首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Metabasites exposed in far-eastern Nepal provide an important insight into the metamorphic evolution of the Himalayan orogen independent from data obtained on metapelites. The P–T conditions and formation process of mafic granulite intercalated within Early Oligocene migmatites and two amphibolites surrounded by Early Miocene metapelites were inferred from pseudosection modeling and conventional geothermobarometry combined with the occurrences of field and microstructures. A mafic granulite in the Higher Himalaya Crystalline Sequence (HHCS) yields P–T conditions of 6.5–8 kbar, 730–750 °C. The similar peak P–T condition and retrograde path with low P/T gradient of mafic granulite and surrounding migmatite indicate that both rocks were simultaneously metamorphosed and exhumed together along the tectonic discontinuities in the HHCS. In contrast, the P–T conditions (2–5 kbar, 500–600 °C) of highly-deformed amphibolite block above the Main Central Thrust (MCT) records significantly lower pressure than garnet-mica gneisses in the country rock, suggesting that the amphibolite block derived from upper unit of the MCT zone and became tectonically mixed with the gneisses of hanging wall near the surface. An amphibolite lense below the MCT preserves the prograde P–T conditions (6–7.5 kbar, 550–590 °C) of Early Miocene syn-tectonic metamorphism that occurred in the MCT zone. This study indicates the top-to-the south movement of the MCT zone results in the tectonic assembly of rocks with different P–T–t conditions near the MCT.  相似文献   

2.
The geology of Kumaun Lesser Himalaya falls within three main tectonic units, viz the Almora Nappe, Inner Krol Nappe and the Outer Krol Nappe, and the three units comprising the entire succession occur in five distinct zones or belts. The stratigraphy of the area has been revised on the basis of the occurrences of chloritic horizons (spilites) and also the existence of an unconformity at the base of Loharkhet/Bageshwar/Ganai/Bhimtal Formation. This paper describes briefly the lithological and structural characters of the rocks of the five belts and the observations are synthesized to present an integrated picture of the regional stratigraphic framework for the metasediments lying between the Main Central Thrust and the Main Boundary Thrust/Fault which define the tectonic boundaries of the Lesser Himalaya in Kumaun.  相似文献   

3.
The geology and tectonics of the Himalaya has been reviewed in the light of new data and recent studies by the author. The data suggest that the Lesser Himalayan Gneissic Basement (LHGB) represents the northern extension of the Bundelkhand craton, Northern Indian shield and the large scale granite magmatism in the LHGB towards the end of the Palæoproterozoic Wangtu Orogeny, stabilized the early crust in this region between 2-1.9 Ga. The region witnessed rapid uplift and development of the Lesser Himalayan rift basin, wherein the cyclic sedimentation continued during the Palæoproterozoic and Mesoproterozoic. The Tethys basin with the Vaikrita rocks at its base is suggested to have developed as a younger rift basin (~ 900 Ma ago) to the north of the Lesser Himalayan basin, floored by the LHGB. The southward shifting of the Lesser Himalayan basin marked by the deposition of Jaunsar-Simla and Blaini-Krol-Tal cycles in a confined basin, the changes in the sedimentation pattern in the Tethys basin during late Precambrian-Cambrian, deformation and the large scale granite activity (~ 500 ± 50 Ma), suggests a strong possibility of late Precambrian-Cambrian Kinnar Kailas Orogeny in the Himalaya. From the records of the oceanic crust of the Neo-Tethys basin, subduction, arc growth and collision, well documented from the Indus-Tsangpo suture zone north of the Tethys basin, it is evident that the Himalayan region has been growing gradually since Proterozoic, with a northward shift of the depocentre induced by N-S directed alternating compression and extension. During the Himalayan collision scenario, the 10–12km thick unconsolidated sedimentary pile of the Tethys basin (TSS), trapped between the subducting continental crust of the Indian plate and the southward thrusting of the oceanic crust of the Neo-Tethys and the arc components of the Indus-Tangpo collision zone, got considerably thickened through large scale folding and intra-formational thrusting, and moved southward as the Kashmir Thrust Sheet along the Panjal Thrust. This brought about early phase (M1) Barrovian type metamorphism of underlying Vaikrita rocks. With the continued northward push of the Indian Plate, the Vaikrita rocks suffered maximum compression, deformation and remobilization, and exhumed rapidly as the Higher Himalayan Crystallines (HHC) during Oligo-Miocene, inducing gravity gliding of its Tethyan sedimentary cover. Further, it is the continental crust of the LHGB that is suggested to have underthrust the Himalaya and southern Tibet, its cover rocks stacked as thrust slices formed the Himalayan mountain and its decollement surface reflected as the Main Himalayan Thrust (MHT), in the INDEPTH profile.  相似文献   

