首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have accumulated thousands of orbits of test particles in the Solar System from the asteroid belt to beyond the orbit of Neptune. We find that the time for an orbit to make a close encounter with a perturbing planet, T c ,is a function of the Lyapunov time, T ty .The relation is log (T c /T o )= a + b log (T ly T o )where T o is a fiducial period which we have taken as the period of the principal perturber or the period of the asteroid. There are exceptions to this rule interior to the 2/3 resonance with Jupiter. There, at least in the restricted problem, for sufficiently small Jupiter mass, orbits may have a positive Lyapunov exponent and still be blocked from having a close approach to Jupiter by a zero velocity curve. Of more serious concern is whether the relation holds for purely secular resonances, and if it does, how to choose T o .This is the case of interest for the planets in the solar system.  相似文献   

2.
We investigate the instability driven by viscosity in rotating relativistic stars by means of an iterative approach. We focus on polytropic rotating equilibrium stars and impose an m=2 perturbation in the lapse. We vary both the stiffness of the equation of state and the compactness of the star to study these factors on the critical value T/W for the instability. For a rigidly rotating star, the criterion T/W, where T is the rotational kinetic energy and W the gravitational binding energy, mainly depends on the compactness of the star and takes values around 0.13–0.16, which slightly differ from that of Newtonian incompressible stars (∼0.14). For differentially rotating stars, the critical value of T/W is found to span the range 0.17–0.25. The value is significantly larger than in the rigidly rotating case with the same compactness of the star. Finally we discuss the possibility of detecting gravitational waves from viscosity-driven instabilities using ground-based interferometers.   相似文献   

3.
Aschwanden  Markus J.  Alexander  David 《Solar physics》2001,204(1-2):91-120
We present an analysis of the evolution of the thermal flare plasma during the 14 July 2000, 10 UT, Bastille Day flare event, using spacecraft data from Yohkoh/HXT, Yohkoh/SXT, GOES, and TRACE. The spatial structure of this double-ribbon flare consists of a curved arcade with some 100 post-flare loops which brighten up in a sequential manner from highly-sheared low-lying to less-sheared higher-lying bipolar loops. We reconstruct an instrument-combined, average differential emission measure distribution dEM(T)/dT that ranges from T=1 MK to 40 MK and peaks at T 0=10.9 MK. We find that the time profiles of the different instrument fluxes peak sequentially over 7 minutes with decreasing temperatures from T≈30 MK to 1 MK, indicating the systematic cooling of the flare plasma. From these temperature-dependent relative peak times t peak(T) we reconstruct the average plasma cooling function T(t) for loops observed near the flare peak time, and find that their temperature decrease is initially controlled by conductive cooling during the first 188 s, T(t)∼[1+(tcond)]−2/7, and then by radiative cooling during the next 592 s, T(t)∼[1−(trad)]3/5. From the radiative cooling phase we infer an average electron density of n e=4.2×1011 cm−3, which implies a filling factor near 100% for the brightest observed 23 loops with diameters of ∼1.8 Mm that appear simultaneously over the flare peak time and are fully resolved with TRACE. We reproduce the time delays and fluxes of the observed time profiles near the flare peak self-consistently with a forward-fitting method of a fully analytical model. The total integrated thermal energy of this flare amounts to E thermal=2.6×1031 erg. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014257826116  相似文献   

4.
Satoshi Hinata 《Solar physics》1988,116(2):239-258
We have investigated nonlinear equilibrium states of a microscopic current filamentation (electrothermal instability) in solar atmosphere. The microscopic filamentation instability will develop for transition zone ion temperature plasmas, provided T e/Ti > 1, where T e and T i are the electron and ion temperatures, respectively. Since the temperature radio for a steady-state solar atmosphere is approximately unity, the electrothermal instability will develop only in a time-dependent solar atmosphere. Indeed, such a condition is provided by time-dependent currents, which seem to exist in many magnetic loops as recent analysis by Porter et al. (1987) indicates. When the onset condition for the electrothermal instability is satisfied, the instability drives a current filamentation to a nonlinear equilibrium state with a spatially periodic electron temperature variation with the wavelength comparable to several ion-Larmor radii. The amplitude of the periodic temperature variation may be so large that the transition layer temperature and coronal temperature plasmas may exist within several Larmor radii — coexistence of the transition zone and corona within the same macro-volume.  相似文献   

