首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
With the aim of evaluating temporal changes in sedimentation and organic carbon (Corg) supplied over the last ~100 years, a sediment core was collected at Soledad Lagoon, a costal ecosystem surrounded by mangroves, located in the Cispatá Estuary (Caribbean coast of Colombia). The core sediments were characterized by low concentrations of calcium carbonate (0.2–2.9%), organic matter (3–8%), total nitrogen (0.11–0.38%), and total phosphorus (0.19–0.65 mg g−1). Fe and Al concentrations ranged from 4% to 5%, and Mn from 356 to 1,047 μg g−1. The 210Pb-derived sediment and mass accumulation rates were 1.54 ± 0.18 mm year−1 and 0.08 ± 0.01 g cm−2 year−1, respectively. The sediment core did not provide evidence of human impact, such as enhancement of primary production or nutrient enrichment, which may result from recent land uses changes or climate change. The Corg fluxes estimated for Soledad Lagoon core lay in the higher side of carbon fluxes to coastal ecosystems (314–409 g m−2 year−1) and the relatively high Corg preservation observed (~45%) indicate that these lagoon sediments has been a net and efficient sink of Corg during the last century, which corroborate the importance of mangrove areas as important sites for carbon burial and therefore, long-term sequestration of Corg.  相似文献   

2.
Volcanogenic sediments are typically rich in Fe and Mn-bearing minerals that undergo substantial alteration during early marine diagenesis, however their impact on the global biogeochemical cycling of Fe and Mn has not been widely addressed. This study compares the near surface (0-20 cm below sea floor [cmbsf]) aqueous (<0.02 μm) and aqueous + colloidal here in after ‘dissolved’ (<0.2 μm) pore water Fe and Mn distributions, and ancillary O2(aq), and solid-phase reactive Fe distributions, between two volcanogenic sediment settings: [1] a deep sea tephra-rich deposit neighbouring the volcanically active island of Montserrat and [2] mixed biosiliceous-volcanogenic sediments from abyssal depths near the volcanically inactive Crozet Islands archipelago. Shallow penetration of O2(aq) into Montserrat sediments was observed (<1 cmbsf), and inferred to partially reflect oxidation of fine grained Fe(II) minerals, whereas penetration of O2(aq) into abyssal Crozet sediments was >5 cmbsf and largely controlled by the oxidation of organic matter. Dissolved Fe and Mn distributions in Montserrat pore waters were lowest in the surface oxic-layer (0.3 μM Fe; 32 μM Mn), with maxima (20 μM Fe; 200 μM Mn) in the upper 1-15 cmbsf. Unlike Montserrat, Fe and Mn in Crozet pore waters were ubiquitously partitioned between 0.2 μm and 0.02 μm filtrations, indicating that the pore water distributions of Fe and Mn in the (traditionally termed) ‘dissolved’ size fraction are dominated by colloids, with respective mean abundances of 80% and 61%. Plausible mechanisms for the origin and composition of pore water colloids are discussed, and include prolonged exposure of Crozet surface sediments to early diagenesis compared to Montserrat, favouring nano-particulate goethite formation, and the elevated dissolved Si concentrations, which are shown to encourage fine-grained smectite formation. In addition, organic matter may stabilise authigenic Fe and Mn in the Crozet pore waters. We conclude that volcanogenic sediment diagenesis leads to a flux of colloidal material to the overlying bottom water, which may impact significantly on deep ocean biogeochemistry. Diffusive flux estimates from Montserrat suggest that diagenesis within tephra deposits of active island volcanism may also be an important source of dissolved Mn to the bottom waters, and therefore a source for the widespread hydrogenous MnOx deposits found in the Caribbean region.  相似文献   

3.
Isotopic compositions of organic (δ13C-Corg) and carbonate (δ13C-Ccarb) carbon were analyzed in the particulate matter (hereafter, particulates) and sediments from the North and Middle Caspian basins. Isotopic composition of Corg was used for assessing proportions of the allochthonous and autochthonous organic matter in the particulates. Difference between the δ13C-Corg values in surface sediments and particulates is explained by the aerobic and anaerobic diagenetic transformations. Isotopic composition of Corg in sediments may be used as a tool for reconstructing the Quaternary transgressive-regressive history of the Caspian Sea.  相似文献   

