首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe climate-induced water shortage and extremes in Crete   总被引:1,自引:0,他引:1  
Climate change is expected to have a significant impact on the hydrologic cycle, creating changes in freshwater resources. The Intergovernmental Panel on Climate Change (IPCC) predicts that, as a result, floods and prolonged droughts will take place at increasingly frequent periods. The Mediterranean has been described as one of the main climate change “hot-spots”, with recent simulations showing a collective picture of substantial drying and warming. This effect appears more pronounced during warm periods, when the seasonal decrease of precipitation can exceed control climatology by 25–30%. Despite the decreasing annual rainfall trend, an increase in the amount and intensity of wintertime rainfall is evident. However, the scientific question on the quantitative impact of these signals to small scale coastal watersheds and Mediterranean islands has not been answered. The state-of-the-art Ensembles dataset was employed to assess the impact of the changing climate on the water availability of the island of Crete at basin scale. Here, the Ensembles precipitation and temperature data is used as input for a rainfall–runoff model previous calibrated for the whole island with the principle of regionalization. Data analysis for the period 1970–2100 reveals an overall decreasing precipitation trend which, combined with a temperature rise, leads to substantial reduction of water availability. Quantitative results of hydrological change provide the data required to improve knowledge and adaptation policy to water shortages.  相似文献   

2.
A nonlinear backpropagation network (BPN) has been trained with high-resolution multiproxy reconstructions of temperature and precipitation (input data) and glacier length variations of the Alpine Lower Grindelwald Glacier, Switzerland (output data). The model was then forced with two regional climate scenarios of temperature and precipitation derived from a probabilistic approach: The first scenario (“no change”) assumes no changes in temperature and precipitation for the 2000–2050 period compared to the 1970–2000 mean. In the second scenario (“combined forcing”) linear warming rates of 0.036–0.054°C per year and changing precipitation rates between −17% and +8% compared to the 1970–2000 mean have been used for the 2000–2050 period. In the first case the Lower Grindelwald Glacier shows a continuous retreat until the 2020s when it reaches an equilibrium followed by a minor advance. For the second scenario a strong and continuous retreat of approximately −30 m/year since the 1990s has been modelled. By processing the used climate parameters with a sensitivity analysis based on neural networks we investigate the relative importance of different climate configurations for the Lower Grindelwald Glacier during four well-documented historical advance (1590–1610, 1690–1720, 1760–1780, 1810–1820) and retreat periods (1640–1665, 1780–1810, 1860–1880, 1945–1970). It is shown that different combinations of seasonal temperature and precipitation have led to glacier variations. In a similar manner, we establish the significance of precipitation and temperature for the well-known early eighteenth century advance and the twentieth century retreat of Nigardsbreen, a glacier in western Norway. We show that the maritime Nigardsbreen Glacier is more influenced by winter and/or spring precipitation than the Lower Grindelwald Glacier.  相似文献   

3.
Summary Climatic changes of summer temperature and precipitation in the greater Alpine region are assessed by using statistical-dynamical downscaling. The downscaling procedure is applied to two 30-year periods (1971–2000 and 2071–2100, summer months only) taken from the results of a transient coupled ocean/atmosphere climate scenario simulation with increasing greenhouse gas concentrations. The downscaling results for the present-day climate are compared with observations. The estimated regional climate change during the next 100 years shows a general warming. The mean summer temperatures increase by 3 to 5 Kelvin. The most intense climatic warming is predicted in the western parts of the Alps. The amount of summer precipitation decreases in most parts of central Europe by more than 20 percent. Increasing precipitation is simulated only over the Adriatic area and parts of eastern central Europe. The results are compared with observed climate trends for the last decades and results of other regional climate change estimations. The observed trends and the majority of the simulated trends (including ours) have a number of common features. However, there are also climate change estimates of other groups which completely contradict our results. Received April 8, 1999 Revised November 16, 1999  相似文献   

