首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A first-order seismotectonic model was created for South Africa. This was done using four logical steps: geoscientific data collection, characterisation, assimilation and zonation. Through the definition of subunits of concentrations of earthquake foci and large neotectonic and structural domains, seismotectonic structures, systems and domains were created. Relatively larger controls of seismicity exist between the Great Escarpment and the coast. In the south, this region is characterised by large aeromagnetic anomalies and large EW trending faults. In the west, it is characterised by the NW–SE trending Wegener stress anomaly, radial-trending dykes and earthquake clusters. In the east, it is characterised by a large neotectonic domain where several large historical earthquakes occurred. In the centre of South Africa, several clusters of earthquake activity are found, often related to mining activity. Further north, seismicity is related to both mining activity and neotectonic deformation. This work contributes to the development of a seismotectonic model for South Africa by (1) bringing together, digitally, several data sets in a common GIS platform (geology, geophysics, stress, seismicity, neotectonics, topography, crustal and mantle structure and anisotropy), (2) understanding the significance of data sets for seismotectonic zonation and limitations thereof and (3) obtaining a reasonable regional model for use in seismic hazard assessments.  相似文献   

2.
In order to better constrain and define the microseismic activity at the north Evoikos Gulf and its surrounding area we deployed an onshore/offshore seismic array consisting of 31 three-component seismic digital stations. The array was active from 30 June to 24 October 2003, and covered an area of 2500 km2. We located more than 2000 seismic events ranging from 0.7 to 4.5 ML by using six stations as a minimum in order to define the foci parameters. Recorded seismicity delineated three major zones of deformation: from south to north, the Eretria–Parnis–eastern Corinthiakos zone, the Psachna–Viotia zone, and the Northern Sporades–North Evia–Bralos zone. Alignments of the recorded seismicity follow the tectonic trends and their orientation in the above zones. The whole area accommodates the stress field between the North Aegean Trough and the Corinthiakos Gulf. Rate of deformation intensifies from north to south, as revealed also by historical and instrumental seismicity. The successive change of orientation between the two stress fields fragments the crust in relatively small units and the fault systems developed do not permit the generation of major earthquakes in the north Evoikos area and its immediate vicinity. This is also supported by the instrumental seismicity of the last century. Larger events reported in historical times are probably overestimated.Most seismic activity is crustal. Subcrustal events were recorded mainly below the Lichades area and are interpreted as the consequence of the subduction of the Ionian oceanic lithosphere below the Hellenides. The Lichades volcano is the most northern end of the Hellenic volcanic arc.At present the highest seismic activity is associated with the Psachna region of north Evia that has been continuously active since 2001. Considering, however, the development of the seismic activity during the last decade, there has been a sequence of large events, i.e., Parnis in 1999, Skyros in 2001 and Psachna in 2001–2003. This demonstrates the fact that the tectonic deformation in all this area is intense and important for the accommodation of the stress field of the North Aegean Trough to that of the Corinthiakos Rift.  相似文献   

3.
Dextral transtensional deformation is occurring along the Sierra Nevada–Great Basin boundary zone (SNGBBZ) at the eastern edge of the Sierra Nevada microplate. In the Lake Tahoe region of the SNGBBZ, transtension is partitioned spatially and temporally into domains of north–south striking normal faults and transitional domains with conjugate strike-slip faults. The normal fault domains, which have had large Holocene earthquakes but account only for background seismicity in the historic period, primarily accommodate east–west extension, while the transitional domains, which have had moderate Holocene and historic earthquakes and are currently seismically active, primarily record north–south shortening. Through partitioned slip, the upper crust in this region undergoes overall constrictional strain.Major fault zones within the Lake Tahoe basin include two normal fault zones: the northwest-trending Tahoe–Sierra frontal fault zone (TSFFZ) and the north-trending West Tahoe–Dollar Point fault zone. Most faults in these zones show eastside down displacements. Both of these fault zones show evidence of Holocene earthquakes but are relatively quiet seismically through the historic record. The northeast-trending North Tahoe–Incline Village fault zone is a major normal to sinistral-oblique fault zone. This fault zone shows evidence for large Holocene earthquakes and based on the historic record is seismically active at the microearthquake level. The zone forms the boundary between the Lake Tahoe normal fault domain to the south and the Truckee transition zone to the north.Several lines of evidence, including both geology and historic seismicity, indicate that the seismically active Truckee and Gardnerville transition zones, north and southeast of Lake Tahoe basin, respectively, are undergoing north–south shortening. In addition, the central Carson Range, a major north-trending range block between two large normal fault zones, shows internal fault patterns that suggest the range is undergoing north–south shortening in addition to east–west extension.A model capable of explaining the spatial and temporal partitioning of slip suggests that seismic behavior in the region alternates between two modes, one mode characterized by an east–west minimum principal stress and a north–south maximum principal stress as at present. In this mode, seismicity and small-scale faulting reflecting north–south shortening concentrate in mechanically weak transition zones with primarily strike-slip faulting in relatively small-magnitude events, and domains with major normal faults are relatively quiet. A second mode occurs after sufficient north–south shortening reduces the north–south Shmax in magnitude until it is less than Sv, at which point Sv becomes the maximum principal stress. This second mode is then characterized by large earthquakes on major normal faults in the large normal fault domains, which dominate the overall moment release in the region, producing significant east–west extension.  相似文献   

