首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GPS一机多天线公路高边坡实时监测系统研究   总被引:2,自引:1,他引:1  
王劲松  陈正阳  梁光华 《岩土力学》2009,30(5):1532-1536
根据一机多天线思想,建立了GPS一机多天线公路高边坡监测系统,降低了系统成本。其由野外采集子系统和室内控制子系统组成。前者将天线阵列采集的GPS信号,经分时器、信号放大器、无线路由器、WLAN天线传输至后者,经数据处理得各监测点的坐标数据。在单历元数据处理中,利用GPS采样密度高、监测点前后2次变形量较小的特点,由卫地距双差值 、载波相位双差值 、波长 ,计算出整周模糊度 的非整数解,再采用ROUND函数使其变为整数,得到整周模糊度。有了整周模糊度,双频GPS接收机的载波相位定位精度一般可达±5 mm,既能满足公路高边坡实时监测的精度,又解决了卫星信号在不同天线通道间切换产生的周跳问题,使数据处理简化。  相似文献   

2.
Nowadays many continuously operating reference stations (CORS) network were established in Middle East to improve the surveying tasks. Establishing such geodetic control networks can be a costly business where multiple stations should be occupied simultaneously and post-processed with scientific software. Recently, precise point positioning (PPP) provides precise positioning values that may be an alternative to precise relative processing. The current research aims to investigate that PPP has a potential as a reliable absolute positioning technique operational simplicity as well as to investigate the capability of PPP approach to be a low cost alternative to the conventional positioning methods used in position determination of core networks stations. In comparison with common relative GPS techniques, the costs are reduced; because no base stations and no simultaneous observations are necessary, no need for control network maintenance which could be the most defective factors that Egypt HARN network suffered from. To see the feasibility study of using PPP for precise determination of the CORS, 14 days of GNSS data for the 14 Kuwait integrated with 27 IGS stations were processed by Bernese software to calculate the precise coordinates of Kuwaiti CORS network in the latest terrestrial geodetic frame. Three days of these data were processed by Trimble business center software and using PPP approach to calculate the precise coordinates of Kuwait network. In the current research, a comparable investigation was carried out between the coordinates obtained from Bernese software, Trimble business center, and PPP approach. The comparison proved high level of agreement between the coordinates which confirm that PPP approach can be applied for establishment of CORS network.  相似文献   

3.
我国的北斗卫星导航系统(BeiDou Navigation Satellite System,缩写为BDS)已于2012年12月27日正式对亚太大部分地区提供连续无源定位、导航和授时服务.为了探讨BDS/GPS融合观测数据用于高精度地面沉降监测的效果和精度情况,利用5台兼容BDS和GPS系统信号的GNSS接收机,对西安市地面沉降GPS监测网中的9个监测点进行了复测.通过对连续观测10h以上4个时段观测数据的处理和分析,结果表明,相对于单独采用GPS观测数据进行基线解算而言,融合了BDS和GPS观测数据基线结果的内符合精度大大提高,水平方向的平均中误差从5mm改善至3mm,垂直方向的平均中误差从17mm 改善至12mm; 同时,监测结果的外符合精度也大大增强,X、Y、Z方向的平均中误差分别从6mm、15mm、10mm改善至1.5mm、8mm、5mm.这说明融合了BDS观测数据的BDS/GPS静态相对定位可以明显提高高精度地面沉降监测结果的内外符合精度.  相似文献   

4.
GPS PPP技术用于滑坡监测的试验与结果分析   总被引:1,自引:0,他引:1  
王利  张勤  黄观文  涂锐  张双成 《岩土力学》2014,35(7):2118-2124
为了研究全球定位系统(GPS)精密单点定位(PPP)技术用于滑坡等地质灾害监测时可能达到的精度和可靠性等问题,结合某类滑坡的大型物理模型试验,在滑坡体上布设了若干GPS监测点进行连续实时动态监测,利用PPP技术对该滑坡从稳定、开始滑动直至产生破坏的全过程监测数据进行了处理与分析,并与GPS单历元差分定位、载波相位实时差分定位技术监测结果进行了对比。结果表明:GPS PPP技术监测结果的内符合精度约为10 mm,外符合精度约为40 mm,且GPS PPP技术具有一些差分GPS无法比拟的优势,如无需基准站支持、作业成本低、效率高、可直接获取监测点在国际地球参考框架下的绝对坐标等。该技术完全可用于滑坡等地质灾害的实时动态监测和预警。  相似文献   

