and lower MgCr2O4 and MgAI2O4 end member contents, which means it formed under higher oxygen fugacity environment. With a geothermometer estimation, the equilibrium crystalline temperature is 820℃-960℃ for olivine and nodular chromite, 630℃-770℃ for olivine and euhedral chromite, and 350℃-550℃ for olivine and exsoluted magnetite, showing that the exsolutions occurred late at low temperature. Thus we propose that previously depleted mantle harzburgite reacted with the melt containing Na, Al and Ca, and produced an olivine solid solution added with Na^+, Al^3+, Ca^2+, Fe^3+, Cr^3+. With temperature d  相似文献   

14.
Two suites of felsic eruptives and intrusives are represented in a set of samples from the summit region of the Plio-Pleistocene volcano, Mt. Kenya. Most of the samples are moderately or strongly undersaturated and have 87Sr/86Sr initial ratios in the range 0.70360–0.70368 (mean=0.70362). Members of this phonolitic suite are phonolites, nepheline syenites or kenytes and as a group they show a wide variation in TiO2, FeO, P2O5, Sr, Ba, Zr and Nb. The minor and trace element geochemistry reflect variation in the nature of the parental basaltic magmas from which the phonolitic rocks evolved and variation in the crystal fractionation process in individual cases. Crystal fractionation involving plagioclase, alkali feldspar, clinopyroxene, olivine and magnetite is the process by which most of the phonolitic rocks evolved and variation in the relative proportions of these phases in individual cases has led to a broad spectrum of trace and minor element behaviour. The second suite of felsic samples is critically saturated and consists of trachytes showing either slight oversaturation or slight undersaturation with respect to SiO2. This trachyte suite has lower initial 87Sr/86Sr ratios (mean=0.70355) and is derived from transitional alkalic basalts by low pressure (crustal) crystal fractionation involving feldspar, clinopyroxene, magnetite and olivine. The range in minor and trace element chemistry observed among the felsic rocks is a consequence of variation in the parental basalts which is related to mantle source variation and to the specific nature of the crystal fractionation process.  相似文献   

15.
At Medicine Lake Volcano, California, the compositional gap between andesite (57–62 wt.% SiO2) and rhyolite (73–74 wt.% SiO2) has been generated by fractional crystallization. Assimilation of silicic crust has also occurred along with fractionation. Two varieties of inclusions found in Holocene rhyolite flows, hornblende gabbros and aphyric andesites, provide information on the crystallization path followed by lavas parental to the rhyolite. The hornblende gabbros are magmatic cumulate residues and their mineral assemblages are preserved evidence of the phases that crystallized from an andesitic precursor lava to generate the rhyolite lavas. The andesitic inclusions represent samples of a parental andesite and record the early part of the differentiation history. Olivine, plagioclase and augite crystallization begins the differentiation history, followed by the disappearance of olivine and augite through reaction with the liquid to form orthopyroxene and amphibole. Further crystallization of the assemblage plagioclase, amphibole, orthopyroxene, magnetite, and apatite from a high-SiO2 andesite leads to rhyolite. This final crystallization process occurs on a cotectic that is nearly horizontal in temperature-composition space. Since a large amount of crystallization occurs over a limited temperature interval, a compositional gap develops between rhyolite and high SiO2 andesite.Liquidus surfaces with shallow slopes in temperature-composition space are characteristic of several late-stage crystallization assemblages in the andesite to rhyolite compositional range. Experimentally produced plagioclase+ amphibole+orthopyroxene+magnetite and plagioclase+ augite+low-Ca pyroxene+magnetite cotectics have liquidus slopes that are nearly flat. At other calc-alkaline volcanic centers crystallization processes involving large compositional changes over small temperature intervals may also be important in the development of bimodal volcanism (i.e. the existence of a composition gap). At Mt. Mazama and Mt. St. Helens, USA and Aso Caldera and Shikotsu, Japan the amphibole-bearing assemblage was important. At Krakatau, Indonesia and Katmai, USA, an augite+orthopyroxene-bearing assemblage was important. In addition to its role in the production of a compositional gap between intermediate and rhyolitic lavas, the crystallization process increases the H2O content of the residual liquid. This rapid increase in residual liquid volatile content which results from the precipitation of a large proportion of crystalline solids may be an important factor among several that lead to explosive silicic eruptions.  相似文献   