4.
通过收集整理前人成果资料,结合湖南、湖北地区地震地质特征、历史近代地震数据等,全面梳理分析该区主要活动断裂及历史地震,总结该区主要活动断裂系(带)及控震特征、地震活动性及时空分布特征。研究结果表明,该区主要活动断裂以北东、北北东、北西向为主,主要活动断裂系有6个,自北向南分别为秦昆北西向断裂系、鄂东北东向断裂系、江汉-洞庭盆地断裂系、鄂西-湘西北东向断裂系、湘中南北东向断裂系、湘东北东向断裂系,其中第四纪活动较为显著且影响程度大的是江汉-洞庭盆地断裂系及秦昆北西向断裂系西段。“两湖”地区地震活动水平相对较低,正处于第三活动期的相对平静期。结合近代中强震资料及中国地震烈度区划特征分析认为,江汉-洞庭盆地南部的东、西边界、鄂州-黄冈-武汉一带以及鄂西北断块隆起区地壳较不稳定,具有发震潜力,应在城市群规划建设、护江大堤设防和重大工程建设中予以特别关注。   相似文献   

5.
Reports of volcanic eruptions and earthquakes originating from volcanoes indicate that seismic activity preceding the eruption is related not only to eruption magnitude and structure of the volcano, but also to viscosity of the lava at the time of eruption. This follows, since lava of higher viscosity meets greater resistance as it ascends from the magma chamber to the earth's surface and, consequently, greater stress will be produced within and beneath the volcano. The writer gives a condensed statistical breakdown of earthquakes and explosive eruptions of Asama Volcano. The Asama earthquakes treated in the report are mainly those of rather low magnitude (T = 1. 0 sec, V = 350) at the Asama Volcano Observatory, situated 4. 2 km east of the center of the summit crater. This investigation showed that most of the explosive eruptions were preceded by an increase in micro-earthquakes. In addition, an experimental formula for predicting volcanic eruptions, based on the statistical relation between frequency of earthquakes originating from Asama and its explosive eruptions. The forthcoming report (Part II) will discuss the same problem based on seismic observations by more sensitive instruments set nearer the summit crater. — A. Eustus  相似文献   

6.
Based on integration of seismic reflection and well data analysis this study examines two major contourite systems that developed during the late Cretaceous in the southern Baltic Sea. The evolution of these Chalk Sea contourite systems between the Kattegat and the southern Baltic Sea started when Turonian to Campanian inversion tectonics overprinted the rather flat sea floor of the epeiric Chalk Sea. The Tornquist Zone and adjacent smaller blocks were uplifted and formed elongated obstacles that influenced the bottom currents. As a consequence of the inversion, the sea floor west of the Tornquist Zone tilted towards the north‐east, creating an asymmetrical sub‐basin with a steep marginal slope in the north‐east and a gentle dipping slope in the south‐west. A south‐east directed contour current emerged in the Coniacian or Santonian along the south‐western basin margin, creating contourite channels and drifts. The previously studied contourite system offshore Stevns Klint is part of this system. A second, deeper and north‐west directed counter‐flow emerged along and parallel to the Tornquist Zone in the later Campanian, but was strongest in the Maastrichtian. This bottom current moderated the evolution of a drift‐moat system adjacent to the elevated Tornquist Zone. The near surface Alnarp Valley in Scania represents the Danian palaeo‐moat that linked the Pomeranian Bay with the Kattegat. The previously studied contourite system in the Kattegat represents the north‐western prolongation of this system. This study links previous observations from the Kattegat and offshore Stevns Klint to the here inferred two currents, a more shallow, south‐east directed and a deeper, north‐west directed flow.  相似文献   