5.
The global positioning system (GPS) is widely used for determining the three-dimensional position of points on earth surface. In the last few years, its use has also been increasingly employed for obtaining vertical geometric coordinates, which associated with the orthometrical altitude of the point can be employed in various civil engineering applications, as has been seen in diverse localities throughout the world. The satisfactory performance of this technology for obtaining excellent precision in vertical coordinates demands some conditions, related to the satellites, such as transmission of signals and, principally, in the case of urbanized areas, the presence of obstructions in the proximity of the equipment, which interferes with the quality and quantity of the information collected. GPS is an efficient technique for the detection of small movements, including the monitoring of soil subsidence. The present article describes adequate forms of the use of GPS in such a way as to guarantee good precision of the resulting vertical coordinates, even under unfavorable situations, such as in coastal areas, where the reference networks for monitoring are implanted in only one of the sides of the point?Cobject region, which makes the situation more difficult and requires careful planning so that the use of GPS reaches the desired precision.  相似文献   

6.
It is important to make accurate and precise measurements in surveying applications. The concepts of accuracy and precision are not synonymous, even though they are commonly used in place of each other. Nowadays, real-time kinematic (RTK) method is widely used at surveying. As the RTK method can be done depending on a reference station, in countries which establish Continuously Operating Reference Stations (CORS) Network, method known as Network-RTK (N-RTK) can be done depending on the CORS Network. Continuously Operating Reference Stations-Turkey Network (CORS-TR), which consists of 146 reference stations that allow positioning both real time and post-process, was established in 2009. In this study, accuracy and precision of Global Navigation Satellite Systems (GNSS) receivers are tried to determine depending on different correction techniques. For this purpose, 12-h GNSS observations were performed at SLCK-Turkish National Fundamental GPS Network (SLCK-TNFGN) point. The observations were adjusted based on CORS-TR. N-RTK measurements were performed with different GNSS receivers, and accuracies of the receivers were investigated. In order to determine precisions of the receivers, means of RTK measurements were calculated and precisions of the receivers were determined. As a result of investigation, it is seen that accuracy and precision of receivers at 2D positioning and height vary depending on correction technique.  相似文献   

7.
The Upper Rhine graben is a north–northeast trending rift system, which belongs to the European Cenozoic rift system. Today, the southern part of the graben is seismically still active. Earthquakes of magnitude 5 have a recurrence time of approximately 30 years. In order to monitor and to determine the displacements in the study area, GPS measurements have been carried out in two campaigns (1999 and 2000), and observations of the available permanent stations have been processed in 2002. Owing to the small size of deformations expected, high accuracy requirements must be met by the GPS processing. In order to achieve these requirements, precise antenna modeling has been introduced into the processing. As expected the short time span has not enabled to detect significant displacements from the GPS measurements. The deformation analysis shows that the horizontal displacement rates do not exceed 1 mm/year, which is compatible with the geological information. Owing to the fact that the accuracy of positioning with GPS for the vertical coordinates is lower than for the horizontal coordinates, the determination of vertical displacements has been carried out using the leveling technique. In the area of Freiburg, first-order and second-order leveling lines have been chosen for the detection of local displacements on the Weinstetten, on the Lehen-Schönberg and on the Main Border Fault (MBF). Some sections of these faults are still active today. Significant vertical displacements have been observed at the Weinstetten fault in the area of Bad Krozingen and on the MBF in Freiburg. The displacement rates (1925–1984) are 0.17±0.01 mm/year and 0.25±0.02 mm/year respectively. The results agree very well with the results of seismotectonic investigations, and show that ongoing displacements can be found on the northern part of the Lehen-Schönberg fault in the vicinity of Eichstetten, and on the MBF in the vicinity of Freiburg.  相似文献   