4.
Intra- to multi-decadal (IMD) variation in terrestrial precipitation during 1901–98 was evaluated here by sampling annual precipitation rankings over 6–30 year moving time windows and converting those rankings to Mann-Whitney U statistics. Those U statistics were then used to identify the most significant concentrations of wet and dry years relative to a null hypothesis that assumes stationary climate variability. This time series analysis approach served as the basis of a climate survey method used to identify IMD precipitation regimes over continental areas, and was also used to evaluate IMD variation in time series of annual precipitation spatially averaged over those areas. These methods showed a highly significant incidence of wet years over North America during 1972–98, with 8 of the 10 wettest years of 1901–98 occurring during that 27-year period. A comparably significant incidence of late century wetness was also found over a northern Europe grid region, with 7 of the 10 wettest years occurring during 1978–98. Although significant wet and dry regimes were also found over other land areas in the last decades of the 20th century, the late century North American and northern European wet periods stood out as the most statistically significant found here during 1901–98. It is suggested that these recent wet periods are actually terrestrial evidence of a single multi-decadal precipitation mode extending across the North Atlantic, and the most observable evidence of an even broader pattern of recent North Atlantic climate change.  相似文献   

5.
Summary We present a preliminary evaluation of the performance of three different cumulus parameterization schemes in the ICTP Regional Climate Model RegCM3 for two overlapping domains (termed “big” and “small”) and horizontal resolutions (50 and 25 km) in the Caribbean area during the summer (July–August–September). The cumulus parameterizations were the Grell scheme with two closure assumptions (Arakawa–Schubert and Fritsch–Chappell) and the Anthes-Kuo scheme. An additional sensitivity test was performed by comparing two different flux parameterization schemes over the ocean (Zeng and BATS). There is a systematic underestimation of air temperature and precipitation when compared with analyzed data over the big domain area. Greater (∼2 °C) and smaller (∼0.9 °C) negative temperature biases are obtained in Grell–FC and Kuo convective scheme, respectively, and intermediate values are obtained in Grell–AS. The small domain simulation produces results substantially different, both for air temperature and precipitation. Temperature estimations are better for the small domain, while the precipitation estimations are better for the big domain. An additional experiment showed that by using BATS to calculate the ocean fluxes in the big domain instead of the Zeng scheme, precipitation increases by 25% and the share of convective precipitation rose from 18% to 45% of the total, which implies a better simulation of precipitation. These changes were attributed to an increase of near surface latent heating when using BATS over the ocean. The use of BATS also reduces the cold bias by about 0.3–0.4 °C, associated with an increase of minimum temperature. The behavior of the precipitation diurnal cycle and its relation with sea breeze was investigated in the small domain experiments. Results showed that the Grell–Arakawa–Schubert closure describes better this circulation as compared with Grell–Fritsch–Chappell closure.  相似文献   

6.
Time series of the dryness-wetness(DW) index of 531 yr(AD 1470-2000) at 42 stations in regions A(most of North China and the east of Northwest China) and B(the Yangtze-Huaihe River valley) in China are applied to investigating the historical DW characteristics over various periods of the series with a relatively stationary average value using Bernaola-Galvan(BG) algorithm.The results indicate that region A/B underwent three drought-intensive periods(DIP;1471-1560,1571-1640,and 1920-2000/1501-1540,1631-1690,and 1911-1960) in the last 531 years.In the DIP of the last 130 years,the frequency of DW transition has increased in region A,but not obviously changed in region B in comparison with the other two historical DIPs.The dry period started in about 1920 in region A with severe drought events occurring from the late 1970s to the early 1980s.It lasted for about 50-70 yr in this century,and then a DW shift took place.The wet period in region B might maintain for the coming several decades.The variations of DW in region A are positively correlated with changes in temperature,but in region B,the correlation with temperature is weaker.It is found that the number of DW indices of various categories within a running window is an exponential function of the running window length.The dryness scale factor(DSF) is defined as the reciprocal of the characteristic value of the exponential distribution,and it has a band-like fluctuation distribution that is good for the detection of extreme drought(flood) clustering events.The results show that frequencies of the severe large-scale drought events that concurrently occurred in regions A and B were high in the late 12th century,the early 13th century,the early 17th century,and the late 20th century.This provides evidence for the existence of the time-clustering phenomena of droughts(floods).  相似文献   