7.
During a marine geophysical survey of the Bismarck Sea by the Australian Bureau of Mineral Resources in 1970, magnetic, gravity, and seismic reflection recordings were made along north‐south traverses with a spacing of 30 to 40 km. The magnetic data have been interpreted, first by visual inspection of magnetic and topographic trends and then by two‐dimensional computer modelling along typical profiles. The interpretation indicates that the Bismarck Sea is divided into two main tectonic provinces separated by a boundary which roughly coincides with a line joining Manus Island and the Willaumez Peninsula of New Britain. An area of apparently nonmagnetic basement about 10 km wide coincides with a well defined band of shallow earthquakes which runs east‐west across the centre of the Sea. A major boundary is present at the eastern end of the Sea along the west coast of the Gazelle Peninsula of New Britain; it continues along an offset in the band of earthquakes to New Hanover.  相似文献   

8.
利用近年来采集的高分辨率地震剖面资料,编制了渤海海峡跨海通道工程区主要活动断裂分布图,并对其中各断裂的垂直活动速率进行计算,发现渤海海峡跨海通道工程区内NE—NNE向断裂晚更新世以来的平均垂直活动速率为0103 mm/a,NW向断裂的平均垂直活动速率为0080 mm/a,其中NE—NNE向断裂和NW向断裂的活动速率呈由南到北逐渐增强的趋势,NW向断裂还表现出明显的自西向东活动速率逐渐增强的特点。另外,通过与现代小震资料和历史地震资料进行对比,发现研究区内地震分布具有不均匀性,地震活动性随着与断裂之间距离的增加而减弱,且在断裂交点和端点处活动性较强。研究区内地震的这些分布特征能够用弹性回跳学说解释。此外,研究区内地震活动性与断裂的水平位移速率关系可能更为密切,其与断裂垂直活动速率的关系还需要进一步研究。  相似文献   

9.
Ten new focal mechanisms are derived for earthquakes in southern Central America and its adjacent regions. These are combined with a study of seismicity and data of previous workers to delineate the position and nature of the plate boundaries in this complex region.The Middle America subduction zone may be divided into four or five distinct seismic segments. The plate boundary between North America and the Caribbean near the trench might be located more towards the south than previously suspected. Subduction has basically stopped south of the underthrusting Cocos Ridge. There is not much evidence for a seismically active strike-slip fault south of Panama, but its existence cannot be ruled out. More activity reveals the zone north of Panama which is identified as a subduction zone with normal fault events. Shallow seismicity induced by the interaction of the Nazca plate extends from the Colombia-Panama border south along the Pacific coast to meet a high-angle continental thrust fault system. Subduction with a pronounced slab starts only south of that point near a hot region which offsets the seismic trend at the trench. The Carnegie Ridge and/or the change of direction of subduction in Ecuador produce a highly active zone of seismicity mainly at the depth of 200 km. The area in the Pacific displays a termination of activity at a propagating rift west of the Galapagos Islands. The main eastern boundary of the Cocos plate, the Panama Fracture Zone, is offset towards the west at the southern end of the Malpelo Ridge. Its northern end consists of two active branches as defined by large earthquakes. A strike-slip mechanism near the southeastern flank of the Cocos Ridge was previously believed to be the site of an extended fracture zone. This paper proposes submarine volcanic activity as an alternative explanation.  相似文献   

