首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Influence of Casing Materials on Trace-Level Chemicals in Well Water   总被引:1,自引:0,他引:1  
Four well casing materials — polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), and stainless steel 304 (SS 304) and 316 (SS 316) — were examined to determine their suitability for monitoring inorganic and organic constituents in well water.
The inorganic study used a factorial design to test the effect of concentration of mixed metals (arsenic [As], chromium [Cr], lead [Pb], and cadmium [Cd]), pH, and organic carbon. Sample times were 0.5, 4, 8, 24, and 72 hours. Except for slow loss of Pb, PTFE well casings had no significant effect on the concentration of metals in solution. For the other casings, changes in analyte concentration often exceeded 10 percent in eight hours or less and, thus, could bias analyses of samples taken from wells constructed with these materials. Specifically, PVC casings sorbed Pb and leached Cd; SS 316 casings sorbed As and Pb and leached Cd; and SS 304 casings sorbed As, Cr, and Pb and leached Cd. Both stainless steel casing materials showed markedly poorer performance than the PVC casings.
The well casings were also tested for sorption/desorption of 10 organic substances from the following classes: chlorinated alkehes, chlorinated aromatics, nitroaromatics and nitramines. Sample times were 0, 1, 8, 24, and 72 hours, seven days, and six weeks. There were no detectable losses of analytes in any of the sample solutions containing stainless steel well casings. Significant loss of some analytes was observed in sample solutions containing plastic casings, although losses were always more rapid with the PTFE casings than with PVC. Chlorinated organic substances were lost most rapidly. For samples containing PTFE casings, losses of some of these compounds were rapid enough (>10 percent in eight hours) to be of concern for ground water monitoring. Losses of hydrophobic organic constituents in samples containing PTFE casings were correlated with the compound's octanol/water partition coefficient.  相似文献   

2.
Static leaching and sorption laboratory studies were performed to assess the potential of polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), and two types of stainless steel (SS 304 and SS 316) well casing materials to influence metal concentrations in ground water solutions with low dissolved oxygen. Overall, PTFE was inert, whereas one or both stainless steels significantly altered the solution concentrations of Cd, Cr, Cu, Pb, Fe, and Ni. PVC was generally more reactive than PTFE, but did not significantly alter the solution metal concentrations as often, or as greatly, as either of the stainless casings.  相似文献   

3.
Previous research has shown that the most commonly used well casing materials-stainless steel. polyvinyl chloride (PVC). and polytetra-fluoroethylene (PTFE)-are not suited for all monitoring environments and applications. This study is part of a series of experiments that were conducted to determine the suitability of four other polymeric well casing materials-acrylonitrile butadiene styrene (ABS), fluorinalcd ethylene propylene (FHP), fiberglass-reinlorced epoxy (FRE), and fiberglass-reinforced plastic (FRP)- for use in ground water monitoring wells. In these studies, these four materials were compared with two other commonly used polymeric well casings, PVC and PTFE. Part I of these studies examines the resistance of these materials to degradation by chemicals. Future reports will consider sorption and leaching of organic and metal contaminants.
In this study, the six materials were exposed to 28 neat organic compounds (including one acid) and to extremely acidic and alkaline aqueous solutions for up to 112 days. This was done to simulate the most aggressive environments to which monitoring well casings may be exposed. The casings were observed for changes in weight and signs of physical degradation (swelling, softening, deterioration, or dissolution).
The two fluorinated polymers (FEP and PTFE) were not degraded by any of the lest chemicals. Among the nonfluorinated products tested. FRE was the most inert. Three organic chemicals caused the glass fibers to separate. and two organic solvents caused weight gains exceeding 10 percent. ABS was the most readily degraded material tested. By the end of the study, only the acid and alkaline solutions had little effect on ABS. FRP was more severely degraded by the organic chemicals than FRH but was less affected than PVC. FRP and FRE. lost weight when exposed to the highly acidic conditions.  相似文献   

4.
This series of experiments was initiated to determine the overall suitability of three alternative polymeric well casing materials (fluorinated ethylene propylene [FEP], fiberglass-reinforced epoxy [FRE], and fiberglass-reinforced plastic [FRP]) for use in ground water monitoring wells and to compare these materials with polyvinyl chloride (PVC) and polytetrafluoroethylene (PTFE) well casings. This paper focuses on sorption and leaching of metals.
Generally, the fiberglass materials leached more metal contaminants than PVC, FEP, and PTFE. However, with one exception (Pb leaching from FRP), leached concentrations were below maximum allowable limits set by the U.S. Environmental Protection Agency (EPA) for drinking water. With respect to sorption, none of the polymers sorbed the anions tested, but all of them sorbed one or more of the cations tested. FEP and PTFE were much less sorptive than the other materials.  相似文献   