7.
We present seasonal precipitation reconstructions for European land areas (30°W to 40°E/30–71°N; given on a 0.5°×0.5° resolved grid) covering the period 1500–1900 together with gridded reanalysis from 1901 to 2000 (Mitchell and Jones 2005). Principal component regression techniques were applied to develop this dataset. A large variety of long instrumental precipitation series, precipitation indices based on documentary evidence and natural proxies (tree-ring chronologies, ice cores, corals and a speleothem) that are sensitive to precipitation signals were used as predictors. Transfer functions were derived over the 1901–1983 calibration period and applied to 1500–1900 in order to reconstruct the large-scale precipitation fields over Europe. The performance (quality estimation based on unresolved variance within the calibration period) of the reconstructions varies over centuries, seasons and space. Highest reconstructive skill was found for winter over central Europe and the Iberian Peninsula. Precipitation variability over the last half millennium reveals both large interannual and decadal fluctuations. Applying running correlations, we found major non-stationarities in the relation between large-scale circulation and regional precipitation. For several periods during the last 500 years, we identified key atmospheric modes for southern Spain/northern Morocco and central Europe as representations of two precipitation regimes. Using scaled composite analysis, we show that precipitation extremes over central Europe and southern Spain are linked to distinct pressure patterns. Due to its high spatial and temporal resolution, this dataset allows detailed studies of regional precipitation variability for all seasons, impact studies on different time and space scales, comparisons with high-resolution climate models as well as analysis of connections with regional temperature reconstructions. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

8.
Climatic regime shift and decadal anomalous events in China   总被引:15,自引:0,他引:15  
Climatic time series from historical documents and instrumental records from China showed temporal and regional patterns in the last two to three centuries, including two multidecadal oscillations at quasi-20-year and quasi-70-year timescales revealed by signal analysis from wavelet transform. Climatic anomalous events on the decadal timescale were identified based on the two oscillations when their positive (or negative) phases coincide with each other to amplify amplitude. The coldest event occurred in the decade of 1965–1975 in eastern China, while the periods of 1920–1930, 1940–1950, and 1988–2000 appeared to be warmer in most parts of China. For the precipitation series in northern China, the dry anomalous event was found in the late 1920s, while the wet anomalous event occurred in the 1950s. A severe drought in 1927–1929 in northern China coincided with the anomalous warm and dry decade, caused large-scale famine in nine provinces over northern China. Climatic anomalous events with a warm-dry or cold-wet association in the physical climate system would potentially cause severe negative impacts on natural ecosystem in the key vulnerable region over northern China. The spatial pattern of summer rainfall anomalies in the eastern China monsoon region showed an opposite variations in phase between the Yellow River Valley (North China) and the mid-low Yangtze River Valley as well as accompanied the shift of the northernmost monsoon boundary. Climatic regime shifts for different time points in the last 200 years were identified. In North China, transitions from dry to wet periods occurred around 1800, 1875, and 1940 while the transitions from wet to dry periods appeared around 1840, 1910, and the late 1970s. The reversal transition in these time points can also be found in the lower Yangtze River. Climatic regime shifts in China were linked to the interaction of mid- and low latitude atmospheric circulations (the westerly flow and the monsoon flow) when they cross the Tibetan Plateau in East Asia.  相似文献   