4.
Ages are used to constrain the temporal evolution of the Meatiq Gneiss Dome, Eastern Desert, Egypt, by dating (ID-TIMS) pre-, syn-, and post-tectonic igneous rocks in and around the dome. The Um Ba’anib Orthogneiss, comprising the deepest exposed structural levels of the dome, has a crystallization age of 630.8 ± 2 Ma. The overlying mylonites are interpreted to be a thrust sheet/complex (Abu Fannani Thrust Sheet) of highly mylonitized metasediments (?), migmatitic amphibolites, and orthogneisses with large and small tectonic lenses of less-deformed intrusives. Two syn-tectonic diorite lenses in this complex have crystallization ages of 609.0 ± 1.0 and 605.8 ± 0.9 Ma, respectively. The syn-tectonic Abu Ziran diorite, cutting across the tectonic contact between mylonite gneisses of the Abu Fannani Thrust Sheet and a structurally overlying thrust sheet of eugeoclinal rocks (“Pan-African nappe”), has a magmatic emplacement age of 606.4 ± 1.0 Ma. Zircons from a gabbro (Fawakhir ophiolite) within the eugeoclinal thrust sheet yielded a crystallization age of 736.5 ± 1.2 Ma. The post-tectonic Fawakhir monzodiorite intrudes the ophiolitic rocks and has an emplacement age of 597.8 ± 2.9 Ma. Two other post-tectonic granites, the Arieki granite that intrudes the foliated Um Ba’anib Orthogneiss, and the Um Had granite that cuts the deformed Hammamat sediments, have emplacement ages of 590 ± 3.1 and 596.3 ± 1.7 Ma, respectively. We consider formation of the Meatiq Gneiss Dome to be a young structural feature (<631 Ma), and our preferred tectonic interpretation is that it formed as a result of NE–SW shortening contemporaneous with folding of the nearby Hammamat sediments around 605–600 Ma, during oblique collision of East and West Gondwana.  相似文献   

5.
In the Lesser Himalayan region of Garhwal, an elongate, NW-SE trending zone of mylonitic rocks is developed along the Singuni Thrust within the metasedimentary formation of the Deoban-Tejam Belt. Detailed petrography of various mylonitic rocks indicates that a quartz and felspar porphyry was emplaced along the Singuni Thrust. This was initially metamorphosed in the almandine-amphibolite facies before profound ruptural or cataclastic and crystalloblastic deformation evolved mylonitic rocks in the green schist facies. Southwesterly dipping foliation and an equally prominent mica lineation plunging in the same direction are developed in these mylonitic rocks. The quartzite is also intensely cataclastically deformed in the green schist facies and is highly schistose with a prominent mica lineation normal to the trace of Singuni Thrust, Uttarkashi Thrust and Main Central Thrust in the ‘a’ direction of tectonic transport. In quartzite and mylonitic rocks, a probable contemporaneous development of the metamorphic and structural elements has been postulated along the Singuni Thrust during large scale tectonic movements. Normally exposed Gamri Quartzite is more metamorphosed near its base along the Singuni Thrust and Uttarkashi Thrust while the intensity of deformation increases near the top of normally exposed quartzite along the Main Central Thrust and, thus, signifying the role of thrusting in cataclastically deforming the rocks and contributing to the phenomenon of widespread reversal of metamorphism in the Lesser Himalaya.  相似文献   