16.
The field setting, petrography, mineralogy, and geochemistry of a suite of picrite basalts and related magnesian olivine tholeiites (New Georgia arc picrites) from the New Georgia Volcanics, Kolo caldera in the active ensimatic Solomon Islands arc are presented. These lavas, with an areal extent in the order of 1002 km and almost 1 km thick in places, are located close to the intersection of the Woodlark spreading zone with the Pacific plate margin. They contain abundant olivine (Fo94-75) and diopside (Cr2O3 1.1-0.4%, Al2O3 1–3%), and spinels characterised by a large range in Cr/(Cr+Al) (0.85–0.46) and Mg/(Mg+ Fe++) (0.65–0.1). The spinels are Fe+++ rich, with Fe+++/ (Fe++++Cr+Al) varying from 0.06 to 1.0. A discrete group of spinels with the highest Cr/(Cr+Al) (0.83–0.86) and lowest Fe+++ contents are included in the most Mg-rich olivine (Fo91–94) and both may be xenocrystal in origin.The lavas, which range between 10–28% MgO, define linear trends on oxide (element) — MgO diagrams and these trends are interpreted as olivine (0.9) clinopyroxene (0.1) control lines. For the reconstructed parent magma composition of these arc picrites, ratios involving CaO, Al2O3, TiO2, Zr, V and Sc are very close to chondritic. REE patterns are slightly LREE — enriched ((La/Sm)N 1.3–1.43) and HREE are flat. All lavas show marked enrichments in K, Rb, Sr, Ba, and LREE relative to MORB with similar MgO contents, but the TiO2 content of the proposed parent magma is close to those of postulated primary MORB liquids. It is proposed that the arc parent magma was produced by partial melting of sub-oceanic upper mantle induced by the introduction of LILE — enriched hydrous fluids derived by dehydration and/or partial melting of subducted ocean crust and possibly minor sediments.  相似文献   

17.
A variety of alkaline lavas from the Dunedin Volcano have been analyzed for the rare earth elements (REE) La-Yb. The compositions analyzed were: basalt-hawaiite-mugearite-benmoreite; basanite, nepheline hawaiite, nepheline trachyandesite and nepheline benmoreite; trachyte; phonolite. The series from basalt to mugearite shows continuous enrichment in the REE, consistent with a crystal fractionation model involving removal of olivine and clinopyroxene. From mugearite to benmoreite there is a depletion in the REE which is explained by the appearance of apatite as a liquidus phase. The chondrite normalized REE patterns for the phonolites are characterized by strong enrichment and fractionation coupled with a sharp depletion in Eu. Removal of plagioclase from benmoreite magma is suggested for the derivation of the phonolites. The series basanite-nepheline hawaiite, and basanite-nepheline hawaiite-nepheline benmoreite appear to be high pH2O analogues of the series basalt-ben-moreite, with enrichment of the REE being achieved by removal of clinopyroxene, kaersutite and olivine. Compared with other lavas the trachyte has low REE abundances and is characterized by a striking positive Eu anomaly.  相似文献   

18.
Anjouan is one of four volcanic islands comprising the Comores Archipelago. Three (arbitrarily defined) categories of basic magma are recognised on Anjouan: ‘hypersthenenormative’, ‘alkalic’ and ‘basanitic’, which appear in that order with an eruptive sequence involving 1) shield construction, 2) peripheral fissure-controlled activity, and 3) rejuvenescent (posterosional) eruptions. Differentiated magmas have evolved within the three chemical groupings, and trend mainly towards undersaturated trachyte and phonolite. These trends are considered to have developed by initial removal of olivine and clinopyroxene, followed by Fe-Ti oxides, apatite and amphibole from arrested liquid pools within and beneath the volcano. The appearance of feldspar on the liquidus was clearly inhibited by the high contents of normative diopside in most Anjouan magmas, although late stage plagioclase fractionation is probably responsible for development of peralkaline phonolites at shallow depths, assisted eventually by alkali feldspar. Lherzolite-xenolith-bearing lavas are likely to be directly mantle-derived liquids. Three analysed representatives with 100 · Mg/Mg + Fe2+ (atomic) ratios approaching 70 are characteristically rich in normative diopside and may confirm the suggestion of primitive ankaramitic melts in mantle regions. High pressure fractional crystallisation may involve fractionation of ‘eclogite’, orthopyroxene or clinopyroxene, with or without olivine. It is believed however that such processes do not adequately explain the compositional change from hypersthene-normative basalt towards basanite, as they imply unacceptable degrees of Fe-enrichment. Problems of large ion element enrichment and fractionation would also remain, while the high contents of Cr and Ni place limits on the extent of crystal fractionation. A partial melting model of magma genesis is able to explain the main features of basalt geochemistry, especially if the upper mantle low velocity zone is regarded as having been severely fractionated due to upward migration of large ion elements. An ‘open’ system of magma production in the context of regional plate movement, and the implied decoupling between lithosphere and asthenosphere, accomodates realistic degrees of partial melting and allows a greater potential volume of mantle available for melting than possible ‘closed’ systems. The model also accounts for the migratory pattern of Comores volcanism.  相似文献   