9.
Global precipitation data sets with high spatial and temporal resolution are needed for many applications, but they were unavailable before the recent creation of several such satellite products. Here, we evaluate four different satellite data sets of hourly or 3-hourly precipitation (namely CMORPH, PERSIANN, TRMM 3B42 and a microwave-only product referred to as MI) by comparing the spatial patterns in seasonal mean precipitation amount, daily precipitation frequency and intensity, and the diurnal and semidiurnal cycles among them and with surface synoptic weather reports. We found that these high-resolution products show spatial patterns in seasonal mean precipitation amount comparable to other monthly products for the low- and mid-latitudes, and the mean daily precipitation frequency and intensity maps are similar among these pure satellite-based precipitation data sets and consistent with the frequency derived using weather reports over land. The satellite data show that spatial variations in mean precipitation amount come largely from precipitation frequency rather than intensity, and that the use of satellite infrared (IR) observations to improve sampling does not change the mean frequency, intensity and the diurnal cycle significantly. Consistent with previous studies, the satellite data show that sub-daily variations in precipitation are dominated by the 24-h cycle, which has an afternoon–evening maximum and mean-to-peak amplitude of 30–100% of the daily mean in precipitation amount over most land areas during summer. Over most oceans, the 24-h harmonic has a peak from midnight to early morning with an amplitude of 10–30% during both winter and summer. These diurnal results are broadly consistent with those based on the weather reports, although the time of maximum in the satellite precipitation is a few hours later (especially for TRMM and PERSIANN) than that in the surface observations over most land and ocean, and it is closer to the phase of showery precipitation from the weather reports. The TRMM and PERSIANN precipitation shows a spatially coherent time of maximum around 0300–0600 local solar time (LST) for a weak (amplitude <20%) semi-diurnal (12-h) cycle over most mid- to high-latitudes, comparable to 0400–0600 LST in the surface data. The satellite data also confirm the notion that the diurnal cycle of precipitation amount comes mostly from its frequency rather than its intensity over most low and mid-latitudes, with the intensity has only about half of the strength of the diurnal cycle in the frequency and amount. The results suggest that these relatively new precipitation products can be useful for many applications.  相似文献   

10.
The climate of Namaqualand in the nineteenth century   总被引:1,自引:0,他引:1  
Southern African climatic change research is hampered by a lack of long-term historical data sets. This paper aims to extend the historical climate record for southern Africa to the semi-arid area of Namaqualand in the Northern Cape province of South Africa. This is achieved through extensive archival research, making use of historical documentary sources such as missionary journals and letters, traveller’s writings and government reports and letters. References to precipitation and other climatic conditions have been extracted and categorised, providing a proxy precipitation data set for Namaqualand for the nineteenth century. Notwithstanding problems of data accuracy and interpretation the reconstruction enables the detection of severe and extreme periods. Measured meteorological data, available from the late 1870s, was compared to the data set derived from documentary sources in order to ascertain the accuracy of the data set and monthly rainfall data has been used to identify seasonal anomalies. Confidence ratings on derived dry and wet periods, where appropriate, have been assigned to each year. The study extends the geographical area of existing research and extracts the major periods of drought and climatic stress, from the growing body of historical climate research. The most widespread drought periods affecting the southern and eastern Cape, Namaqualand and the Kalahari were 1820–1821; 1825–1827; 1834; 1861–1862; 1874–1875; 1880–1883 and 1894–1896. Finally, a possible correspondence is suggested between some of the widespread droughts and the El Nino Southern Oscillation (ENSO).  相似文献   

11.
This study represents the first large-scale systematic dendroclimatic sampling focused on developing chronologies from different species in the eastern Mediterranean region. Six reconstructions were developed from chronologies ranging in length from 115 years to 600 years. The first reconstruction (1885–2000) was derived from principal components (PCs) of 36 combined chronologies. The remaining five, 1800–2000, 1700–2000, 1600–2000, 1500–2000 and 1400–2000 were developed from PCs of 32, 18, 14, 9, and 7 chronologies, respectively. Calibration and verification statistics for the period 1931–2000 show good levels of skill for all reconstructions. The longest period of consecutive dry years, defined as those with less than 90% of the mean of the observed May–August precipitation, was 5 years (1591–1595) and occurred only once during the last 600 years. The longest reconstructed wet period was 5 years (1601–1605 and 1751–1755). No long term trends were found in May–August precipitation during the last few centuries. Regression maps are used to identify the influence of large-scale atmospheric circulation on regional precipitation. In general, tree-ring indices are influenced by May–August precipitation, which is driven by anomalous below (above) normal pressure at all atmospheric levels and by convection (subsidence) and small pressure gradients at sea level. These atmospheric conditions also control the anomaly surface air temperature distribution which indicates below (above) normal values in the southern regions and warmer (cooler) conditions north of around 40°N. A compositing technique is used to extract information on large-scale climate signals from extreme wet and dry summers for the second half of the twentieth century and an independent reconstruction over the last 237 years. Similar main modes of atmospheric patterns and surface air temperature distribution related to extreme dry and wet summers were identified both for the most recent 50 years and the last 237 years. Except for the last few decades, running correlation analyses between the major European-scale circulation patterns and eastern Mediteranean spring/summer precipitation over the last 237 years are non-stationary and insignificant, suggesting that local and/or sub-regional geographic factors and processes are important influences on tree-ring variability over the last few centuries.  相似文献   