6.
The stratigraphic and tectonic setting in the northwest part of Himalayan belt is complex and thrusted due to the collision of Indian plate and the Eurasian plate. During the past, the Himalaya is divided into four parts; these are Outer Himalaya, Lesser Himalaya, Greater or Higher Himalaya and Tethys Himalaya. The appearance of basement rocks played a significant role in the Himalayan periphery for stratigraphic, structural and tectonic movement. The deformation pattern of the crustal rocks causing the rise of basement rocks which constitutes an integral part of crustal configuration during the evolutionary stages of the Himalaya. In this study, an attempt has been made to estimate the basement depth configuration using spectral analysis and Euler deconvolution technique of gravity data in the northwest Himalaya region. The elevation increases continuously from 500 m to 5100 m in SW to NE direction, however, Bouguer gravity anomaly decreases continuously from ?130 mGal to ?390 mGal in SW to NE direction due to the isostaic adjustment. Gravity anomaly is very low near Harsil, Badrinath and Joshimath area and observed higher elevation due to the deep rooted basement. However, there are extrusion of crystalline basement in and around the Badrinath area due to the resettlement of geologic process which are overlaid to the top surface of the sedimentary layers. Euler deconvolution technique has been applied to detect the direct basement depth and results show a good correlation with the average depth of the spectral analysis and other works carried by different authors. Three gravity profiles are selected in appropriate places orienting SW-NE direction with a profile length of 160 km, 150 km and 140 km respectively in the study area for calculating the average depth of the basement rock. The average basement depth calculated is around 11.27 km using the spectral analysis technique and results are well correlated with the results of various workers. Euler deconvolution studies along the three selected profiles have been interpreted. It has been observed that there are more number of cluster points falling between depth ranges of 10 to 15 km, dipping in SW to NE direction. Euler’s study shows deep rooted connection near Main Frontal Thrust (MFT), Main Boundary Thrust (MBT), Main Central Thrust (MCT), Bearing Thrust (BT) and Vaikrita Thrust (VT) locations as per profile study. Based on these studies three geological models have been prepared along the profiles showing different tectonic resettlement and depth of crystalline basement. Crystalline rocks exposed at the surface may be due to uplift along the shear in the MCT zone by kinetic flow basically, Munsiayari Thrust (MT) and VT in the of NW-Himalaya region.  相似文献   

7.
The crustal architecture of the Southern Urals is dominated by an orogenic wedge thrusted westward upon the subducted East European continental margin. The N–S trending wedge constitutes an antiformal stack composed mainly of the high-P Maksyutov Complex, the overlying Suvanyak Complex and the allochthonous synformal Zilair flysch further west. These tectono-metamorphic units are separated by tectonic contacts and record discontinously decreasing metamorphic conditions from bottom to top. In the east, the E-dipping Main Uralian Normal Fault cross-cuts the metamorphic footwall and juxtaposes the non metamorphic Magnitogorsk island arc. This syncollisional normal fault compensated crustal thickening and exhumation of the high-P rocks. Orogenic shortening was accommodated by the Main Uralian Thrust, a W-vergent crustal-scale shear zone at the base of the wedge. Geological investigations and reflection seismics (URSEIS '95) argue in favour of a geodynamic evolution integrating subduction and basal accretion of high-P rocks during sinistral oblique thrusting along the Main Uralian Thrust and coeval normal-faulting along the Main Uralian Normal Fault.  相似文献   