5.
Studies have shown that materials, such us polytetra-fluoroethylene (PTFE), rigid polyvinyl chloride (rigid PVC). flexible polyvinyl chloride (flexible PVC), stainless steel (SS). low-density polyethylene (LDPE), and high-density polyethylene (HDPE), have the potential to influence certain analyte concentrations in ground water samples. The effects of HDPE, LDPE, PTFE, rigid PVC, and SS on aqueous concentrations of nitrate-N, atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were evaluated in a field study A laboratory study was conducted to evaluate sorption of atrazine DEA, DIA, cyanazine, alachlor, metolachlor, and butachlor to PTFE, HDPE, and SS materials. Butachlor is rarely use in the United States, but was included because of its expected high sorptivity. No significant differences between HDPE, LDPE, PTFE, rigid PVC, and SS were determined for any of the analytes tested in the field study. In the laboratory study, sorption of DIA to PTFE and SS was significant at 2.6 × 10−5 and 4.1 × 10−5μg/m2 respectively. Sorption of DIAA to HDPE was not significantly > 0 sorption of all other compounds to HDPE, PTFE, and SS were also not significantly >0. Results of the two studies indicate that for these analytes (relatively polar or ionized compounds), representative ground water samples are not dependent on the materials used for multilevel sampler construction. When considering these compounds, it appears that the least expensive materials (HDPE, rigid PVC, and LDPE) are good choices for the construction of ground water monitoring wells.  相似文献   

6.
A number of samples of polyvinyl chloride (PVC) well casings used for ground water monitoring that varied in schedule, diameter or manufacturer were placed in contact with low concentrations of aqueous solutions of TNT, RDX, HMX and 2,4-DNT for 80 days. Analysis indicated that there was more loss of TNT and HMX with the PVC casing than with the glass controls, but that the amount lost was, for the most part, equivalent among different types. A second experiment was performed to determine if these losses were due to sorption or if biodegradation was involved. Several different ground water conditions were simulated by varying salinity, initial pH and dissolved oxygen content. The only case where there was an in-creased loss of any substance due to the presence of PVC casing was with the TNT solution under non-sterile conditions. The extent of loss was small, however, considering the length of the equilibration period. This increased loss is thought to be associated with increased microbial degradation rather than sorption. Several samples of PVC casing were also leached with ground water for 80 days. No detectable interferences were found by reversed-phase high performance liquid chromatography (HPLC) analysis. Therefore, it is concluded that PVC well casings are suitable for monitoring ground water for the presence of these munitions.  相似文献   

7.
Laboratory experiments were conducted to measure the extent to which trace concentrations of radioactive materials would sorb on well construction materials and to assess the rapidity with which sorption would occur. The radionuclides employed in these studies were tritium, Cs-137, and Co-57, Solutions with trace concentrations of these radionuclides were contracted with casings of PVC, fiberglass-epoxy, stainless steel, carbon steel, and steel rods coated wtih expoy. The PVC showed no interaction with the tritium or Cs-137 during contact times of two hours to these weeks; however, it did sorb Co-57. The fiberglass-epoxy also interacted only with the cobalt. The stainless steel sorbed cesium and cobalt. The carbon steel (or the ferric hydroxide forming on its surface) also sorbed both cesium and cobalt. The epoxy-coated steel rods did not interact measurably with day of the radio-nuclides so long as the coating was intact. The sorption reactions generally were apparent after a few days of contact: in the case of carbon steel, they were detectable in a few hours.  相似文献   

8.
In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymeric tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption.
The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs from the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105°C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.  相似文献   

9.
State-of-the-art analytical techniques are capable of detecting contamination In the part per billion (ppb) range or lower. At these levels, a truly representative ground water sample Is essential to precisely evaluate ground water quality. The design specifications of a ground water monitoring system are critical in ensuring the collection of representative samples, particularly throughout the long-term monitoring period.
The potential interfaces from commonly used synthetic well casings require a thorough assessment of site, hydrogeology and the geochemical properties of ground water. Once designed, the monitoring system must be installed following guidelines that ensure adequate seals to prevent contaminant migration during the installation process or at some time in the future. Additionally, maintaining the system so the wells are in hydraulic connection with the monitored zone as well as periodically Inspecting the physical integrity of the system can prolong the usefulness of the wells for ground water quality. When ground water quality data become suspect due to potential interferences from existing monitoring wells, an appropriate abandonment technique must be employed to adequately remove or destroy the well while completely sealing the borehole.
The results of an inspection of a monitoring system comprised of six 4-inch diameter PVC monitoring wells at a hazardous well facility Indicated that the wells were improperly installed and in some cases provided a pathway for contamination. Subsequent down hole television inspections confirmed inaccuracies between construction logs and the existing system as well as identified defects in casing materials. An abandonment program was designed which destroyed the well casings in place while simultaneously providing a competent seal of the re-drilled borehole.  相似文献   