12.
An analysis of simulated future surface climate change over the southern half of Korean Peninsula using a RegCM3-based high-resolution one-way double-nested system is presented. Changes in mean climate as well as the frequency and intensity of extreme climate events are discussed for the 30-year-period of 2021–2050 with respect to the reference period of 1971–2000 based on the IPCC SRES B2 emission scenario. Warming in the range of 1–4°C is found throughout the analysis region and in all seasons. The warming is maximum in the higher latitudes of the South Korean Peninsula and in the cold season. A large reduction in snow depth is projected in response to the increase of winter minimum temperature induced by the greenhouse warming. The change in precipitation shows a distinct seasonal variation and a substantial regional variability. In particular, we find a large increase of wintertime precipitation over Korea, especially in the upslope side of major mountain systems. Summer precipitation increases over the northern part of South Korea and decreases over the southern regions, indicating regional diversity. The precipitation change also shows marked intraseasonal variations throughout the monsoon season. The temperature change shows a positive trend throughout 2021–2050 while the precipitation change is characterized by pronounced interdecadal variations. The PDF of the daily temperature is shifted towards higher values and is somewhat narrower in the scenario run than the reference one. The number of frost days decreases markedly and the number of hot days increases. The regional distribution of heavy precipitation (over 80 mm/day) changes considerably, indicating changes in flood vulnerable regions. The climate change signal shows pronounced fine scale signal over Korea, indicating the need of high-resolution climate simulations  相似文献   

13.
A scenario of European climate change for the late twenty-first century is described, using a high-resolution state-of-the-art model. A time-slice approach is used, whereby the atmospheric general circulation model, HadAM3P, was integrated for two periods, 1960–1990 and 2070–2100, using the SRES A2 scenario. For the first time an ensemble of such experiments was produced, along with appropriate statistical tests for assessing significance. The focus is on changes to the statistics of seasonal means, and includes analysis of both multi-year means and interannual variance. All four seasons are assessed, and anomalies are mapped for surface air temperature, precipitation and snow mass. Mechanisms are proposed where these are dominated by straightforward local processes. In winter, the largest warming occurs over eastern Europe, up to 7°C, mean snow mass is reduced by at least 80% except over Scandinavia, and precipitation increases over all but the southernmost parts of Europe. In summer, temperatures rise by 6–9°C south of about 50°N, and mean rainfall is substantially reduced over the same area. In spring and autumn, anomalies tend to be weaker, but often display patterns similar to the preceding season, reflecting the inertia of the land surface component of the climate system. Changes in interannual variance are substantial in the solsticial seasons for many regions (note that for precipitation, variance estimates are scaled by the square of the mean). In winter, interannual variability of near-surface air temperature is considerably reduced over much of Europe, and the relative variability of precipitation is reduced north of about 50°N. In summer, the (relative) interannual variance of both variables increases over much of the continent.  相似文献   

