首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetosonic modes of magnetic plasma structures in the solar atmosphere are considered taking into account steady flows of plasma in the internal and external media and using a slab geometry. The investigation brings nearer the theory of magnetosonic waveguides, in such structures as coronal loops and photospheric flux tubes, to realistic conditions of the solar atmosphere. The general dispersion relation for the magnetosonic modes of a magnetic slab in magnetic surroundings is derived, allowing for field-aligned steady flows in either region. It is shown that flows change both qualitatively and quantitatively the characteristics of magnetosonic modes. The flow may lead to the appearance of a new type of trapped mode, namelybackward waves. These waves are the usual slab modes propagating in the direction opposite to the internal flow, but advected with the flow. The disappearance of some modes due to the flow is also demonstrated.The results are applied to coronal and photospheric magnetic structures. In coronal loops, the appearance of backward slow body waves or the disappearance of slow body waves, depending upon the direction of propagation, is possible if the flow speed exceeds the internal sound speed ( 300 km s–1). In photospheric tubes, the disappearance of fast surface and slow body waves may be caused by an external downdraught of about 3 km s–1.  相似文献   

2.
Terra-Homem  M.  Erdélyi  R.  Ballai  I. 《Solar physics》2003,217(2):199-223
The propagation of linear and non-linear magnetohydrodynamic (MHD) waves in a straight homogeneous cylindrical magnetic flux tube embedded in a homogeneous magnetic environment is investigated. Both the tube and its environment are in steady state. Steady flows break the symmetry of forward (field-aligned) and backward (anti-parallel to magnetic field) propagating MHD wave modes because of the induced Doppler shifts. It is shown that strong enough flows change the sense of propagation of MHD waves. The flow also induces shifts in cut-off values and phase-speeds of the waves. Under photospheric conditions, if the flow is strong enough, the slow surface modes may disappear and the fast body modes may become present. The crossing of modes is also observed due to the presence of flows. The effect of steady-state background has to be considered particularly carefully when evaluating observation signatures of MHD waves for diagnostics in the solar atmosphere.  相似文献   

3.
In the present work, the generation of large-scale zonal flows and magnetic field by short-scale collision-less electron skin depth order drift-Alfven turbulence in the ionosphere is investigated. The self-consistent system of two model nonlinear equations, describing the dynamics of wave structures with characteristic scales till to the skin value, is obtained. Evolution equations for the shear flows and the magnetic field is obtained by means of the averaging of model equations for the fast-high-frequency and small-scale fluctuations. It is shown that the large-scale disturbances of plasma motion and magnetic field are spontaneously generated by small-scale drift-Alfven wave turbulence through the nonlinear action of the stresses of Reynolds and Maxwell. Positive feedback in the system is achieved via modulation of the skin size drift-Alfven waves by the large-scale zonal flow and/or by the excited large-scale magnetic field. As a result, the propagation of small-scale wave packets in the ionospheric medium is accompanied by low-frequency, long-wave disturbances generated by parametric instability. Two regimes of this instability, resonance kinetic and hydrodynamic ones, are studied. The increments of the corresponding instabilities are also found. The conditions for the instability development and possibility of the generation of large-scale structures are determined. The nonlinear increment of this interaction substantially depends on the wave vector of Alfven pumping and on the characteristic scale of the generated zonal structures. This means that the instability pumps the energy of primarily small-scale Alfven waves into that of the large-scale zonal structures which is typical for an inverse turbulent cascade. The increment of energy pumping into the large-scale region noticeably depends also on the width of the pumping wave spectrum and with an increase of the width of the initial wave spectrum the instability can be suppressed. It is assumed that the investigated mechanism can refer directly to the generation of mean flow in the atmosphere of the rotating planets and the magnetized plasma.  相似文献   

4.
The propagation of magnetohydrodynamic (MHD) waves is an area that has been thoroughly studied for idealised static and steady state magnetised plasma systems applied to numerous solar structures. By applying the generalisation of a temporally varying background density to an open magnetic flux tube, mimicking the observed slow evolution of such waveguides in the solar atmosphere, further investigations into the propagation of both fast and slow MHD waves can take place. The assumption of a zero-beta plasma (no gas pressure) was applied in Williamson and Erdélyi (Solar Phys. 2013, doi: 10.1007/s11207-013-0366-9 , Paper I) is now relaxed for further analysis here. Firstly, the introduction of a finite thermal pressure to the magnetic flux tube equilibrium modifies the existence of fast MHD waves which are directly comparable to their counterparts found in Paper I. Further, as a direct consequence of the non-zero kinetic plasma pressure, a slow MHD wave now exists, and is investigated. Analysis of the slow wave shows that, similar to the fast MHD wave, wave amplitude amplification takes place in time and height. The evolution of the wave amplitude is determined here analytically. We conclude that for a temporally slowly decreasing background density both propagating magnetosonic wave modes are amplified for over-dense magnetic flux tubes. This information can be very practical and useful for future solar magneto-seismology applications in the study of the amplitude and frequency properties of MHD waveguides, e.g. for diagnostic purposes, present in the solar atmosphere.  相似文献   