4.
We used fine-scale porewater profiles and rate measurements together with a multiple component transport–reaction model to investigate carbon degradation pathways and the coupling between electron and proton transfer reactions in Lake Champlain sediments. We measured porewater profiles of O2, Mn2+, Fe2+, HS, pH and pCO2 at mm resolution by microelectrodes, and profiles of NO3 , SO4 2−, NH4 +, total inorganic carbon (DIC) and total alkalinity (TA) at cm resolution using standard wet chemical techniques. In addition, sediment–water fluxes of oxygen, DIC, nitrate, ammonium and N2 were measured. Rates of gross and net sulfate reduction were also measured in the sediments. It is shown that organic matter (OM) decomposes via six pathways: oxic respiration (35.2%), denitrification (10.4%), MnO2 reduction (3.6%), FeOOH reduction (9.6%), sulfate reduction (14.9%), and methanogenesis (26.4%). In the lake sediments, about half of the benthic O2 flux is used for aerobic respiration, and the rest is used for the regeneration of other electron acceptors produced during the above diagenetic reactions. There is a strong coupling between O2 usage and Mn2+ oxidation. MnO2 is also an important player in Fe and S cycles and in pH and TA balance. Although nitrate concentrations in the overlying water were low, denitrification becomes a quantitatively important pathway for OM decomposition due to the oxidation of NH4 + to NO3 . Finally, despite its low concentration in freshwater, sulfate is an important electron acceptor due to its high efficiency of internal cycling. This paper also discusses quantitatively the relationship between redox reactions and the porewater pH values. It is demonstrated here that pH and pCO2 are sensitive variables that reflect various oxidation and precipitation reactions in porewater, while DIC and TA profiles provide effective constraints on the rates of various diagenetic reactions.  相似文献   

5.
《Applied Geochemistry》2006,21(6):949-963
In the central part of the Pannonian Basin, factors controlling the distribution of As in sediments and groundwater of the upper 500 m were studied. In core samples, the amounts of As, Fe and Mn extractable with hydroxylamine hydrochloride (NH2OH · HCl) in 25% acetic acid, the proportion of the <0.063 mm size fraction, and the sediment organic C (Corg) contents were measured. In the groundwaters concentrations of As, humic substances, and selected major chemical components were determined. In most core samples extractable Fe, as FeOOH, and Corg are correlated, but some samples have excess Fe, or organic matter. In cases where either excess Fe or excess organic matter is found, the amount of As is also elevated. The spatial distribution of As in the groundwater and the lack of a consistent correlation of As with a single component indicate that there is no single factor controlling the concentration of dissolved As over the entire study area. The only consistent feature is enrichment of As relative to Fe in the groundwater, compared to the sediments. This suggests that the dissolution of Fe minerals, which primarily adsorb As, is not congruent. In reducing conditions Fe(III) oxyhydroxides together with adsorbed As dissolve, and siderite with little or no As precipitates. When sub-regions are separated and studied individually, it can be shown that hydrogeological features of the sediments, the proportions of Fe minerals and sedimentary organic matter, and the concentration of dissolved humic materials, all influence the accumulation and mobilization of As. The significance of the different mobilizing processes, however, and the mean concentration of As, is different in the recharge, through-flow and discharge areas.  相似文献   

6.
Complex biogeochemical studies including the determination of isotopic composition of Corg in both suspended particulate matter and surface horizon (0–1 cm) of sediments (more than 260 determinations of δ13C-Corg) were carried out for five Arctic shelf seas: White, Barents, Kara, East Siberian, and Chukchi. The aim of this study is to elucidate causes that change the isotopic composition of particulate organic carbon at the water-sediment boundary. It is shown that the isotopic composition of Corg in sediments from seas with a high river runoff (White, Kara, and East Siberian) does not inherit the isotopic composition of Corg in particles precipitating from the water column, but is enriched in heavy 13C. Seas with a low river runoff (Barents and Chukchi) show insignificant difference between the value of δ13C-Corg in both suspended load and sediment because of a low content of the isotopically light allochthonous organic matter (OM) in particulates. Complex biogeochemical studies with radioisotope tracers (14CO2, 35S, and 14CH4) revealed the existence of specific microbial filter formed from heterotrophic and autotrophic organisms at the water-sediment boundary. This filter prevents the mass influx of products of OM decomposition into water column, as well as reduces the influx of a part of OM contained in the suspended particulate matter from water into sediment.  相似文献   