8.
Nepal can be divided into the following five east–west trending major tectonic zones. (i) The Terai Tectonic Zone which consists of over one km of Recent alluvium concealing the Churia Group (Siwalik equivalents) and underlying rocks of northern Peninsular India. Recently active southward-propagating thrusts and folds beneath the Terai have affected both the underlying Churia and the younger sediments. (ii) The Churia Zone, which consists of Neogene to Quaternary foreland basin deposits and forms the Himalayan mountain front. The Churia Zone represents the most tectonically active part of the Himalaya. Recent sedimentologic, geochronologic and paleomagnetic studies have yielded a much better understanding of the provenance, paleoenvironment of deposition and the ages of these sediments. The Churia Group was deposited between ∼14 Ma and ∼1 Ma. Sedimentary rocks of the Churia Group form an archive of the final drama of Himalayan uplift. Involvement of the underlying northern Peninsular Indian rocks in the active tectonics of the Churia Zone has also been recognised. Unmetamorphosed Phanerozoic rocks of Peninsular India underlying the Churia Zone that are involved in the Himalayan orogeny may represent a transitional environment between the Peninsula and the Tethyan margin of the continent. (iii) The Lesser Himalayan Zone, in which mainly Precambrian rocks are involved, consists of sedimentary rocks that were deposited on the Indian continental margin and represent the southernmost facies of the Tethyan sea. Panafrican diastrophism interrupted the sedimentation in the Lesser Himalayan Zone during terminal Precambrian time causing a widespread unconformity. That unconformity separates over 12 km of unfossiliferous sedimentary rocks in the Lesser Himalaya from overlying fossiliferous rocks which are >3 km thick and range in age from Permo-Carboniferous to Lower to Middle Eocene. The deposition of the Upper Oligocene–Lower Miocene fluvial Dumri Formation records the emergence of the Himalayan mountains from under the sea. The Dumri represents the earliest foreland basin deposit of the Himalayan orogen in Nepal. Lesser Himalayan rocks are less metamorphosed than the rocks of the overlying Bhimphedis nappes and the crystalline rocks of the Higher Himalayan Zone. A broad anticline in the north and a corresponding syncline in the south along the Mahabharat range, as well as a number of thrusts and faults are the major structures of the Lesser Himalayan Zone which is thrust over the Churia Group along the Main Boundary Thrust (MBT). (iv) The crystalline high-grade metamorphic rocks of the Higher Himalayan Zone form the backbone of the Himalaya and give rise to its formidable high ranges. The Main Central Thrust (MCT) marks the base of this zone. Understanding the origin, timing of movement and associated metamorphism along the MCT holds the key to many questions about the evolution of the Himalaya. For example: the question of whether there is only one or whether there are two MCTs has been a subject of prolonged discussion without any conclusion having been reached. The well-known inverted metamorphism of the Himalaya and the late orogenic magmatism are generally attributed to movement along the MCT that brought a hot slab of High Himalayan Zone rocks over the cold Lesser Himalayan sequence. Harrison and his co-workers, as described in a paper in this volume, have lately proposed a detailed model of how this process operated. The rocks of the Higher Himalayan Zone are generally considered to be Middle Cambrian to Late Proterozoic in age. (v) The Tibetan Tethys Zone is represented by Cambrian to Cretaceous-Eocene fossiliferous sedimentary rocks overlying the crystalline rocks of the Higher Himalaya along the Southern Tibetan Detachment Fault System (STDFS) which is a north dipping normal fault system. The fault has dragged down to the north a huge pile of the Tethyan sedimentary rocks forming some of the largest folds on the Earth. Those sediments are generally considered to have been deposited in a more distal part of the Tethys than were the Lesser Himalayan sediments.The present tectonic architecture of the Himalaya is dominated by three master thrusts: the Main Central Thrust (MCT), the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). The age of initiation of these thrusts becomes younger from north to south, with the MCT as the oldest and the MFT as the youngest. All these thrusts are considered to come together at depth in a flat-lying decollement called the Main Himalayan Thrust (MHT). The Mahabharat Thrust (MT), an intermediate thrust between the MCT and the MBT is interpreted as having brought the Bhimphedi Group out over the Lesser Himalayan rocks giving rise to Lesser Himalayan nappes containing crystalline rocks. The position of roots of these nappes is still debated. The Southern Tibetan Detachment Fault System (STDFS) has played an important role in unroofing the higher Himalayan crystalline rocks.  相似文献   

9.
The Kangra reentrant constitutes a ~ 80-km-wide zone of fold-thrust belt made of Cenozoic strata of the foreland basin in NW Sub-Himalaya. Earlier workers estimated the total long-term shortening rate of 14 ± 2 mm/year by balanced cross-section between the Main Boundary Thrust and the Himalayan Frontal Thrust. Geologically estimated rate is nearly consistent with the GPS-derived slip rate of 14 ± 1 mm/year. There are active faults developed within 4–8 km depth of the Sub-Himalayan fold-thrust belt of the reentrant. Dating the strath surfaces of the abandoned fluvial terraces and fans above the thrust faults, the uplift (bedrock incision) rates are computed. The dips of thrust faults are measured in field and from available seismic (depth) profiles. From the acquired data, late Quaternary shortening rates on the Jawalamukhi Thrust (JT), the Soan Thrust (ST) and the Himalayan Frontal Thrust (HFT) are estimated. The shortening rates on the JT are 3.5–4.2 mm/year over a period 32–30 ka. The ST yields a shortening rate of 3.0 mm/year for 29 ka. The corresponding shortening and slip rates estimated on the HFT are 6.0 and 6.9 mm/year during a period 42 ka. On the back thrust of Janauri Anticline, the shortening and slip rates are 2.0 and 2.2 mm/year, respectively, for the same period. The results constrained the shortening to be distributed largely across a 50-km-wide zone between the JT and the HFT. The emergence of surface rupture of a great and mega earthquakes recorded on the reactivated HFT implies ≥100 km width of the rupture. The ruptures of large earthquakes, like the 1905 Kangra and 2005 Kashmir, remained restricted to the hinterland. The present study indicates that the high magnitude earthquakes can occur between the locking line and the active thrusts.  相似文献   