10.
The course of the active North Anatolian Fault system from Lake Abant to Lake Sapanca was traced by its high micro-earthquake activity. If approaching from the east this section includes a broad south to north overstep (fault offset) of the main fault. Local seismicity has been recorded in this area by a semi-permanent network of 8 stations since 1985 within the frame of the Turkish–German Joint Project for Earthquake Research. The effect of the overstep and its complex fracture kinematics are reflected by the seismicity distribution, the variations of composite fault-plane solutions, and by the spatial coda-Q distribution. Areas of different stress orientation can be distinguished and assigned to different groups of faults. The stresses and the tectonic pattern only in part correspond to a simple model of an extensional overstep and its correlative pull-apart basin. Other types of deformation involved are characterized by normal faulting on faults parallel to the general course of the main strike-slip fault and by synthetic strike-slip faults oriented similar to Riedel shears. Shear deformation by this fault group widely distributed in an area north and east of the main fault line may play an important role in the evolution of the overstep. The development of a pull-apart basin is inhibited along the eastern half of the overstep and compatibility of both strands of the main fault (Bolu–Lake Abant and Lake Sapanca– Izmit–Marmara Sea) seems to be achieved with the aid of the fault systems mentioned. The extension of the missing part of the pull-apart basin seems to be displaced to positions remote from the Lake Abant–Lake Sapanca main fault line, i.e. to the Akyaz?–Düzce basin tract. Highest Q-values (lowest attenuation of seismic waves) were found in the zone of highest seismicity north and west of the overstep which is the zone of strongest horizontal tension. If high coda-Q is an indicator for strong scattering of seismic waves it might be related to extensional opening of fractures.  相似文献   

11.
塔北隆起-库车坳陷是塔里木盆地重要的油气富集区,探讨区域构造特征及主要控制因素对油气勘探具有重要意义。利用地球物理资料,应用生长地层及应力学分析方法对研究区地震剖面进行解释与复原,并对区域内主要新生界生长构造发育的时序进行界定。研究结果表明,区内东西段构造挤压时间及变形特征存在明显差异。新生界挤压构造发育时间自东向西由早到晚,沿古近系滑脱面,新生界构造变形自北部向盆内传播的距离差别显著:西段传播距离较远,东段较近;西部滑脱构造发育,冲断构造较少,中、东部相反,新生界构造变形局限于库车坳陷内。通过综合对比分析,造山带挤压背景下区域内古应力场在古近纪后发生明显的逆时针压扭,古近系膏泥岩层为构造变形向盆内传播提供了重要条件,大型冲断构造的发育及坳隆转换带基底的挠曲有效地释放分解了来自北部的挤压作用,这是区内构造特征东西差异的主要原因。  相似文献   

12.

The Hilton deposit is a deformed and metamorphosed Proterozoic stratiform Pb‐Zn‐Ag‐Cu deposit hosted by dolomitic and carbonaceous sediments of the Urquhart Shale of the Mt Isa Group. Rocks in the Hilton area show a history of folding and faulting which spans the time range recognized elsewhere in the Western Succession of the Mt Isa Inlier, though the effects of relatively late and brittle deformation are more pronounced in the Hilton area. The Hilton area shows intense faulting relative to similar rocks to the south in the Mt Isa‐Hilton belt. Faulting in the Hilton area has generally resulted in east‐west shortening and extension in both north‐south and vertical directions. This relatively intense late strain is attributed to the geometry of the Paroo Fault Zone, a major north‐trending zone that bounds the Hilton area to the west, and the Sybella Batholith, which formed a relatively rigid indenter during late deformation in the Hilton area. The structural history of the Hilton area is broadly consistent with ongoing east‐west shortening during progressive uplift from mainly ductile to more brittle conditions. Based on these observations, thinning of the Mt Isa Group which was previously attributed to synsedimentary faulting, can now be shown to be related to heterogeneous strain during late faulting. Sulphide layers show a history of folding which is similar to that of the surrounding rocks. Pyrite which is paragenetically associated with mineralization is overprinted by a bedding‐parallel foliation which predates all other structures in the area. This suggests that stratiform sulphide mineralization in the Hilton area predates deformation. Deformation has affected the Hilton orebodies at all scales. Changes in thickness and ‘fault windows’ in the orebody interval occur on the scale of the entire deposit. Mesoscopic ore thickness changes are often clearly related to extensional and contractional structures within sulphide layers. These macroscopic and mesoscopic ore‐thickness variations are spatially associated with cross‐cutting brittle faults, suggesting that strain incompatibility between brittle host rocks and more ductile ore layers played a major role in the present geometry and thickness of sulphide ores at Hilton.  相似文献   