7.
Release of CO2 from surface ocean water owing to precipitation of CaCO3 and the imbalance between biological production of organic matter and its respiration, and their net removal from surface water to sedimentary storage was studied by means of a quotient θ = (CO2 flux to the atmosphere)/(CaCO3 precipitated). θ depends not only on water temperature and atmospheric CO2 concentration but also on the CaCO3 and organic carbon masses formed. In CO2 generation by CaCO3 precipitation, θ varies from a fraction of 0.44 to 0.79, increasing with decreasing temperature (25 to 5°C), increasing atmospheric CO2 concentration (195–375 ppmv), and increasing CaCO3 precipitated mass (up to 45% of the initial DIC concentration in surface water). Primary production and net storage of organic carbon counteracts the CO2 production by carbonate precipitation and it results in lower CO2 emissions from the surface layer. When atmospheric CO2 increases due to the ocean-to-atmosphere flux rather than remaining constant, the amount of CO2 transferred is a non-linear function of the surface layer thickness because of the back-pressure of the rising atmospheric CO2. For a surface ocean layer approximated by a 50-m-thick euphotic zone that receives input of inorganic and organic carbon from land, the calculated CO2 flux to the atmosphere is a function of the CaCO3 and Corg net storage rates. In general, the carbonate storage rate has been greater than that of organic carbon. The CO2 flux near the Last Glacial Maximum is 17 to 7×1012 mol/yr (0.2–0.08 Gt C/yr), reflecting the range of organic carbon storage rates in sediments, and for pre-industrial time it is 38–42×1012 mol/yr (0.46–0.50 Gt C/yr). Within the imbalanced global carbon cycle, our estimates indicate that prior to anthropogenic emissions of CO2 to the atmosphere the land organic reservoir was gaining carbon and the surface ocean was losing carbon, calcium, and total alkalinity owing to the CaCO3 storage and consequent emission of CO2. These results are in agreement with the conclusions of a number of other investigators. As the CO2 uptake in mineral weathering is a major flux in the global carbon cycle, the CO2 weathering pathway that originates in the CO2 produced by remineralization of soil humus rather than by direct uptake from the atmosphere may reduce the relatively large imbalances of the atmosphere and land organic reservoir at 102–104-year time scales.  相似文献   

8.
《Applied Geochemistry》2004,19(8):1255-1293
In order to investigate the mechanism of As release to anoxic ground water in alluvial aquifers, the authors sampled ground waters from 3 piezometer nests, 79 shallow (<45 m) wells, and 6 deep (>80 m) wells, in an area 750 m by 450 m, just north of Barasat, near Kolkata (Calcutta), in southern West Bengal. High concentrations of As (200–1180 μg L−1) are accompanied by high concentrations of Fe (3–13.7 mg L−1) and PO4 (1–6.5 mg L−1). Ground water that is rich in Mn (1–5.3 mg L−1) contains <50 μg L−1 of As. The composition of shallow ground water varies at the 100-m scale laterally and the metre-scale vertically, with vertical gradients in As concentration reaching 200 μg L−1 m−1. The As is supplied by reductive dissolution of FeOOH and release of the sorbed As to solution. The process is driven by natural organic matter in peaty strata both within the aquifer sands and in the overlying confining unit. In well waters, thermo-tolerant coliforms, a proxy for faecal contamination, are not present in high numbers (<10 cfu/100 ml in 85% of wells) showing that faecally-derived organic matter does not enter the aquifer, does not drive reduction of FeOOH, and so does not release As to ground water.Arsenic concentrations are high (≫50 μg L−1) where reduction of FeOOH is complete and its entire load of sorbed As is released to solution, at which point the aquifer sediments become grey in colour as FeOOH vanishes. Where reduction is incomplete, the sediments are brown in colour and resorption of As to residual FeOOH keeps As concentrations below 10 μg L−1 in the presence of dissolved Fe. Sorbed As released by reduction of Mn oxides does not increase As in ground water because the As resorbs to FeOOH. High concentrations of As are common in alluvial aquifers of the Bengal Basin arise because Himalayan erosion supplies immature sediments, with low surface-loadings of FeOOH on mineral grains, to a depositional environment that is rich in organic mater so that complete reduction of FeOOH is common.  相似文献   