5.
We present an analytical model to explore the magnetic field turbulent spectrum by coupled high-frequency kinetic Alfvén wave (KAW) and slow mode of Alfvén wave (AW). The spectrum is computed as a realization of energy cascades from larger to smaller scales for a specific case of solar wind plasma at 1 AU. A two-fluid technique is implemented for the derivation of model equations leading two wave modes. These coupled, nonlinear equations are solved numerically. The nonlinearity in the system arises due to nonlinear ponderomotive force, which is believed to be responsible for the wave localization and magnetic islands formation. The numerical results show that the magnetic islands grow with time and attain a quasi-steady state after the modulation instability is saturated. The magnetic field spectrum and associated spectral indices are computed near the time of saturation of instability. The simulated spectrum in dispersion region follows a power-law with an index of ?2.5. The steeper spectrum could be attributed as energy transfer from larger to smaller scales and helps to study turbulence in solar wind. The magnetic field spectrum and spectral index show a good agreement with the observation of solar wind turbulent spectra.  相似文献   

6.
Alfvénic waves are thought to play an important role in coronal heating and solar wind acceleration. Here we investigate the dissipation of standing Alfvén waves due to phase mixing at the presence of steady flow and sheared magnetic field in the stratified atmosphere of solar spicules. The transition region between chromosphere and corona has also been considered. The initial flow is assumed to be directed along spicule axis, and the equilibrium magnetic field is taken 2-dimensional and divergence-free. It is determined that in contrast to propagating Alfvén waves, standing Alfvén waves dissipate in time rather than in space. Density gradients and sheared magnetic fields can enhance damping due to phase mixing. Damping times deduced from our numerical calculations are in good agreement with spicule lifetimes. Since spicules are short living and transient structures, such a fast dissipation mechanism is needed to transport their energy to the corona.  相似文献   

7.
We investigate the possibility of an additional acceleration of the high speed solar wind by whistler waves propagating outward from a coronal hole. We consider a stationary, spherically symmetric model and assume a radial wind flow as well as a radial magnetic field. The energy equation consists of (a) energy transfer of the electron beam which excites the whistler waves, and (b) energy transfer of the whistler waves described by conservation of wave action density. The momentum conservation equation includes the momentum transfer of two gases (a thermal gas and an electron beam). The variation of the temperature is described by a polytropic law. The variation of solar wind velocity with the radial distance is calculated for different values of energy density of the whistler waves. It is shown that the acceleration of high speed solar wind in the coronal hole due to the whistler waves is very important. We have calculated that the solar wind velocity at the earth's orbit is about equal to 670 km/sec (for wave energy density about 10?4 erg cm?3 at 1.1R⊙). It is in approximate agreement with the observed values.  相似文献   

8.
Theoretical model, explaining a phenomenon of formation of Intensive Magnetic Flux Tube (IMFT) in a converging flow of partially ionized solar photospheric plasma is considered. Special attention is paid to the fact of weak ionization (n/n n ∼ 10-4) of plasma in the photosphere. The cases of 2D magnetic slab and cylindric magnetic tube are considered. It was shown that in a converging flow of photospheric plasma thin magnetic tubes, or slabs with the characteristic scale L 0 ∼ (1 ÷ 5) ċ 107 cm and magnetic field 1000 ÷ 2000 G can be generated. By this 2D magnetic slabs could be unstable with respect to an exchange instability and appear as an intermediate step during IMFT formation on the boundary of two supergranulation cells. Formation of compact strong magnetic field structures, and their energy balance are discussed. Stationary Joule energy dissipation taking place on the photospheric levels in the models of magnetic slab or IMFT under consideration increases towards the periphery of these objects and can exceed radiation looses. This can cause the occurrence of magnetic tubes with hot external envelopes, and modification of plasma temperature and density distribution, with respect to ones in a quiet atmosphere. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Analytical models of solar atmospheric magnetic structures have been crucial for our understanding of magnetohydrodynamic (MHD) wave behaviour and in the development of the field of solar magneto-seismology. Here, an analytical approach is used to derive the dispersion relation for MHD waves in a magnetic slab of homogeneous plasma enclosed on its two sides by non-magnetic, semi-infinite plasma with different densities and temperatures. This generalises the classic magnetic slab model, which is symmetric about the slab. The dispersion relation, unlike that governing a symmetric slab, cannot be decoupled into the well-known sausage and kink modes, i.e. the modes have mixed properties. The eigenmodes of an asymmetric magnetic slab are better labelled as quasi-sausage and quasi-kink modes. Given that the solar atmosphere is highly inhomogeneous, this has implications for MHD mode identification in a range of solar structures. A parametric analysis of how the mode properties (in particular the phase speed, eigenfrequencies, and amplitudes) vary in terms of the introduced asymmetry is conducted. In particular, avoided crossings occur between quasi-sausage and quasi-kink surface modes, allowing modes to adopt different properties for different parameters in the external region.  相似文献   