14.
 The influence of different vegetation distributions on the atmospheric circulation during the Last Glacial Maximum (LGM, 21 000 years before present) is investigated. The atmospheric general circulation model of the Bureau of Meteorology Research Center was run using a modern vegetation and in a second experiment with a vegetation reconstruction for the LGM. It is found that a change from conifer to desert and tundra causes an additional LGM cooling of 1–2 °C in Western Europe, up to −4 °C in North America and −6 °C in Siberia. An expansion of dryland vegetation causes an additional annual cooling of 1–2 °C for Australia and northern Africa. On the other hand, an increase of temperature (2 °C) is found in Alaska due to changes in circulation. In the equatorial region the LGM vegetation leads to an increased modelled temperature of 0.5–1.5 °C and decreased precipitation (30%) over land due to a reduction of the tropical rainforest, mainly in Indonesia, where the reduction of precipitation over land is associated with an increase of precipitation of 30% over the western Pacific. Received: 15 December 1999 / Accepted: 10 January 2001  相似文献   

15.
Summary  The design and operation of hydro-structures for flood control and water conservation bring a need for improved characterization of precipitation patterns. A 73 000 km2 study area in East Central China is situated in the East Asian monsoon region and experiences a strong seasonality in the rainfall regime. The characteristics of daily rainfall from 230 gauges during 1967–1986 were investigated for four periods in the summer monsoon season using empirical orthogonal function analysis (EOF) and extended empirical orthogonal function analysis (EEOF). The EOF analysis showed that for all four periods most of the variance was explained by an elongated spatial rainfall pattern. The pattern varied in direction, from roughly west-east to southwest-northeast, in the different periods. The zonally oriented patterns were interpreted as being caused by the stationary Mei-Yu front and the southwest-northeast patterns interpreted as cold fronts in cyclones that were developing over the study area. The latitude of the rain belt described by the first mode moved slightly northward with the advance of the East Asian monsoon from the first period, 9–22 June, to the third period, 23 July–5 August, and then withdrew southward again in accordance with the known seasonal movement of the Mei-Yu front. The EEOF analysis was used to show the development of the rainfall area over sequences of three days. During all four periods rainfall intensified on the second day, compared to the first and third days. During the first and last periods, 9–22 June and 5 August–30 September, respectively, there appeared to be little movement in the rainfall. During the second and third periods, the patterns were interpreted as a cold front in a developing cyclone. The results show the connection between the temporal variation in rainfall intensity and the temporal succession of spatial patterns over three day periods and should be used in the construction of design rainfalls for the study area. Received February 10, 1998 Revised June 23, 1998  相似文献   

16.
Vegetation net primary production (NPP) derived from a carbon model (Carnegie–Ames–Stanford Approach, CASA) and its interannual change in the Qinghai-Xizang (Tibetan) Plateau were investigated in this study using 1982–1999 time series data sets of normalized difference vegetation index (NDVI) and paired ground-based information on vegetation, climate, soil, and solar radiation. The 18-year averaged annual NPP over the plateau was 125 g C m−2 yr−1, decreasing from the southeast to the northwest, consistent with precipitation and temperature patterns. Total annual NPP was estimated between 0.183 and 0.244 Pg C over the 18 years, with an average of 0.212 Pg C (1 Pg = 1015 g). Two distinct periods (1982–1990 and 1991–1999) of NPP variation were observed, separated by a sharp reduction during 1990–1991. From 1982 to 1990, annual NPP did not show a significant trend, while from 1991 to 1999 a marked increase of 0.007 Pg C yr−2 was observed. NPP trends for most vegetation types resembled that of the whole plateau. The largest annual NPP increase during 1991–1999 appeared in alpine meadows, accounting for 32.3% of the increment of the whole region. Changes in solar radiation and temperature significantly influenced NPP variation, suggesting that solar radiation may be one of the major factors associated with changes in NPP.  相似文献   