10.
This paper contains the results of a laboratory study that was designed to compare sorption of low (mg/L) concentrations of 11 organic solutes by six polymeric materials (acrylonitrile butadiene styrene [ABS], fluorinated ethylene propylene [FEP], fiberglass-reinforced epoxy [FRE] and fiberglass-reinforced plastic [FRP], polyvinyl chloride [PVC], and poly-tetrafluoroethylene [PTFE]).
During this six-week study, ABS sorbed analytes much more rapidly and to a greater extent than did the other materials, and PVC and FRE sorbed analytes more slowly and to a lesser extent than the other materials tested.
As the study progressed, an increasing number of spurious peaks were found in the high performance liquid chromatography (HPLC) chromatograms of some of our samples, indicating that leaching of some consituents had occurred. By the end of the study, there were 11 additional peaks in the ABS samples, five in the FRP samples, and one in the FRE samples. Analysis by purge and trap gas chromatography/mass spectrometry (GC/MS) of those samples and of well water samples that were exposed to the casings for 500 hours revealed the identity of some of the leached constituents; acrylonitrile and styrene (components of ABS), chloroform and ethylbenzene (an intermediate in the production of styrene) from the ABS pipe, and toluene, 1,1,1-trichloroethane, and ethylbenzene from the FRP casing.  相似文献   

11.
Four state-of-the-art ground water sampling systems were analyzed to determine their reliability in providing representative samples of the volatile chlorinated hydrocarbons trichloroethylene (TCE), perchloroethylene (PCE), and 1,1,1-trichloroethane (TCA) from a simulated monitoring well. The sampling systems studied represent four commonly used devices, including a stainless steel and Teflon® piston pump, a Teflon bailer, a Teflon bladder pump, and a PVC air-lift pump.
Controlled laboratory sampling experiments were conducted in a tank and well test chamber designed to approximate field conditions. A well purging and sampling procedure was used in the test apparatus to determine the accuracy and precision of each device for detecting low concentrations of the compounds in ground water. The compounds selected are some of the most ubiquitous hazardous contaminants found in shallow aquifers near hazardous waste sites throughout the United States.
No significant statistical difference was found among the four sampling systems in detecting the compounds.  相似文献   

12.
A simple, inexpensive sampling pump has lately come into use in ground water monitoring. The pump is referred to as an inertial pump; its only downhole components are a foot valve connected to a length of tubing or pipe. The operating principle of the pump is based on the inertia of a column of water within the riser tubing. Ground water is drawn through the foot valve and up the riser tubing by rapid up and down movements of the tubing. This pumping method is not new, but has only recently been applied to monitoring wells. Foot valves are available in a variety of materials and sizes and can be used in monitoring wells as small as 19mm (3/4 inch) I.D. Flexible polyethylene or Teflon® tubing, and in some cases stainless steel tubing or rigid PVC pipe, is used as the riser. The inertial pump satisfies most of the criteria normally cited for an "ideal" sampling device. The pump is easy to operate, reliable, durable, portable, and virtually maintenance-free. It can be operated manually from as deep as 40m or from as deep as 60m using a motor drive. The pump is inexpensive, and therefore suitable for use as a dedicated sampling pump. Recent tests have shown the pump to be suitable for sampling volatile organics. The inertial pump has a high flow capacity and performs well in silty/sandy environments, which makes it useful for developing and purging monitoring wells. It may also be used to perform field hydraulic conductivity tests.  相似文献   