10.
The pulsation of the solar surface is caused by acoustic waves traveling in the solar interior. Thorough analyses of observational data indicate that these f and p helioseismic oscillation modes are not bounced back completely at the surface but they partially penetrate into the atmosphere. Atmospheric effects and their possible observational application are investigated in one‐dimensional magnetohydrodynamic models. It is found that f and p mode frequencies are shifted of the order of μHz due to the presence of an atmospheric magnetic field. This shift varies with the direction of the wave propagation.Resonant coupling of global helioseismic modes to local Alfvén and slow waves reduce the life time of the global modes. The resulting line width of the frequency line is of the order of nHz, and it also varies with propagation angle. These features enable us to use helioseismic observations in magnetic diagnostics of the lower atmosphere. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This paper deals with a rather general class of magnetoatmospheres — media for which the restoring forces of buoyancy, compressibility and magnetic tension/pressure are important in sustaining wave motion. The magnetic field has the general form (B 0(z), 0,0) and there is also an aligned shear flow (U 0(z), 0, 0) present. After discussion of the equilibrium and stability of such systems, and certain mathematical properties of a particular system (an isothermal atmosphere with uniform magnetic field, of interest in solar physics), theory is developed which enables expressions to be written down for the mechanical wave energy flux associated with wave motion due to a transient source. These analytic expressions are very general and contain contributions from the continuous and discrete frequency spectra, corresponding respectively to freely propagating and trapped (or surface) waves. These fluxes are evaluated for various ranges of magnetic field, horizontal wavenumber, characteristic source times and frequency, for a simple constant-parameter atmosphere. The source is taken to be a transient fluctuation of the lower boundary, (modelling convective overshoot) which is taken to be located at the level 5000=0.08 in the solar atmosphere. The relative distribution of wave energy flux in the various modes is discussed in the context of solar physics parameters. The possible significance of leaky modes arising from supergranular or other flow, for the local flux balance in the solar chromosphere is outlined.  相似文献   

12.
P. S. Cally  M. Goossens 《Solar physics》2008,251(1-2):251-265
The efficacy of fast?–?slow MHD mode conversion in the surface layers of sunspots has been demonstrated over recent years using a number of modelling techniques, including ray theory, perturbation theory, differential eigensystem analysis, and direct numerical simulation. These show that significant energy may be transferred between the fast and slow modes in the neighbourhood of the equipartition layer where the Alfvén and sound speeds coincide. However, most of the models so far have been two dimensional. In three dimensions the Alfvén wave may couple to the magnetoacoustic waves with important implications for energy loss from helioseismic modes and for oscillations in the atmosphere above the spot. In this paper, we carry out a numerical “scattering experiment,” placing an acoustic driver 4 Mm below the solar surface and monitoring the acoustic and Alfvénic wave energy flux high in an isothermal atmosphere placed above it. These calculations indeed show that energy conversion to upward travelling Alfvén waves can be substantial, in many cases exceeding loss to slow (acoustic) waves. Typically, at penumbral magnetic field strengths, the strongest Alfvén fluxes are produced when the field is inclined 30°?–?40° from the vertical, with the vertical plane of wave propagation offset from the vertical plane containing field lines by some 60°?–?80°.  相似文献   

13.
In the solar wind, electrostatic ion cyclotron waves can be excited, by electrons or ions when the flow velocity becomes supersonic. The instability of these waves is investigated for a situation in which ions are streaming in opposite directions along the interplanetary magnetic field in a uniform background of relatively stationary electrons. Many modes become unstable under the existing conditions. It is conjectured that the excitation of this instability may lead to a steady state electrostatic turbulence in the solar wind.  相似文献   

14.
The MHD instabilities of a temperature-anisotropic coronal plasma are considered. We show that aperiodic mirror instabilities of slow MHD waves can develop under solar coronal conditions for weak magnetic fields (B < 1 G) and periodic ion-acoustic instabilities can develop for strong magnetic fields (B > 10 G). We have found the instability growth rates and estimated the temporal and spatial scales of development and decay of the periodic instability. We show that the instabilities under consideration can play a prominent role in the energy balance of the corona and may be considered as a large-scale energy source of the wave coronal heating mechanism.  相似文献   