8.
With the successful launch of the sixteen MEO satellites of the Beidou-3 global satellite navigation system and the broadcast of new signals, Beidou has officially entered the global construction stage while the international GNSS Monitoring and Assessment System (iGMAS) is also performing systematic testing and evaluation on various aspects of operational performance from satellite end to ground receiving end of Beidou-3 system. This paper analyzed and evaluated the observation quality of new signals B1C and B2a broadcasted by the twelve new Beidou-3 MEO satellites on the observation data integrity rate, multipath error, pseudorange noise and Carrier-to-Noise Ratio (CNR) compared with GPS and GALILEO. The results show that the observation data integrity rate of B1C signal is better than that of B2a signal in the Beidou-3 system. In the aspects of multipath error, pseudorange noise and CNR, B2a signal is better than that of B1C. The performances of the twelve MEO satellites of Beidou-3 are equivalent, that is, for Beidou-3, the consistency of satellites can be guaranteed. In terms of pseudo-range noise, Beidou-3 is slightly worse than GPS and GALILEO While the observation data integrity rate, multipath error and CNR of Beidou-3 are equivalent to those of GPS and GALILEO.  相似文献   

9.
为了减弱GPS单点定位中残余的系统偏差对参数估值精度的影响,在误差方程中引入一非参数分量来表示测量中残余的系统误差,即利用半参数模型来精化GPS绝对定位的函数模型。利用实测GPS数据检验了此算法的有效性,计算结果表明:该算法在一定程度上能够消除平差模型中残余的系统偏差。  相似文献   

10.
在系统评估青藏高原积雪观测典型气象站历史定位坐标精度基础上,利用站点雪深资料对NOAA IMS 4 km和1 km分辨率雪冰产品在青藏高原的精度和适用性进行了验证和评估,定量分析了IMS 4 km到1 km空间分辨率提高和气象站历史定位与GPS定位坐标之间的差异对青藏高原IMS积雪监测精度的影响。结果表明:青藏高原个别气象站历史坐标与当前GPS接收机定位之间存在较大的差异,如安多气象站经度偏小0.6°,纬度偏大0.08°。IMS 4 km雪冰产品在青藏高原的总精度介于76.4%~83.2%,平均为80.1%,积雪分类精度介于35.8%~60.7%,平均为47.2%,平均误判率为17.1%,平均漏判率为45.5%,总体上呈现地面观测的积雪日数越多、平均雪深越大,其总体监测精度越低,而积雪分类精度越高的特点。IMS分辨率从4 km到1 km总体精度平均提高了2.9%,积雪分类精度平均提高了0.9%,主要是由于个别站点的精度提升较大引起的,对高原多数台站积雪监测精度的改进和提升很小。除个别台站外,目前气象站历史坐标和GPS定位坐标之间的差异,对IMS 4 km积雪监测精度验证结果没有影响。然而,今后随着卫星遥感技术的发展,更高时空分辨率的遥感积雪产品将用于积雪监测和研究,精确的地面观测站坐标信息是对这些遥感数据开展精度验证与实际应用的前提。  相似文献   

11.
Hastaoglu  K. O.  Sanli  D. U. 《Natural Hazards》2011,58(3):1275-1294
GPS is frequently used in the monitoring of natural hazards and other geophysical phenomena. Landslide monitoring is one such area in which various GPS methods are tested and various systematic error sources are introduced. In previous studies, one error source introduced on rapid static GPS was the effect of large height differences in GPS positions. In this study, we further investigate how GPS velocities/slip rates are affected by large station height differences when rapid static surveying is used. In order to demonstrate the influences, we used static GPS measurements from the Koyulhisar landslide in central Turkey. Comparison of rapid static GPS solutions with static GPS solutions using BERNESE 5.0 indicates that systematic biases occur in the estimated rapid static GPS deformation rates when the station height difference is large between baseline points. The effect is more significant on the vertical component, whereas it is negligible on the horizontal components. When reducing the height difference between the reference station and the rover stations, rapid static solutions from 15-min sessions show high correlation and similar deformation rates with static positioning solutions.  相似文献   