9.
Deep-sea nodules from the Northeast Pacific nodule belt and the Southeast Pacific (Sonne Basin), being formed in areas bordering the equatorial zone of high biological productivity, accumulate by two basically different growth processes: (A) early diagenetic growth by supply from pore water and (B) hydrogenetic growth by supply from near-bottom sea-water. These growth processes lead to different genetic types of nodules: early diagenetic type A, hydrogenetic type B, and mixed-type AB; a further type AC, very rich in Mn, is being formed by increasing influence of early diagenesis. These types can clearly be distinguished by their shapes, surface textures, mineral constituents of oxide fraction, internal microstructures, and geochemistry. A genetical classification is being proposed on the basis of statistically computed interelement relationships. Todorokite, very poor in Fe, is the main Mn phase in the early diagenetic substance; -MnO2 intimately intergrown with FeOOH · xH2O is the main phase in the hydrogenetic substance. Consequently an important difference can be pointed out: the metal supply for the growth of the early diagenetic nodules is based on an ionic solution of Me2+ (e. g. Mn2+, Ni2+, Cu2+, Zn2+), whereas the supply for the hydrogenetic nodules is caused by transport of colloidal particles. Mobilization of Mn2+ and fractionation from Fe is controlled by the amount of decomposing organic matter in the "peneliquid" layer of the sediments. The main factor controlling the intensity of early diagenesis is the biological productivity in surface waters. The crucial "point of reversal" at a Mn/Fe ratio of about 5, obtained by hyperbolical regression of the analyses of nodules from the Southeast Pacific, represents best concentrations in Ni and Cu. Mn/Fe quotients greater than 5 cause a decrease of Ni and Cu content. Nodules from the Northeast Pacific nodule belt generally contain higher concentrations in Cu than nodules from the Southeast Pacific. This can be explained by an additional supply of Cu transported below CCD by siliceous plankton.  相似文献   

10.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

11.
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O3T suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C–S–Fe relationship owing to authigenic precipitation of Fe–Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.  相似文献   

12.
The paper presents the results of study of ferromanganese carbonate rocks in the Sob area (Polar Urals), which is located between the Rai-Iz massif and the Seida–Labytnangi Railway branch. These rocks represent low-metamorphosed sedimentary rocks confined to the Devonian carbonaceous siliceous and clayey–siliceous shales. In terms of ratio of the major minerals, ferromanganese rocks can be divided into three varieties composed of the following minerals: (1) siderite, rhodochrosite, chamosite, quartz, ± kutnahorite, ± calcite, ± magnetite, ± pyrite, ± clinochlore, ± stilpnomelane; (2) spessartite, rhodochrosite, and quartz, ± hematite, ± chamosite; (3) rhodochrosite, spessartite, pyroxmanite, quartz ± tephroite, ± fridelite, ± clinochlore, ± pyrophanite, ± pyrite. In all varieties, the major concentrators of Mn and Fe are carbonates (rhodochrosite, siderite, kutnahorite, Mn-calcite) and chlorite group minerals (clinochlore, chamosite). The chemical composition of rocks is dominated by Si, Fe, Mn, carbon dioxide, and water (L.O.I.): total SiO2 + Fe2O 3 tot + MnO + L.O.I. = 85.6?98.4 wt %. The content of Fe and Mn varies from 9.3 to 55.6 wt % (Fe2O 3 tot + MnO). The Mn/Fe ratio varies from 0.2 to 55.3. In terms of the aluminum module AlM = Al/(Al + Mn + Fe), the major portion of studied samples corresponds to metalliferous sediments. The δ13Ccarb range (–30.4 to–11.9‰ PDB) corresponds to authigenic carbonates formed with carbon dioxide released during the microbial oxidation of organic matter in sediments at the dia- and/or catagenetic stage. Ferromanganese sediments were likely deposited in relatively closed seafloor zones (basin-traps) characterized by periodic stagnation. Fe and Mn could be delivered from various sources: input by diverse hydrothermal solutions, silt waters in the course of diagenesis, river discharges, and others. The diagenetic delivery of metals seems to be most plausible. Mn was concentrated during the stagnation of bottom water in basin-traps. Interruption of stagnation promoted the precipitation of Mn. The presence of organic matter fostered a reductive pattern of postsedimentary transformations of metalliferous sediments. Fe and Mn were accumulated initially in the oxide form. During the diagenesis, manganese and iron oxides reacted with organic matter to make up carbonates. Relative to manganese carbonates, iron carbonates were formed under more reductive settings and higher concentrations of carbon dioxide in the interstitial solution. Crystallization of manganese and iron silicates began already at early stages of lithogenesis and ended during the regional metamorphism of metalliferous sediments.  相似文献   