5.
We perform an extensive linear investigation of the nonaxisymmetric disk modes referred to in the literature as P, I, and J modes in self-gravitating polytropic toroids with power law angular velocity distributions. For selected models, we also follow the development of instability from the linear regime through the quasi-linear regime to deep into the nonlinear regime. We consider modes with azimuthal dependence e imφ , where m is an integer and φ is the azimuthal angle. We find that instability sets in through m=2 barlike I modes at T/|W|∼0.16–0.18 depending upon the chosen angular velocity law where T is the rotational kinetic energy and W is the gravitational energy of the toroid. Instability in the barlike I mode peaks in strength around T/|W|=0.22–0.23 after which it weakens, eventually stabilizing around T/|W|∼0.25–0.26. One-armed modes (m=1 modes) become unstable just after instability in the m=2I modes sets in; instability in m=1 modes sets in at T/|W|∼0.19. They dominate the barlike I modes in toroids with T/|W|≳0.25. However, almost immediately after the m=1 mode overtakes the barlike I mode, higher-m J modes appear. J modes with m=2, 3, and 4 become unstable for T/|W|≳0.25–0.26, 0.23–0.25, and 0.25–0.26, respectively. m≥3J modes dominate the m=1 mode in toroids with T/|W|≳0.27. As T/|W| increases further, nonaxisymmetric instability sets in through higher and higher m modes. We find quantitative agreement between the early nonlinear behavior of the tested unstable toroids and our linear results. Quasi-linear modeling suggests that a gravitational self-interaction torque which arises early in the nonlinear regime saturates growth of the mode and leads to significant transport of mass and angular momentum. Neither I mode nor J mode instabilities produce prompt fission in toroids.  相似文献   

6.
We present measurements of the middle Balmer decrement (n = 10–22) in a number of quiescent prominences. The average decrement continues smoothly the trend of the decrement determined in our previous work on the earlier Balmer lines. The range of T ex is found to be 3450–11 000 K, consistent with the generally accepted range of values for T e. In addition, some values for the hydrogen-to-metal (Fe, Ti+) integrated line intensities are given.  相似文献   

7.
The correlations between the plasma characteristics of the solar wind flow in the vicinity (± 12 hr) of stream-free sector boundaries near Earth are examined using the composite data base of interplanetary plasma for the period 1965–1980. We confirm the result of Lopez et al. (1986) of an inverse relationship of the proton temperature (T p) with the momentum flux density (NV 2) in the low speed wind at 1 AU. The coefficients of lines of best fit to the T pvs NV 2(as well as T pvs V) distribution in our sample are, however, significantly different from those of the undifferentiated sample of low speed wind considered by Lopez et al. such that T pis, in general, lower than expected. We find further that the proton number density (N) varies as the inverse cube of the flow speed (V) indicating an invariance of the kinetic energy flux density (NV 3) relative to velocity structure in the plasma flow around stream-free boundaries. These average relationships, which are unaffected by interplanetary dynamical processes, are suggested to be due to sub-sonic addition of momentum and energy to the solar wind flow from the source structures, namely coronal streamers.  相似文献   