12.
A detailed study of the Earth tide effects on the GPS kinematic/static positioning is presented in this paper by using theoretical Earth tide computation and practical GPS data processing. Tidal effects could reach up to 30 cm in Denmark and Greenland depending on the measuring time and the position of reference station. With a baseline less than 80 km, the difference of the Earth tide effects could reach more than 5 mm. So, in precise applications of GPS positioning, the Earth tide effect has to be taken into account even for a relative small local GPS network. Several examples are given for demonstrating that the Earth tide effects can be viewed by GPS surveying. They are given through static GPS data static processing, static GPS data kinematic processing, and airborne kinematic GPS data processing. In these cases, the Earth tide effects can be subtracted from the GPS results. The determination of tidal parameter through static GPS data kinematic processing has also been tested.  相似文献   

13.
近年来人们往往利用GPS数据来确定大地高,但大地高不同于正常高,为此,利用多项式拟合与地球重力场模型相结合的数学方法,使GPS所测大地高通过这些数学模型直接转换为具有厘米精度的正常高,将该方法得到的正常高与单独利用多项式拟合和地球重力场模型得到的结果进行了比较,其差值的标准差为±38 cm。  相似文献   

14.
针对野外地质实习不同阶段的具体要求,介绍GPS的比较参数坐标校正方法,提供了一种适合野外教学的简易坐标转换模型,解决了GPS坐标与地形图配准问题。GPS定位、导航功能和数字填图系统的综合利用,丰富了野外实践教学内容,对改进教学方法、模式,取得了良好的教学效果。  相似文献   

15.
According to the wide spread use of satellite-based positioning techniques, especially Global Navigation Satellite Systems (GNSS), a greater attention has been paid to the precise determination of geoid models. As it is known, leveling measurements require high cost and long time in observation process that make it not convenient for the practical geodetic purposes. Thus obtaining the orthometric heights by GNSS is the most conventional way of determining these heights. Verifying this goal was the main objective behind the current research. The current research introduces a numerical solution of geoid modeling by applying a surface fitting for a few sparse data points of geoid undulation using minimum curvature surface (MCS). The MCS is presented for deriving a system of linear equations from boundary integral equations. To emphasize the precise applicability of the MCS as a tool for modeling the geoid in an area using GPS/leveling data, a comparison study between EGM2008 and MCS geoid models, is performed. The obtained results showed that MCS technique is a precise tool for determining the geoid in Egypt either on regional and/or local scale with law distortion at check points.  相似文献   

16.
中国大陆现今构造变形GPS观测数据与速度场   总被引:64,自引:6,他引:58  
王琪  张培震  马宗晋 《地学前缘》2002,9(2):415-429
利用 1991— 1999年间 36 2个全球定位系统 (GPS)测站的观测资料 ,初步获得了中国大陆及周边地区现今地壳水平运动的统一速度场。该速度场主要涵盖青藏高原 ,天山 ,塔里木、川滇 ,河西走廊 ,福建东南沿海等重要构造活动区 ,测定精度总体优于 2~ 3mm/a ,速度场站点的分布和测定精度基本上满足中国大陆现今构造变形和动力学研究的需求。现代大地测量第一次比较全面、定量地展示出中国大陆在周边板块作用下大幅度构造变形的图像 ,为模拟大陆岩石圈动力过程提供了基础性的运动学约束条件。  相似文献   

17.
This paper discusses the prospects of application of the laser deformographs, broadband seismographs, and GPS/GLONASS receivers for the purpose of prediction of a probable crustal earthquake with magnitude 7 at the depth of 20 km by variations of the stress-strain field of the Earth on its surface. The measurement carried out have shown that the application of laser deformographs can solve this problem, while the application of various seismographs and GPS/GLONASS receivers cannot help to do this.  相似文献   