13.
Biogeochemical processes induced by the deposition of gravity layer in marine sediment were studied in a 295-day experiment. Combining voltammetric microelectrode measurements and conventional analytical techniques, the concentrations of C, O2, N-species, Mn and Fe have been determined in porewaters and sediments of experimental units. Dynamics of the major diagenetic species following the sudden sediment deposition of few cm-thick layer was explained by alternative diagenetic pathways whose relative importance in marine sediments is still a matter of debate. Time-series results indicated that the diffusion of O2 from overlying waters to sediments was efficient after the deposition event: anoxic conditions prevailed during the sedimentation. After a few days, a permanent oxic horizon was formed in the top few millimetres. At the same time, the oxidation of Mn2+ and then Fe2+, which diffused from anoxic sediments, contributed to the surficial enrichment of fresh Mn(III/IV)- and Fe(III)-oxides. Vertical diffusive fluxes and mass balance calculations indicated that a steady-state model described the dynamic of Mn despite the transitory nature of the system. This model was not adequate to describe Fe dynamics because of the multiple sources and phases of Fe2+. No significant transfer of Mn and Fe was observed between the underlying sediment and the new deposit: Mn- and Fe-oxides buried at the original interface acted as an oxidative barrier to reduced species that diffused from below. Nitrification processes led to the formation of a NO3/NO2 rich horizon at the new oxic horizon. Over the experiment period, NO3 concentrations were also measured in the anoxic sediment suggesting anaerobic nitrate production.  相似文献   

14.
In depressions of the Baltic Sea, where the bottom is periodically marked by stagnation, silt contains as much as 5% Mn (up to 17% in some layers) and 9–10% Corg. Silt in such depressions is laminated. The marine sediment sequence is stratified due to the influx of oceanic water into sea: the upper layers are oxic, while the lower (near-bottom) layers are hydrosulfuric. Boundary between them is represented by the transitional O2-H2S layer. This zone (redox barrier) is marked by drastic variation in Eh. Zone below this barrier is characterized by the accumulation of huge amounts of the dissolved manganese (Mn2+) and iron (Fe2+), which diffuse from the hydrosulfuric layer into the oxic layer under the influence of gradient and precipitated as suspeusion with as much as 15% Fe and 45% Mn. When fresh oxygenated saline water is transported to depressions, the hydrosulfuric setting gives way to oxic one and the dissolved elements are transformed into the particulate phases as hydroxides and geologically instantly precipitated at the bottom. After 5–10 yr, the setting changes; hydrogen sulfide is again delivered to water column from the bottom. This is accompanied by supply of the dissolved Mn2+ and Fe2+ previously accumulated as gel-type sediment at the bottom. Thus, the cycle of elements is repeated. The latter, however, is not completely dissolved. Some portion remains at the bottom as black rhodochrosite microlayers (laminas) that contain as much as 29% Mn. The black laminas accumulated during aeration include remains of bottom foraminifers. In addition, the bottom comprises pale diatom laminas and brownish gray varieties composed of clayey and organic substances. Bulk samples of the laminated silt contain as much as 12.9% Mn or 26.9% MnCO3. Depressions in the Baltic Sea represent a unique site of the Earth marked by accumulation of the carbonate-manganiferous sediments at present. We believe that Oligocene manganese carbonate-oxide ores described by N.M. Strakhov and coauthors were accumulated in the same manner. Compositions of manganiferous sediments in the Baltic region and some ancient ores in Europe are compared. The author studied five stages of Mn accumulation and sediment transformation into ores.  相似文献   