8.
We present extensive numerical calculations for a model of thermal convection of a Boussinesq fluid in an equatorial annulus of a rotating spherical shell. The convection induces and maintains differential rotation and meridian circulation. The model is solved for an effective Prandtl number P = 1, with effective Taylor number T in the range 102 <T <106, and effective Rayleigh number R between the critical value for onset of convection, and a few times that value. With = 2.6 × 10–6 s–1, d = 1.4 × 1010 cm (roughly the depth of the solar convection zone) the range of Taylor number is equivalent to kinematic viscosities between 1014 and 1012 cm2 s–1, which encompasses eddy viscosities estimated from mixing length theory applied to the Sun.The convection does generally make equatorial regions rotate faster, the more so as T is increased, but local equatorial deceleration near the surface is also produced at intermediate T for large enough R above critical. The differential rotation is maintained primarily through momentum transport in the cells up the gradient, rather than by meridian circulation. Differential rotation energy increases relative to cell energy with increasing T, surpassing it near T = 3 × 104. The differential rotation tends to stretch out the convective cells, analogously to what is thought to happen to solar magnetic regions. Differential rotation and meridian circulation energies are nearly equal for T = 103, but the meridian circulation energy falls off relative to differential rotation like T –1 for larger T. The meridian circulation is always toward the poles near the surface, contrary to models of Kippenhahn, Cocke, Köhler, and Durney and Roxburgh. The radial shear produced in the differential rotation is almost always positive, as in the Köhler model, but contrary to the assumptions made by Leighton for his random walk solar cycle model.Solutions in the neighborhood of T = 3 × 104 seem to compare best with various solar observations including differential rotation amplitude, cell wavelength, tilted structure, horizontal momentum transport, and weak meridian circulation. The local equatorial deceleration (equatorward of 10–15°) has not been observed, although the techniques of data analysis may not have been sensitive to it. The most important deficiency of the model is that all the solutions with T 103 show the vertical heat transport a rather strong function of latitude, with a maximum at the equator, no evidence of which is seen at the solar surface.The National Center for Atmospheric Research is sponsored by The National Science Foundation.  相似文献   

9.
Various methods are explored for obtaining regularized solutions of the severely ill-posed Laplace inversion problem involved in deriving plasma temperature (T) structure (differential emission measure(T)) from bremsstrahlung spectra. Inversions of simulated data show that zero-order regularisation (Tikhonov regularisation inL 2 space) is very unsatisfactory even with weighting, while first-order regularisation (Tikhonov regularisation in Sobolev space) yields reasonable results.The method is applied to a high-resolution hard X-ray flare spectrum observed by Lin and Schwartz (1987) and yields a positive solution for(T) showing that a purely thermal interpretation is possible for that event. The form of(T) found has two broad features: one peaking at around 107 K and falling off steeply toward 2 × 108 K; a second spread around a peak near 4.5 × 108 K. The interpretation of such(T) in terms of plasma heating and conductive flux is discussed in terms of plasma heat fluxes and heating rates. For 1-D geometry, the distribution of the plasma heating rateH(T) per unit volume is inferred from(T) in the limits of classical diffusive conduction and of saturated heat flux, the former being relevant atT below around 5 × 107 K and the latter at much higherT. We find there exists a maximum inH(T) around 2 × 108 K, a fact which may be important for energy release theories.  相似文献   

10.
It has recently been shown that Jupiter Trojans may exhibit chaotic behavior, a fact that has put in question their presumed long term stability. Previous numerical results suggest a slow dispersion of the Trojan swarms, but the extent of the ‘effective’ stability region in orbital elements space is still an open problem. In this paper, we tackle this problem by means of extensive numerical integrations. First, a set of 3,200 fictitious objects and 667 numbered Trojans is integrated for 4 Myrs and their Lyapunov time, TL, is estimated. The ones following chaotic orbits are then integrated for 1 Gyr, or until they escape from the Trojan region. The results of these experiments are presented in the form of maps of TLand the escape time, TE, in the space of proper elements. An effective stability region for 1 Gyr is defined on these maps, in which chaotic orbits also exist. The distribution of the numbered Trojans follows closely the TE=1 Gyr level curve, with 86% of the bodies lying inside and 14% outside the stability region. This result is confirmed by a 4.5 Gyr integration of the 246 chaotic numbered Trojans, which showed that 17% of the numbered Trojans are unstable over the age of the solar system. We show that the size distributions of the stable and unstable populations are nearly identical. Thus, the existence of unstable bodies should not be the result of a size-dependent transport mechanism but, rather, the result of chaotic diffusion. Finally, in the large chaotic region that surrounds the stability zone, a statistical correlation between TLandTE is found.  相似文献   