13.
An investigation of elevated concentrations of nickel and chromium in certain ground water samples collected at Williams Air Force Base (AFB) indicated that type 304 stainless steel well materials are the source. Chloride in the ground water has apparently caused crevice corrosion of the stainless steel well screens installed during site characterization. An evaluation of site geochemistry suggested that chromium released from the well screen would precipitate, while nickel would remain dissolved. Thus, low-flow purging and sampling significantly reduces the chromium found in the ground water samples because such sampling minimizes the collection of artificially entrained particulates. In contrast to chromium, nickel concentrations did not decrease during low-flow purging and sampling, indicating that it is dissolved. Nickel and chromium concentrations are both low following high-volume purging when turbidity levels are stabilized below 10 nephelometric turbidity units prior to sampling. In the latter case, chromium concentration is low because particulate collection is minimized, and nickel concentration is low because of increased dilution. Based on these results, it is recommended that elevated levels of nickel and chromium in ground water samples collected from stainless steel monitoring wells be carefully evaluated, because well materials may be the source. In addition, although low-volume purging is increasingly becoming the sampling method of choice, high-volume purging may be a useful means of determining whether the well materials influence nickel and chromium concentrations.  相似文献   

14.
Field tests of organic solute transport behavior have often been monitored using small-diameter wells (miniwells). To determine if experimental results could be significantly biased by sorption to, desorption from, or diffusion through sampling lines, dissolved concentrations of tetrachloroethene and carbon tetrachloride were measured in ground water samples collected simultaneously from the same spatial location during a forced-gradient test in the Borden aquifer using polytetrafluoroethene (PTFE) and stainless steel miniwells (1/8-inch O.D.).
A semiautomated organic analytical system was used on-site to obtain real-time results, which avoided sample holding problems and permitted optimizing sampling times. The breakthrough curves (plots of concentration vs. time) for both organic compounds indicate that under the conditions of this experiment (low organic solute concentrations, short exposure time of sampling lines to the plume, adequate flushing of sampling lines) there is no significant difference between concentration histories (breakthrough curves) collected using a polytetrafluoroethene sampling line and those collected using a stainless steel sampling line. This suggests that organic solute tailing seen in this and also in a similar transport experiment previously conducted at the site is the result of transport processes in the aquifer rather than an artifact introduced by the PTFE miniwells.  相似文献   

15.
Experiments simulating the dynamics of compliance sampling via a monitoring well were performed to assess the effects of common well screen materials (rigid polyvinyl chloride, polytetrafluoroethylene, stainless steel 304. and stainless steel 316) on several metals and tri- chloroethylene (TCE) in ground water. This was achieved by using a continuous flow-through chamber system capable of exposing monitoring well screens to ground water for periods ranging from 0.25 to 8 hours. The findings of this study are more representative than static laboratory experiments for assessing the potential effects well casing materials have on ground water samples. Under dynamic flow conditions stainless steel 304 and 316 screens were found to influence solution concentrations of Pb, Cd, Cr, Ni, and Fe, while ground water TCE concentrations were not affected by any of the materials tested.  相似文献   

16.
The withdrawing Arctic ice edge will facilitate future sea transport and exploration activities in the area, which calls for the establishment of relevant cold water monitoring species. The present study presents first results of field baseline levels for core oil pollution biomarkers in Polar cod (Boreogadussaida) sampled from pristine, Arctic waters. Furthermore, biomarker response levels were characterized in controlled laboratory exposure experiments running over 2 weeks. Fish exposed to a simulated petrogenic spill (1 ppm dispersed, crude oil) exhibited elevated hepatic EROD activity, bile PAH-metabolites, and hepatic DNA-adducts, whereas male individuals exposed to simulated produced water (30 ppb nonylphenol) exhibited a strong induction of plasma vitellogenin. In conclusion, the results demonstrated low and robust biomarker baseline levels that were clearly different from exposure responses. In combination with its high abundance and circumpolar distribution, the Polar cod seems well qualified for oil pollution monitoring in Arctic waters.  相似文献   

17.
In the BAT ground water sampling system, a stainless steel probe with a porous filter element is pushed vertically to the desired sampling depth. An evacuated glass sampling tube is then lowered down the penetration rods where it makes contact with the filter via a hypodermic needle and draws a pore fluid sample.
An investigation of the system was carried out at a number of sites contaminated by leaking underground gasoline storage tanks. Ground water samples obtained using the BAT system and adjacent monitoring wells were analyzed for volatile organic compounds (VOCs).
Because the BAT system is an in situ penetration device with a small filter length, it is possible to determine variations in contaminant concentration with depth. BAT samples in general exhibited higher recovery of VOCs than did bailer samples from adjacent monitoring wells screened over large intervals.
Much higher levels of VOCs were recovered when the probe was used with its 316 stainless steel filter than when using the high-density polyethylene (HDPE) filter. Significant sorption apparently occurred on the latter filter.
Because the BAT sample tubes are sealed and remain a closed system, the in situ water pressure is maintained. No significant loss of VOCs was found in sampling tubes containing headspace. Samples from the upper tube in the cascaded setup with headspace recovered levels of VOCs as high, or in a few cases higher, than the lower, no-headspace tubes.  相似文献   