15.
We report electrochemical profiles from unvegetated surficial sediments of a Georgia salt marsh. In creek bank sediments, the absence of ΣH2S or FeSaq and the presence of Fe(III)–organic complexes suggest that Mn and Fe reduction dominates over at least the top ca. 5 cm of the sediment column, consistent with other recent results. In unvegetated flats, accumulation of ΣH2S indicates that SO4 2- reduction dominates over the same depth. A summer release of dissolved organic species from the dominant tall form Spartina alterniflora, together with elevated temperatures, appears to result in increased SO4 2- reduction intensity and hence high summer concentrations of ΣH2S in flat sediments. However, increased bioturbation and/or bioirrigation seem to prevent this from happening in bank sediments. Studies of biogeochemical processes in salt marshes need to take such spatial and temporal variations into account if we are to develop a good understanding of these highly productive ecosystems. Furthermore, multidimensional analyses are necessary to obtain adequate quantitative pictures of such heterogeneous sediments.  相似文献   

16.
This paper describes the detrital mineralogy, early diagenetic reactions and authigenic mineral precipitates for freshwater contaminated sediments deposited in an urban water body (the Salford Quays of the Manchester Ship Canal, Greater Manchester, UK). These sediments contain a mix of natural and anthropogenic detrital grains. Detrital grains are dominated by quartz and clay grains, whilst anthropogenic grains are dominated by metal-rich glass grains, concentrated at a depth of 12–17 cm in the sediment as a result of historical inputs. Sediment porewaters contain significant concentrations of Fe, Mn, Zn and phosphate. Bacterial Fe(III) and Mn(IV) reduction are hypothesised to supply Fe2+ and Mn2+ to porewaters, with phosphate released from Fe oxide reduction or organic matter oxidation. Petrographic observations indicate that the metal-rich glass grains are undergoing chemical dissolution during early diagenesis, supplying Fe and Zn to porewaters.  相似文献   

17.
This study presents data on the composition of organic matter from the Late Silurian sediments of the Chernov uplift. These sediments are characterized by low Corg contents, which may reach 1–3% in individual layers. A relatively high thermal maturity of organic matter is confirmed by polycyclic biomarker distributions and Rock-Eval pyrolyisis data. Despite its higher thermal maturity level (T max = 456°C), kerogen in carbonaceous shales from the Padymeityvis River exhibits good preservation of long-chain n-alkyl structures, which are readily identified in the 13C NMR spectra and by the molecular analysis of the kerogen pyrolysis products.  相似文献   

18.
The release of Phosphorus (P) from river sediments has been identified as a contributing factor to waters failing the criteria for ‘Good Ecological Status’ under the EU Water Framework Directive (WFD). To identify the contribution of sediment-P to river systems, an understanding of the factors that influence its distribution within the entire non-tidal system is required. Thus the aims of this work were to examine the (i) total (PTotal) and labile (PLabile) concentrations in sediment, (ii) the sequestration processes and (iii) the interactions between sediment P and the river water in the six non-tidal water bodies of the River Nene, U.K. Collection of sediments followed a long period of flooding and high stream flow. In each water body, five cores were extracted and homogenised for analysis with an additional core being taken and sampled by depth increments. Comparing the distribution of sediment particle size and PTotal data with soil catchment geochemical survey data, large increases in PTotal were identified in sediments from water body 4–6, where median concentrations of PTotal in the sediment (3603 mg kg−1) were up to double those of the catchment soils. A large proportion of this increase may be related to in-stream sorption of P, particularly from sewage treatment facilities where the catchment becomes more urbanised after water body 3. A linear correlation (r = 0.8) between soluble reactive phosphate (SRP) and Boron in the sampled river waters was found suggesting increased STW input in water bodies 4–6.PLabile concentrations in homogenised cores were up to 100 mg kg−1 PO4–P (generally < 2% of PTotal) and showed a general increase with distance from the headwaters. A general increase in Equilibrium Phosphate Concentrations (EPC0) from an average of 0.9–∼1.7 μm L−1 was found between water bodies 1–3 and 4–6. Fixation within oxalate extractable phases (Al, Fe and Mn) accounted for ∼90% of P binding in water bodies 4–6, but only between 31 and 74% in water bodies 1–3. Statistical models predicting PTotal (R2 = 0.78), oxalate extractable P (R2 = 0.78) and Olsen P (R2 = 0.73) concentrations in river sediments identified Mn oxy-hydroxides (MnOx) as a strong predictive variable along with the location within the river system. It is suggested that MnOx within model predictions is identifying a pool of mixed Fe–Mn oxy-hydroxides (MnOx–FeOOH) or Fe oxy-hydroxide (FeOOH) from the wider FeOxalate pool that are particularly effective at sorbing and fixing P. The findings demonstrate how sediment and P may accumulate along a 100 km non-tidal river system, the extent to which a range of processes can fix P within mineral phases and how natural flooding processes may flush sediment from the river channel. The processes identified in this study are likely to be applicable to similar river systems over their non-tidal water bodies in eastern England.  相似文献   