19.
Exsolution microstructures in olivine grains from dunite units in a few selected tectonic environments are reported here. They include lamellae of clinopyroxene and clinopyroxene-magnetite intergrowth in the Gaositai and Yellow Hill Alaskan-type complexes, clinopyroxene-magnetite intergrowth in the K?z?lda? ophiolite, and chromite lamellae in the Hongshishan mafic-ultramafic intrusive complex. These lamellae commonly occur as needle-or rod-like features and are oriented in olivine grains. The host olivine grains have Fo contents of 92.5–92.6 in the Gaositai complex, 86.5–90.1 in the Yellow Hill complex, 93.2–93.4 in the K?z?lda? ophiolite and 86.9–88.3 in the Hongshishan complex. Clinopyroxene in the rod-like intergrowth exsolved in olivine grains in the Gaositai and Yellow Hill is diopside with similar major element compositions of Ca O(23.6–24.3 wt%), SiO_2(52.2–54.0 wt%), Al_2O_3(0.67–2.15 wt%), Cr_2O_3(0.10–0.42 wt%) and Na_2O(0.14–0.26 wt%). It falls into the compositional field of hydrothermal clinopyroxene and its origin is thus probably related to reaction between dunite and fluids. The enrichment of the fluids in Ca~(2+), Fe~(3+), Cr~(3+) and Na+, resulted in elevated concentrations of these cations in olivine solid solutions via the reaction. With decreasing temperature, the olivine solid solutions altered to an intergrowth of magnetite and clinopyroxene. The Fe~(3+) and Cr~(3+) preferentially partitioned into magnetite, while Ca~(2+) and Na+ entered clinopyroxene. Since the studied Alaskan-type complexes and ophiolite formed in a subduction environment, the fluids were probably released from the subducted slab. In contrast, the exsolved chromite in olivine grains from the Hongshishan complex that formed in post-orogenic extension setting can be related to olivine equilibrated with Cr-bearing liquid. Similarly, these lamellae have all been observed in serpentine surrounding olivine grains, indicating genetic relations with serpentinization.  相似文献   

20.
The major and trace element chemistry of phonolites containing spinel Iherzolite xenoliths from Bokkos (Nigeria), Phonolite Hill (northeastern Australia) and Heldburg (East Germany) is consistent with an origin by fractional crystallization of basanitic magmas at upper mantle pressures (10–15 kbar). At Bokkos, spatially associated lavas ranging from hawaiitic nepheline mugearite to nepheline benmoreite can be modeled very well by fractional crystallization of kaersutitic amphibole + olivine + Fe-Ti-spinel + apatite, a crystal extract consistent with experimentally-determined near-liquidus phase relationships for mugearitic liquids. Further fractional crystallization of aluminous clinopyroxene + mica + apatite will yield the phonolites. A similar model relating the unusual Iherzolite-bearing mafic nepheline benmoreite from Pigroot (New Zealand) to basanitic lavas of the East Otago province is not supported by major and trace element data. The Pigroot lava is possibly the product of melting of a mantle source region previously enriched in Sr and light rare earth elements, with subsequent minor fractional crystallization of olivine + kaersutite. Dynamic flow crystallization processes operating within conduit systems from mantle pressures are capable of yielding large volumes of evolved phonolitic liquids from primary basanitic liquids, if magma flow rates are appropriate. This mechanism may provide an explanation for the volumetric bias towards salic differentiates in some alkalic provinces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号