10.
《International Geology Review》2012,54(13):1602-1629
Widespread Cretaceous volcanic basins are common in eastern South China and are crucial to understanding how the Circum-Pacific and Tethyan plate boundaries evolved and interacted with one another in controlling the tectonic evolution of South China. Lithostratigraphic units in these basins are grouped, in ascending order, into the Early Cretaceous volcanic suite (K1V), the Yongkang Group (K1-2), and the Jinqu Group (K2). SHRIMP U-Pb zircon geochronological results indicate that (1) the Early Cretaceous volcanic suite (K1V) erupted at 136–129 Ma, (2) the Yongkang Group (K1-2) was deposited from 129 Ma to 91 Ma, and (3) the deposition of the Jinqu Group (K2) post-dated 91 Ma. Structural analyses of fault-slip data from these rock units delineate a four-stage tectonic evolution of the basins during Cretaceous to Palaeogene time. The first stage (Early to middle Cretaceous time, 136–91 Ma) was dominated by NW–SE extension, as manifested by voluminous volcanism, initial opening of NE-trending basins, and deposition of the Yongkang Group. This extension was followed during Late Cretaceous time by NW–SE compression that inverted previous rift basins. During the third stage in Late Cretaceous time, possibly since 78.5 Ma, the tectonic stress changed to N–S extension, which led to basin opening and deposition of the Jinqu Group along E-trending faults. This extension probably lasted until early Palaeogene time and was terminated by the latest NE–SW compressional deformation that caused basin inversion again. Geodynamically, the NW–SE-oriented stress fields were associated with plate kinematics along the Circum-Pacific plate boundary, and the extension–compression alternation is interpreted as resulting from variations of the subducted slab dynamics. A drastic change in the tectonic stress field from NW–SE to N–S implies that the Pacific subduction-dominated back-arc extension and shortening were completed in the Late Cretaceous, and simultaneously, that Neo-Tethyan subduction became dominant and exerted a new force on South China. The ongoing Neo-Tethyan subduction might provide plausible geodynamic interpretations for the Late Cretaceous N–S extension-dominated basin rifting, and the subsequent Cenozoic India–Asia collision might explain the early Palaeogene NE–SW compression-dominated basin inversion.  相似文献   

11.
羌塘盆地是一个中—新生代海相残留盆地,泥盆系至侏罗系以海相沉积为主,白垩系至第四系则以陆相沉积为主。分布最广的上三叠统和侏罗系是主要勘探目的层。喜马拉雅运动以来,羌塘盆地的中生代变形格架受到改造。晚白垩世以来至少有过四次强烈活动,走滑、逆冲与伸展三种构造变形形式共存,以逆冲断层和扭压断层占主导,正断层或扭张断层较少分布。断层发育程度是东、西两头强,中间相对较弱,在E89°~E91°中间区块受新构造应力破坏较弱。青藏高原以整体升降为主,羌塘盆地更是相对稳定,其二级夷平面依然平整,位于海拔5200~5300m之间,说明高原在隆升时保持着整体的稳定性。认为羌塘盆地受新生代动力作用的影响不大,仍具有良好的油气勘探潜力。  相似文献   

12.
The rocks of the Kali Gandaki valley along the Kusma Sirkang section of Central West Nepal fall into two tectonic units having a marked difference in the grade of metamorphism. The units are demarcated by the NW-SE extending Phalebas Thrust which has been considered equivalent to the Chail Thrust of the Kumaon Himalaya by earlier workers. The Kusma Reverse Fault to the north parallels the Phalebas Thrust, both being related to Late Orogenic movements.The fold pattern shows at least four episodes, and it is believed that two of them existed prior to the main Himalayan orogeny of Tertiary time.  相似文献   