19.
The results of investigation of the Bikkulovskoe manganese deposit confined to volcanosedimentary piles of the Magnitogorsk paleovolcanic belt are presented. The paper characterizes the geological setting of the deposit and mineral-chemical compositions of ores and enclosing rocks (volcanomictic sandstones; ferruginous, manganiferous, and ferruginous-siliceous tuffites; and jasperites). Analysis of the data obtained made it possible to identify four sequential stages of deposit formation: (1) accumulation and diagenesis of ore-bearing sequences (D2–3); (2) burial and low-grade (T = 200–250°C, P = 2 to 3 kbar) regional metamorphism of rocks (D2–3-C1); (3) tectonic deformations of volcanosedimentary piles (C2-P); and (4) hypergenesis and partial denudation of rocks (MZ-CZ). According to the model proposed for the accumulation of ore-bearing rocks, the productive member was formed in a zone of hydrothermal solution outflow to the seafloor surface. Discharge of solutions and precipitation of Fe and Si began below the seafloor surface (rather than above the surface) in the near-bottom sequence of volcanomictic sediments. Upon reaching the seafloor, the impoverished solutions mixed with seawater and gave up metals completely: Fe and Mn were transferred to sediments to make up the ore-bearing bed. Thus, zonal sediments with ferruginous tuffites at the base and manganese ores at the top were formed.  相似文献   

20.
Two boreholes and ten piezometers in the Ganges flood plain were drilled and installed for collecting As-rich sediments and groundwater. Groundwater samples from the Ganges flood plain were collected for the analysis of cations (Ca2+, Mg2+, K+, Na+), anions (Cl, NO3 , SO4 2−), total organic carbon (TOC), and trace elements (As, Mn, Fe, Sr, Se, Ni, Co, Cu, Mo, Sb, Pb). X-ray powder diffraction was performed to characterize the major mineral contents of aquifer sediments and X-ray fluorescence (XRF) to analyze the major chemical composition of alluvial sediments. Results of XRF analysis clearly show that fine-grained sediments contain higher amounts of trace element because of their high surface area for adsorption. Relative fluorescence index (15–38 QSU) of humic substance in groundwater was measured using spectrofluorometer, the results revealed that groundwater in the Ganges flood plain contains less organic matter (OM). Arsenic concentration in water ranges from 2.8 to 170 μg/L (mean 50 μg/L) in the Ganges flood plain. Arsenic content in sediments ranges from 2.1 to 14 mg/kg (mean 4.58 mg/kg) in the flood plains. TOC ranges from 0.49 to 3.53 g/kg (mean 1.64 g/kg) in the Ganges flood plain. Arsenic is positively correlated with TOC (R 2 = 0.55) in sediments of this plain. Humic substances were extracted from the sediments from the Ganges flood plain. Fourier transform infrared analysis of the sediments revealed that the plain contains less humic substances. The source of organic carbon was assigned from δ13C values obtained using elemental analysis-isotope ratio mass spectrometry (EA-IRMS); the values (−10 to −29.44‰) strongly support the hypothesis that the OM of the Ganges flood plain is of terrestrial origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号