18.
Until recently, there was little information available on the water collection capabilities of pore water samplers. This study was conducted to evaluate the performance of ceramic, fritted-glass, stainless steel, and polytetrafluoroethylene (PTFE) porous samplers in sand and silt loam soil columns over a range of soil water potentials. Soil solution intake for samplers was determined by application of constant and falling vacuums. Constant vacuum was applied for a three-day period when soils were at field moisture capacity. The PTFE samplers did not function when tested with a constant or falling vacuum. With a 50-kPa constant vacuum, the ceramic sampler collected the greatest sample volume (average 20 mL) from the sand. With a constant 25-kPa vacuum, the stainless steel sampler collected the greatest sample volume (average 81 mL) from the silt loam soil. Sampler performance with a fixed volume of vacuum was evaluated by applying 100 kPa vacuum to a 1-liter reservoir. With this falling vacuum, samplers were tested until no further solution was collected over a 10-day test period. With a falling vacuum, fritted-glass and stainless steel samplers, with relatively larger pores and greater hydraulic conductance, collected a greater volume of sample and at a faster rate than ceramic samplers in sand soil that was nearly saturated. When the volume was normalized with respect to sampler surface area, for the falling vacuum tests in silt loam soil at field moisture capacity, the volume collected by fritted glass was significantly higher than those from other samplers. In sand at field moisture capacity or silt loam at soil water tensions ≧30 kPa, ceramic samplers maintained vacuums near 70 kPa and collected more sample than the other samplers during the 10-day test period.  相似文献   

19.
Hydrogeologic and ground water quality data obtained from a gas-driven multilevel sampler system and a polyvinyl chloride (PVC) monitoring well nest with the same aquifer communication intervals are compared. All monitoring points are in close proximity to each other. The study was conducted at an eight-acre uncontrolled hazardous waste site. The site is located in an alluvial valley composed of approximately 40 feet of alluvium overlying shale bedrock. The ground water at the site is contaminated with various organic constituents. A ground water monitoring network consisting of 26 conventional monitoring wells, nine observation well points, and six multilevel gas-driven samplers was established to characterize the hydrogeologic regime and define the vertical and horizontal extent of contamination in the vicinity of the abandoned chemical plant. As part of this study, a multilevel monitoring system was installed adjacent to a well nest. The communication zones of the multilevel samplers were placed at the same elevation as the sand packs of the well nest. The multilevel sampler system and well nest are located in a contaminated area directly downgradient of the site. A comparison of the vertical head distribution and ground water quality was performed between the well nest and the multilevel sampling system. The gas-driven multilevel sampling system consists of three gas-driven samplers that monitor separate intervals in the unconsolidated materials. The well nest, composed of two PVC monitoring wells in separate boreholes, has the same communication interval as the other two gas-driven samplers. Hydraulic head information for each multilevel sampler was obtained using capillary tubing. This was compared with heads obtained from the well nest utilizing an electric water level indicator. Chemical analyses from the PVC and multilevel sampler wells were performed and compared with one another. The analyses included organic acids, base neutrals, pesticides, PCBs, metals, volatile organics, TOX, TOC, CN, pH and specific conductance.  相似文献   

20.
Multilevel piezometers are cost-effective monitoring devices for determining the three-dimensional distribution of solutes in ground water. Construction includes flexible tubing (plastic or Teflon®). Their sampling is subject to a number of'potential biases, particularly: (1) losses of volatile organic solutes via volatilization, (2) sorption onto the flexible tubing of the piezometers, (3) leaching of organics from this tubing, and (4) collection of unrepresentative samples due to inadequate piezometer flushing. It is shown that these biases are minimal or are easily controlled in most situations.
Another source of bias has been recognized. Organic solutes present in ground water above the screened level can penetrate the flexible plastic or Teflon tubing and contaminate the sampled water being drawn through this tubing. Laboratory tests and field results indicate this transmission causes low organic contaminant concentrations to be erroneously attributed to ground water which is free of such contaminants. The transmitted organics apparently desorb from the plastic tubing during flushing of even 40 piezometer volumes.
Recognition of this transmission problem provides for a better interpretation of existing organic contaminant distribution data. Caution is advised when considering the use of these monitoring devices in organic solute contaminant studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号