18.
The main purpose of this article is to discuss the use of GPS positioning together with a gravimetrically determined geoid, for deriving orthometric heights in the North of Algeria, for which a limited number of GPS stations with known orthometric heights are available, and to check, by the same opportunity, the possibility of substituting the classical spirit levelling. For this work, 247 GPS stations which are homogeneously distributed and collected from the international TYRGEONET project, as well as the local GPS/Levelling surveys, have been used. The GPS/Levelling geoidal heights are obtained by connecting the points to the levelling network while gravimetric geoidal heights were interpolated from the geoid model computed by the Geodetic Laboratory of the National Centre of Spatial Techniques from gravity data supplied by BGI. However, and in order to minimise the discordances, systematic errors and datum inconsistencies between the available height data sets, we have tested two parametric models of corrector surface: a four parameter transformation and a third polynomial model are used to find the adequate functional representation of the correction that should be applied to the gravimetric geoid. The comparisons based on these GPS campaigns prove that a good fit between the geoid model and GPS/levelling data has been reached when the third order polynomial was used as corrector surface and that the orthometric heights can be deducted from GPS observations with an accuracy acceptable for the low order levelling network densification. In addition, the adopted methodology has been also applied for the altimetric auscultation of a storage reservoir situated at 40 km from the town of Oran. The comparison between the computed orthometric heights and observed ones allowed us to affirm that the alternative of levelling by GPS is attractive for this auscultation.  相似文献   

19.
为探讨大直径双钻孔强化抽采瓦斯效应,以山西石泉煤矿30110回采工作面为对象,利用RFPA2D-Gas建立不同直径单孔和双?350 mm钻孔的数值模型,分析了钻孔周围煤体的应力分布、损伤破裂、透气性演化及瓦斯运移规律,并对双?350 mm钻孔抽采效果进行了考察验证。模拟结果表明:?100、?250、?350和双?350 mm钻孔卸压半径分别为0.25、0.9、1.2、2.2 m;?250、?350和双?350 mm钻孔周边煤体损伤破坏以蝴蝶展翅形态向钻孔上方两侧延展;双?350 mm钻孔上方1.5 m处煤体透气性系数可由0.25 m2/(MPa2·d)增至240 m2/(MPa2·d);瓦斯运移速率随钻孔直径增加而增大,在抽采过程中逐渐降低,当煤体破裂时会有一定幅度增加。现场考察结果显示双?350 mm钻孔可利用钻孔塌裂强化抽采效果,抽采半径为2 m,流量可达?100 mm钻孔的21倍,抽采总量为?100 mm钻孔的10倍以上,甚至可达到40倍。   相似文献   

20.
The accurate prediction of displacement is crucial for landslide deformation monitoring and early warning. This study focuses on a landslide in Wenzhou Belt Highway and proposes a novel multivariate landslide displacement prediction method that relies on graph deep learning and Global Navigation Satellite System (GNSS) positioning. First model the graph structure of the monitoring system based on the engineering positions of the GNSS monitoring points and build the adjacent matrix of graph nodes. Then construct the historical and predicted time series feature matrixes using the processed temporal data including GNSS displacement, rainfall, groundwater table and soil moisture content and the graph structure. Last introduce the state-of-the-art graph deep learning GTS (Graph for Time Series) model to improve the accuracy and reliability of landslide displacement prediction which utilizes the temporal-spatial dependency of the monitoring system. This approach outperforms previous studies that only learned temporal features from a single monitoring point and maximally weighs the prediction performance and the priori graph of the monitoring system. The proposed method performs better than SVM, XGBoost, LSTM and DCRNN models in terms of RMSE (1.35 mm), MAE (1.14 mm) and MAPE (0.25) evaluation metrics, which is provided to be effective in future landslide failure early warning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号