17.
The Siberian High and climate change over middle to high latitude Asia   总被引:8,自引:0,他引:8  
Summary The Siberian High is the most important atmospheric centre of action in Eurasia during the winter months. Here its variability and relationship with temperature and precipitation is investigated for the period 1922 to 2000. The pronounced weakening of the Siberian High during the last ∼ 20 years is its most remarkable feature. Mean temperature, averaged over middle to high latitude Asia (30° E–140° E, 30° N–70° N), is correlated with the Siberian High central intensity (SHCI) with correlation coefficient of − 0.58 (1922–1999), and for precipitation, the correlation coefficient is − 0.44 (1922–1998). Taking the Arctic Oscillation (AO), the SHCI, the Eurasian teleconnection pattern (EU), and the Southern Oscillation (SO) index into account, 72 percent of the variance in temperature can be explained for the period 1949–1997 (for precipitation the variance is 26 percent), with the AO alone explaining 30 percent of the variance, and the Siberian High contributing 24 percent. The precipitation variance explained by the Siberian High is only 9.8 percent of the total. Received January 2, 2001 Revised November 24, 2001  相似文献   

18.
The regional patterns of change of temperature and rainfall that might accompany a global warming due to increased carbon dioxide can be studied by experiments with theoretical models of the climate system, by reconstructing the climates of past warm epochs, and by determining the anomalies of temperature and precipitation that prevailed during years or seasons when the Arctic region was unusually warm. The current study pursues the last course, making use of the northern hemisphere meteorological data record for the period 1931–1978. Hemispheric maps of anomalies of both temperature and precipitation are presented for the 10 warmest Arctic seasons and years, and for differences between the 5 warmest and 5 coldest consecutive Arctic winters. Wintertime anomalies are generally greatest and dominate in determining the annual averages. The hemispheric temperature anomalies for these data sets are similar to those determined earlier by the first author (Williams, 1980) using 1900–1969 data, but the precipitation anomalies (for North America alone) show more variation, partly due to the method of computing the anomalies. Work reported here begun while a visitor to the National Center for Atmospheric Research. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
Summary Among the various time scales of deep clouds, diurnal variation is found to be prominent over the tropics. The present study examines the diurnal variation in the number and area cover associated with the cloud systems over the tropical Indian region using INSAT-1B pixel data. Three periods, namely, April–May 1988, July–August 1988, and January–February 1989 are considered. The dependence of diurnal characteristics on the temperature threshold, life duration and size of cloud systems, and land-sea contrast has been explored. The diurnal characteristics of cloud systems living for more than a day have been studied for the first time. It is shown that cloud systems exhibit strong diurnal dependence at the coldest temperature threshold used (201 K). Also, the diurnal variation is more for larger cloud systems and for longer living systems. In general, more deep cloud activity is found from the satellite data during the pre-dawn and early morning hours. Precipitation is enhanced during morning to early noon hours. Further, using data from a recent field experiment, clear evidence of diurnal variation in precipitation over the Bay of Bengal is also presented. Received March 20, 2000/Revised October 3, 2000  相似文献   

20.
Consensus has been reached that precipitation extremes vary proportionally with global warming. Nevertheless, the underlying cause and magnitude of these factors affecting their relationships remain highly debated. To elucidate the complex relationship between precipitation extremes and temperature in China during the warm seasons (May through September), a 60-year (1958–2017) record of hourly rain gauge measurements, in combination with surface air temperature, RH, precipitable water (PW), and convective available potential energy (CAPE) collected from 120 radiosonde stations were examined. Spatially, the scaling relationship between precipitation extremes and temperature exhibits a large geographic difference across China. In particular, the Clausius–Clapeyron (CC) and sub-CC relationships tend to occur in northwest (ROI-N) and southeast China (ROI-S), whereas the super-CC relationship is found to mainly concentrates in central China (ROI-C). Additionally, the response of precipitation extremes to temperature becomes more sensitive as precipitation intensity increases, shifting from CC to super-CC at a certain point of inflection that varies by geographic regions. This shift occurs at approximately 15 °C in ROI-C and ROI-N, but at around 20 °C in ROI-S. Within the temperature range of the super-CC slope, the PW rises with the increases in temperature, whereas the CAPE decreases with rising temperature, which is contrary to the monotonic scaling of precipitation with temperature. From the perspective of interannual variation, the precipitation extremes correlate positively with temperature. This further confirms the notion that global warming, through jointly affecting PW and CAPE, is able to considerably regulate precipitation extremes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号