11.
We discuss the equilibrium solutions of four different types of collinear four-body problems having two pairs of equal masses. Two of these four-body models are symmetric about the center-of-mass while the other two are non-symmetric. We define two mass ratios as μ 1 = m 1/M T and μ 2 = m 2/M T, where m 1 and m 2 are the two unequal masses and M T is the total mass of the system. We discuss the existence of continuous family of equilibrium solutions for all the four types of four-body problems.  相似文献   

12.
Aschwanden  Markus J. 《Solar physics》1999,190(1-2):233-247
Recent observations with EUV imaging instruments such as SOHO/EIT and TRACE have shown evidence for flare-like processes at the bottom end of the energy scale, in the range of E th≈1024–1027 erg. Here we compare these EUV nanoflares with soft X-ray microflares and hard X-ray flares across the entire energy range. From the observations we establish empirical scaling laws for the flare loop length, L(T)∼T, the electron density, n e(T)∼T 2, from which we derive scaling laws for the loop pressure, p(T)∼T 3, and the thermal energy, E thT 6. Extrapolating these scaling laws into the picoflare regime we find that the pressure conditions in the chromosphere constrain a height level for flare loop footpoints, which scales with h eq(T)∼T −0.5. Based on this chromospheric pressure limit we predict a lower cutoff of flare loop sizes at L ∖min≲5 Mm and flare energies E ∖min≲1024 erg. We show evidence for such a rollover in the flare energy size distribution from recent TRACE EUV data. Based on this energy cutoff imposed by the chromospheric boundary condition we find that the energy content of the heated plasma observed in EUV, SXR, and HXR flares is insufficient (by 2–3 orders of magnitude) to account for coronal heating.  相似文献   

13.
We address the problem of how to test whether an observed solar hard X-ray bremsstrahlung spectrum (I(∊)) is consistent with a purely thermal (locally Maxwellian) distribution of source electrons, and, if so, how to reconstruct the corresponding differential emission measure (ξ(T)). Unlike previous analysis based on the Kramers and Bethe-Heitler approximations to the bremsstrahlung cross-section, here we use an exact (solid-angle-averaged) cross-section. We show that the problem of determining ξ(T) from measurements of I(∊) invOlves two successive inverse problems: the first, to recover the mean source-electron flux spectrum ( [`(F)]\overline{F} (E)) from I(∊) and the second, to recover ξ(T) from [`(F)]\overline{F} (E). We discuss the highly pathological numerical properties of this second problem within the framework of the regularization theory for linear inverse problems. In particular, we show that an iterative scheme with a positivity constraint is effective in recovering δ-like forms of ξ(T) while first-order Tikhonov regularization with boundary conditions works well in the case of power-law-like forms. Therefore, we introduce a restoration approach whereby the low-energy part of [`(F)]\overline{F} (E), dominated by the thermal component, is inverted by using the iterative algorithm with positivity, while the high-energy part, dominated by the power-law component, is inverted by using first-order regularization. This approach is first tested by using simulated [`(F)]\overline{F} (E) derived from a priori known forms of ξ(T) and then applied to hard X-ray spectral data from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI).  相似文献   

14.
We present NeV/MgV and SiVII/MgVII theoretical line intensity ratios as a function of electron densityN e and temperatureT e . These are shown in the form of ratio-ratio diagrams, which should in principle allow bothN e andT e to be deduced for the emitting region of the solar plasma. We apply these diagnostics in the solar atmosphere, and discuss the available observations made from space. In most cases, however, we deduceN e andT e from the computed absolute line intensities in a spherically symmetric model atmosphere of the Sun. Possible future applications of this investigation to spectral data from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO) are briefly discussed.  相似文献   