13.
2018年5月28日,吉林松原市宁江区毛都站镇牙木吐村发生M5.7级地震(45°16'12″N,124°42'35″E),震源深度13 km,震中位于郯庐断裂带西北侧的扶余/松原—肇东断裂带、第二松花江断裂带和扶余北断裂带交汇处。地震诱发震中距3 km范围内普遍的液化和地表裂缝,给当地居民带来严重灾害。可见液化构造以砂火山为主,其次为液化砂堆、液化砂脉和液化砂席等。液化砂火山又可分为有火山口型砂火山、无火山口型砂火山和无砂型(水)火山。地震液化伴生软沉积物变形构造有变形层理、负载构造和火焰构造、滑塌褶皱、碟状构造和包卷层理等。地震诱发液化砂火山形成过程包括液化层内超孔隙流体压力形成、上覆低渗透层破裂和水、砂喷出地表后砂涌3个阶段。液化和流化砂体在上涌过程中会注入低渗透黏土层形成各种形态的砂脉、砂席和多种类型的变形构造。垂向上地震液化结构可划分为底部松散可液化层、下部液化变形层、上部液化变形层和地表砂火山4层结构。液化层埋深2~5 m,液化层厚度2 m。松原M5.7级地震发震机制为NE-SW(35°~215°)方向挤压应力使断层活跃,推测扶余/松原—肇东断裂是主要的发震断层。松原地震液化构造研究为现代地震活动区和灾害易发区预测提供依据,为地震引发的现代软沉积物变形构造研究提供丰富的素材,兼具将今论古意义,为揭示本世纪以来郯庐断裂带北段进入了一个强断裂和地震活跃阶段提供了最新的实际资料。  相似文献   

14.
ANISOTROPIC FEATURE OF QIANGTANG MASSIF TEXTURE   总被引:2,自引:1,他引:1  
ANISOTROPIC FEATURE OF QIANGTANG MASSIF TEXTURE  相似文献   

15.

Several Late Palaeozoic granites which intrude strata of the Silurian‐Devonian Hodgkinson Province, north Queensland, display pronounced west‐northwest‐east‐southeast orientations, as do a suite of brittle structures that have affected both the plutons and country rocks. These features define a 20 km‐wide, west‐northwest‐trending zone, here named the Desailly Structure, which traverses the Hodgkinson Province and extends west across the Palmerville Fault into the Proterozoic Yambo Inlier. Deformation within the Desailly Structure was heterogeneously partitioned into zones of west‐northwest‐east‐southeast faulting separated by tracts of competent country rock. The latter contain a pervasive north‐south‐trending structural grain which locally controlled pluton emplacement and resulted in a meridional orientation of many granitoid bodies. Initiation of the Desailly Structure is attributed to have occurred syn‐ to post‐D2 of the regional deformation history. It was reactivated in the Hunter‐Bowen Orogeny (D4), with the zone expressing an overall sinistral sense of displacement.  相似文献   

16.
Heat Flow Pattern in the Mainland of China and Its Geodynamic Significance   总被引:13,自引:0,他引:13  
On the basis of 723 heat flow measurements in the mainland of China and over 2000 data from the global heat flow data set, the authors compiled the heat flow map of the mainland of China and its adjacent areas to exhibit the overall variation of the heat flow pattern in the mainland. The heat flow pattern of the mainland is complex, and can not be simply summarized as "low in the north and west and high in the south and east". Significant difference exists between eastern and western China in the spatial pattern of heat flow. Divided by the 105°E meridian, heat flow values in eastern China show a westward-decreasing trend; and a northward variation is observed in western China. The high-heat flow regions correspond to tectonically active belts such as Cenozoic orogens and extensional basins, where mantle heat flow is high; and the low-heat flow regions correspond to stable units such as the Tarim and Yangtze platforms. This heat flow pattern is controlled by India-Asia collision in the west and Pacific  相似文献   

17.
The Olary Block comprises a set of Palaeoproterozoic to Mesoproterozoic basement inliers that were deformed together with the Neoproterozoic sedimentary cover of the Adelaide Geosyncline during the ca 500 Ma Cambro‐Ordovician Delamerian Orogeny. Balanced and restored structural sections across this region show shortening of less than 20%. These basement inliers represent the interface between a region of thick‐skinned deformation bordering the Curnamona Craton to the north and a region of thin‐skinned deformation to the south and west in the Nackara Arc. The basement inliers represent upthrust segments of the subsided basin margin with the sedimentary package thickening to the south and to the west. Earlier formed extensional faults provided the major strain guides during Delamerian shortening. An early phase of east‐west shortening is interpreted to be synchronous with dextral strike‐slip deformation along basement‐relay structures (e.g. Darling River lineament). During progressive shortening the tectonic transport direction rotated into a northwest to north direction, coeval with the onset of the main phase of thin‐skinned fold deformation in the adjacent Nackara Arc.  相似文献   