15.
Hydromagnetic planetary-gravity waves propagating on a β-plane through a zonal flow and transverse magnetic field are examined for instability. Such instabilities may be related to same physical phenomena in the atmospheres of the Sun and planets and in the Earth's core. It is found that the onset of instability depends on the directions of the vertical and transverse wave-numbers and the zonal flow. It is also shown that as the magnetic field intensity is kept uniform instability can onset provided that the zonal flow strength does not exceed a certain factor, which depends on the parameters of the medium, and then the zonal wavenumbers that can become unstable are limited to a given range. If the basic Alfvén wave speed is allowed to vary whereas the zonal flow is kept uniform the zonal wavenumbers that can exhibit instability are again limited but the basic Alfvén wave speed can assume any value.  相似文献   

16.
《New Astronomy》2002,7(6):283-292
A local perturbation analysis is performed on a realistic background accretion flow in a global magnetic field. The adopted background model is an analytic solution to the resistive MHD equations and describes magnetically-controlled advection-dominated accretion flows (ADAFs) with an accuracy to the first order in the resistive corrections. The results show that there are three independent wave modes, which may be called the Rayleigh, Balbus–Hawley and resistive modes. Within our resistive-MHD corrections to the ideal-MHD limit, a Balbus–Hawley-like criterion for the instability of axisymmetric perturbations appears as a consequence of the competition between damping due to magnetic diffusion and excitation due to shear flow. As for non-axisymmetric perturbations, the former two modes are likely to be unstable in the presence of shears because the magnetic diffusion acts as a stabilizer only to axisymmetric perturbations within our approximation.  相似文献   

17.
Recent observations have shown that bulk flow motions in structured solar plasmas, most evidently in coronal mass ejections (CMEs), may lead to the formation of Kelvin–Helmholtz instabilities (KHIs). Analytical models are thus essential in understanding both how the flows affect the propagation of magnetohydrodynamic (MHD) waves, and what the critical flow speed is for the formation of the KHI. We investigate both these aspects in a novel way: in a steady magnetic slab embedded in an asymmetric environment. The exterior of the slab is defined as having different equilibrium values of the background density, pressure, and temperature on either side. A steady flow and constant magnetic field are present in the slab interior. Approximate solutions to the dispersion relation are obtained analytically and classified with respect to mode and speed. General solutions and the KHI thresholds are obtained numerically. It is shown that, generally, both the KHI critical value and the cut-off speeds for magnetoacoustic waves are lowered by the external asymmetry.  相似文献   

18.
It is shown that the discontinuous jump in the vertical wave energy flux of slow hydromagnetic-gravity waves, occurring at a critical level, which is accompanied by wave absorption, and the existence of a reflection point imply that slow waves are trapped in the solar atmosphere. Thus such a system behaves as a leaky wave guide.  相似文献   

19.
The solar atmosphere is magnetically structured and highly dynamic. Owing to the dynamic nature of the regions in which the magnetic structures exist, waves can be excited in them. Numerical investigations of wave propagation in small-scale magnetic flux concentrations in the magnetic network on the Sun have shown that the nature of the excited modes depends on the value of plasma β (the ratio of gas to magnetic pressure) where the driving motion occurs. Considering that these waves should give rise to observable characteristic signatures, we have attempted a study of synthesised emergent spectra from numerical simulations of magneto-acoustic wave propagation. We find that the signatures of wave propagation in a magnetic element can be detected when the spatial resolution is sufficiently high to clearly resolve it, enabling observations in different regions within the flux concentration. The possibility to probe various lines of sight around the flux concentration bears the potential to reveal different modes of the magnetohydrodynamic waves and mode conversion. We highlight the feasibility of using the Stokes-V asymmetries as a diagnostic tool to study the wave propagation within magnetic flux concentrations. These quantities can possibly be compared with existing and new observations in order to place constraints on different wave excitation mechanisms.  相似文献   

20.
Grib  S. A.  Koutchmy  S.  Sazonova  V. N. 《Solar physics》1996,169(1):151-166
We consider the magnetohydrodynamic (MHD) interactions of solar coronal fast shock waves of flare and/or nonflare origin with the boundaries of coronal streamers and coronal holes. Boundaries are treated as MHD tangential discontinuities (TD). Different parameters of the observed corona are used in the investigation. The general case of the oblique interaction is studied.It is shown that a solar fast shock wave must be refracted usually as a fast shock wave inside the coronal streamer. For the special case of the velocity shear across TD, a slow shock wave is generated. On the contrary, the shock wave refracted inside the coronal hole is indeed a slow shock wave.The significance of different effects due to the interaction of fast and slow shock waves on the coronal magnetic field is noticed, especially at the time of a coronal mass ejection (CME). It is also shown, that an oblique fast MHD coronal shock wave may trigger an instability at the boundary of a streamer considered as a TD. It might have a relation with the observed process of abrupt disappearance of the streamer's boundary in the solar corona.On leave from the Academy of Sciences, Central Astronomical Observatory Pulkovo, 196140, St. Petersburg, Russia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号