15.
An important observational parameter of the OH megamasers is their 18 cm main line intensity ratio R(H)=T 1667 /T 1665. The R(H) of only 56OH megamasers from the 90 extragalactic objects is found. We have found, log R(H) is correlated with log L(OH). Using (Henkel and Wilson,1990)'s model the optical depths of 1667 MHz maser line of 56 OHmegamasers have been obtained. Here we test the hypothesis that the opacity of a maser should be related to its luminosity, for which data from the 56 OH megamaser sources can be taken. We have also found that log (-τ) is correlated with log L(OH). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
A method is proposed allowing a quick self-consistent determination of both the central star parameters (effective temperature, surface gravity, stellar massetc.) and the optical thickness of a planetary nebula (PN). The method is a generalization of the well-known energy balance method. The method has been calibrated and tested using a photoionization model grid computed for this purpose. The internal accuracy of the method is estimated as 0.038dex for the effective temperature of central star and 0.076dex for the surface gravity.The problem of determination of overall energy losses in the nebula required by any kind of energy balance method is considered thoroughly. Approximate expressions are obtained, relating the overall energy losses to the sum of intensities of collisionally excited lines in the optical and ultraviolet spectral ranges and to some other nebular parameters. It is shown that neglecting the energy losses caused by directly unobservable collisional excitation of neutral hydrogen and helium may underestimate the central star temperature by 0.2 or even 0.5dex. Generalized energy balance method is applied to a sample of 41 PN. Central star temperaturesT GB found by this method show an agreement withHeII Zanstra temperaturesT z (HeII) whereasT z (HI) is always less thanT GB or equal to it within the accuracy of the method. So, we confirm the explanation that the well-known Zanstra discrepancy is caused merely by low optical thickness of many PN in the Lyman continuum of hydrogen. The value ofT z (HeII) found with modern model atmospheres can be used as good approximation toT ef for central stars of overwhelming majority of PN whileT z (HI) is usually close toT ef for young nebulae only.  相似文献   

17.
We derive upper limits to the radiation temperaturesT t(k) for emission near the fundamental and second harmonic of the electron plasma frequency in terms of the effective temperature for plasma wavesT l(k). We findT t(k)(c/(3)1/2 V e)3 T l(k) for emission near the fundamental which differs from the result of Melrose (1970b) by the factor in parentheses. This factor can exceed 4×104 in some plasmas. The conditions under which this limit could be reached are delinated. For emission near the second harmonicT t(k)T l(k) since the absorption coefficient in this case can only be positive.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
We have analysed X-ray spectra of 13 solar flares as obtained by the Bent Crystal Spectrometer (BCS) on the Solar Maximum Mission. In particular, we have examined the observed ratio of T Fe/T Ca where T Fe and T Ca are the temperatures obtained from the Fexxv and Caxix spectra, respectively. In order to simplify the investigation we have analysed only flares which reach quasi-steady-state during the decay. It turned out that the observed ratios cannot be explained by a model consisting of a single, uniformly heated loop, with a constant or variable cross-sectional area. We propose that this problem may be solved by introducing some distribution of the heating function across the flaring loop. This model has been tested by detailed calculations.  相似文献   

19.
The dependence on the temperature of photospheric line‐depth ratios (LDRs) in the spectral range 6190–6280 Å is investigated by using a sample of 174 ELODIE Archive stellar spectra of luminosity class from V to III. The rotational broadening effect on LDRs is also studied. We provide useful calibrations of effective temperature versus LDRs for giant and main sequence stars with 3800 ≃ Teff ≃6000 K and v sin i in the range 0–30 km s–1. We found that, with the exception of very few line pairs, LDRs, measured at a spectral resolution as high as 42 000, depend on v sin i and that, by neglecting the rotational broadening effect, the Teff determination can be wrong by ∼100 K in the worst cases. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The thermal regime of the baryons behind shock waves arising in the process of virialization of dark matter halos is governed at certain conditions by radiation of HD lines. A small fraction of the shocked gas can cool down to the temperature of the cosmic microwave background (CMB). We estimate an upper limit for this fraction: at z = 10 it increases sharply from about qT ∼ 10–3 for dark halos of M = 5 × 107 M to ∼ 0.1 for halos with M = 108 M. Further increase of the halo mass does not lead however to a significant growth of qT – the asymptotic value for M ≫ 108 M is 0.3. We estimate the star formation rate associated with such shock waves, and show that they can provide a small but not negligible fraction of the star formation. We argue that extremely metal‐poor low‐mass stars in the Milky Way may have been formed from primordial gas behind such shocks. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号