18.
米仓山构造带东西向的断裂逆冲兼左旋走滑,西段的韧性变形较强,东段脆性为主。北东向三个主断裂带由北而南逆冲兼左行剪切,早期可能发生脆韧性变形,后期叠加了脆性变形。前震旦系基底岩系变形特征主要表现为透入性流变,碎斑结构和糜棱结构发育,镶嵌构造、S-C组构、带状构造、眼球构造为主,局部偶见"δ"和"σ"旋转碎斑以及矿物鱼。石英颗粒以亚颗粒旋转动态重结晶为主。显微特征反映岩石变形温度相当于绿片岩相。利用Fry法测定石英颗粒三维应变应变强度集中在1.35~1.60之间,显示出从北到南逐渐增强的趋势。Flinn指数K和Nadei-Hossack图解均表明应变类型为近似平面应变的拉长型。运动学涡度分析表明米仓山应变以简单剪切变形作用为主,具有由南向北递增趋势。  相似文献   

19.
The analysis of earthquake-related signals in hydrochemical time series is still a challenging task. Mostly it is unclear how the geometrical and energetic distribution of earthquakes is influencing variation in the hydrochemical composition of monitoring sites, e.g. located close to volcanoes. Past research showed that linear stress-release models alone are not capable to explain sufficiently observed variation in hydrochemical time series due to earthquake activity. A spring located at the base of Koryaksky Volcano, which has shown hydrochemical variation close to 5, major earthquakes, was chosen to analyse relation patterns between hydrochemical variation and seismicity. A possible mechanism, explaining observed hydrochemical variation, that seismic waves trigger an underground water pumping caused by nucleation of gas bubbles in magma was proposed. Consequences are an increase of discharge, gas content in water and changes in the mixing ratios of waters of different genesis. Based on functions of aggregated earthquake information (E) it is herein shown that seismotectonic-triggered processes have a significant influence on the variation of the hydrochemistry of the spring, lasting longer than two decades. At least seven categories of relation patterns between hydrochemical variation and seismotectonic activity E can be identified. A conducted spectral analysis shows that earthquake activity and hydrochemistry share spikes in frequencies. Results prove that the use of functions of transformed aggregated seismic observations is useful to represent the seismotectonic activity for analysing earthquake-related signals in hydrochemical time series.  相似文献   

20.
By using the D-InSAR technique,we have acquired the temporal-spatial evolution images of preseismic-cosesimci-postseismic interferometric deformation fields associated with the M 7.9 earthquake of Mani,Tibet on 8 November 1997.The analysis of these images reveals the relationships between the temporal-spatial evolution features of the interferometric deformation fields and locking, rupturing,and elastic restoring of the source rupture plane,which represent the processes of strain accumulation,strain release,and postseismic restoration.The result shows that 10 months prior to the Mani event,a left-lateral shear trend appeared in the seismic area,which was in accordance with the earthquake fault in nature.The quantity of local deformation on the north wall was slightly larger than that on the south wall,and the deformation distribution area of the north wall was relatively large.With the event impending,the deformation of the south wall varied increasingly,and the deformation center shifted eastward.Two and half monthd before the event,the west side of the fault was still locked while the east side began to slide,implying that the whole fault would rupture at any moment.These features can be regarded as short-term precursors to this earthquake.Within the period from 16 April 1996 to two and half months before the earthquake,the most remarkable deformation zones appeared in the north and south walls,which were parallel to and about 40 km apart from the fault,with accumulated local displacements of 344 mm and 251 mm on the north and south walls,respectively.The south wall was the active one with larger displacements.Five months after the earthquake,the distribution feature of interferometric fringes was just opposite to that prior to the event,expressing evident right-lateral shear.The recovered displacements are~179 mm on the north wall and~79 mm on the south wall,close to the east side of the fault.However,in the area of the south wall far from the fault there still existed a trend of sinistral motion.The deformation of the north wall was small but recovered fast in a larger area,while the active south wall began to recover from the east section of the fault toward the WSW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号