13.
Abstract

A newly discovered Devonian ophiolite located in the Taoxinghu area of central Qiangtang on the Qinhai–Tibet Plateau is described. The ophiolite consists of gabbro and diabasic dikes, and invasive cumulate gabbros-leucogabbros. The ophiolite has undergone greenschist facies metamorphism and minor deformation. Dating of the metagabbro by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U–Pb techniques yielded a weighted mean age of 367.2 ± 3.3 Ma (Late Devonian). Whole-rock geochemical analyses show that the rocks belong to the tholeiite series, with weak depletion in light rare-earth elements (LREEs), almost no Eu anomalies, weak enrichment in large-ion lithophile elements (LILEs), depletion in Nb and Ta, and weak negative Hf and Ti anomalies. These characteristics are similar to those of back-arc basin basalts. Together, these characteristics suggest that the rocks of the Devonian ophiolite formed by ~30% partial melting of spinel lherzolite, which was enriched by interaction with aqueous fluids during the late-generation phases; there is no evidence of subduction-related melting. The Devonian ophiolite rocks in the Taoxinghu area were first discovered in the LongmuCo–Shuanghu–Lancang suture zone. Detailed geochemical analyses show that the rocks formed in a back-arc ocean basin environment, indicating that the LongmuCo–Shuanghu–Lancang suture zone in central Qiangtang represents a Late Devonian intra-oceanic subduction zone in the Palaeo–Tethys Ocean. The discovery of the central Qiangtang Devonian ophiolite provides essential data for understanding the evolutionary history of the Palaeo–Tethys Ocean, and for identifying and understanding the roles of the different tectonic units on the Qinghai–Tibet Plateau.  相似文献   

14.
MAIN CENTRAL THRUST ZONE IN THE KATHMANDU AREA, CENTRAL NEPAL, AND ITS TECTONIC SIGNIFICANCE1 AritaK ,LallmeyerRD ,TakasuA .TectonothermalevolutionoftheLesserHimalaya ,Nepal:constraintsfrom 4 0 Ar/3 9AragesfromtheKathmandunappe[J].TheIslandArc ,1997,6 :372~ 384. 2 RaiSM ,GuillotS ,LeFortP ,etal.Pressure temperatureevolutionintheKathmanduandGosainkundregions ,CentralNepal[J].JourAsianEarthSci ,1998,16 :2 83~ 2 98. 3 SchellingD ,KArita .…  相似文献   

15.
The Main Central Thrust demarcates the boundary between the Lesser Himalaya and the Higher Himalaya in the Himalayan orogen. Several definitions of the Main Central Thrust have been proposed since it was originally described as the southern boundary of the crystalline rocks (the Main Central Thrust mass) in the Kumaun-Garhwal Himalaya. The long-held contention that the Munsiari Thrust represents the Main Central Thrust has been negated by recent isotopic studies. One way to define the Main Central Thrust is that it is a ductile shear zone that is delimited by the Munsiari Thrust (MCT-I) in south and the Vaikrita Thrust (MCT-II) in north. The alternative proposition that the Vaikrita Thrust represents the Main Central Thrust is fraught with practical limitations in many parts of the Himalaya, including the study area. In the metamorphic rocks bounded between the Vaikrita Thrust and the Munsiari Thrust, the isoclinal folds of the earliest phase are routinely ascribed to the pre-Himalayan orogeny, whereas all subsequent folding phases are attributed to the Himalayan orogeny. This article elucidates the structural characteristics of the kilometre-thick Munsiari Thrust Zone and revisits the issue of pre-Himalayan orogenic signatures in the thrust zone. With the help of high-resolution field mapping and the analyses of mesoscopic scale structures, we demonstrate that the Munsiari Thrust is a typical fault zone that is made up of a fault core and two damage zones. The fault core traces the boundary between the quartzite and the biotite-gneiss. The damage zones consist of the low-grade metasedimentary rocks in the footwall and the gneiss-migmatite in the hanging wall. The entire fault zone shares an essentially common history of progressive ductile shearing. Successively developed mesoscopic folds trace various stages of progressive ductile shearing in the damage zones. Two recognizable stages of the shearing are represented by the early isoclinal folds and the late kink folds. As the strain during progressive deformation achieved the levels that were too high for accommodation by ductile flow, it was released by development of a tectonic dislocation along a mechanically weak boundary, the Munsiari Thrust. The isoclinal folds and the Munsiari Thrust were developed at different stages of a common progressive deformation during the Himalayan orogeny. Contrary to the popular notion of consistency with respect to orientation, the stretching lineations show large directional variability due to distortion during the late folding.  相似文献   

16.
New U–Pb zircon data of a mylonitic greenschist from the Moeche Ophiolite, one of the mafic units involved in the Variscan suture in the Cabo Ortegal Complex (NW of the Iberian Massif), yielded an age of 400 ± 3 Ma. Consequently, this unit can be considered one of the Devonian ophiolites, the most extended group of oceanic units in the Variscan belt. The mafic rocks show transitional compositions between N-MORB and island-arc tholeiites, although Lu–Hf isotope signatures of its zircons clearly indicate contribution from an old continental source. εHf values in the analysed zircons are negative (generally below εHf = ?5), and thence, they are not compatible with their generation from a juvenile mantle source. Accordingly, the igneous protoliths were generated in a setting where juvenile mafic magmas interacted with an old continental crust. The Devonian ophiolites from the Variscan suture have been repeatedly interpreted as remnants of the Rheic Ocean. However, the presence of a continental source in the origin of the mafic rocks of the Moeche Ophiolite allows discarding an intraoceanic setting for their generation, at least for the NW Iberian counterparts. The tectonic setting for the Devonian ophiolites of NW Iberia is very likely represented by an ephemeral oceanic basin opened within a continental realm. Herein, the real Rheic Ocean suture could only be located west of the terrane represented by the upper units of the allochthonous complexes. Apparently that suture is not represented in NW Iberia.  相似文献   

17.
云南哀牢山地区构造岩石地层单元及其构造演化   总被引:28,自引:5,他引:28  
依据新获得的同位素年代学资料和构造岩石地层单元,重新认识了云南哀牢山造山带形成与演化历史。认为:在哀牢山地区元古界深变质岩系属基底构造层;前造山期岩石组合及构造演化为扬子地块西缘被动大陆边缘志留纪深水相碎屑岩→陆缘泥盆纪被动裂谷盆地中火山-沉积岩→石炭纪哀牢山有限洋盆及蛇绿岩石组合→晚二叠世-早三叠世哀牢山洋-陆碰撞成陆及弧火山岩-陆相碎屑岩组合。燕山期主造山期及岩石组合为晚三叠世-侏罗纪前陆盆地磨拉石建造-同造山期中酸性侵入岩-燕山期脆韧性剪切带及构造岩。喜马拉雅山期陆内造山成原的岩石组合为第三-第四纪陆内山间盆地中磨拉石建造-红河韧性剪切带及构造岩-富碱侵入岩和煌斑岩。  相似文献   

18.
ABSTRACT

Sedimentary serpentinite and related siliciclastic-matrix mélanges in the latest Jurassic to Lower Cretaceous lower Great Valley Group (GVG) forearc basin strata of the California Coast Ranges reach thicknesses of over 1 km and include high-pressure (HP) metamorphic blocks. These units crop out over an area at least 300 km long by 50 km wide. The serpentinite also contains locally abundant blocks of antigorite mylonite. Antigorite mylonite and HP metamorphic blocks were exhumed from depth prior to deposition in the unmetamorphosed GVG, but the antigorite mylonite may be mistaken for metamorphosed serpentinite matrix in localities with limited exposure. These olistostrome horizons can be distinguished from intact slabs of serpentinized peridotite associated with the Coast Range Ophiolite (CRO) or serpentinite mélanges of the Franciscan subduction complex (FC) on the basis of internal sedimentary textures (absent in CRO), mixing/interbedding with unmetamorphosed siliciclastic matrix and blocks (differs from CRO and FC), and preserved basal sedimentary contacts over volcanic rocks of the CRO or shale, sandstone, and conglomerate of the GVG (differs from CRO and FC). Even in the relatively well-characterized Palaeo trench–forearc region of the California Coast Ranges the GVG deposits are difficult to distinguish from similar units in the FC and CRO. In typical orogenic belts that exhibit greater post-subduction disruption, distinguishing forearc basin olistostrome deposits, subduction complex, and opholite mantle sections is much more difficult. Forearc basin olistostromal deposits have probably been misidentified as one of the other trench–forearc lithologic associations. Such errors may lead to erroneous interpretations of the nature of large-scale material and fluid pathways in trench–forearc systems, as well as misinterpretations of tectonic processes associated with HP metamorphism and exhumation of the resultant rocks.  相似文献   

19.
Geochemical compositions of mafic igneous rocks in the Katangan basin in Central Africa (Democratic Republic of Congo, hereafter Congo, and Zambia) provide the basis for the geodynamic interpretation of the evolution of this Neoproterozoic basin located between the Congo and Kalahari cratons. The Katangan basin is subdivided into five major tectonic units: the Katangan Aulacogen, the External Fold and Thrust Belt, the Domes Region, the Synclinorial Belt and the Katangan High. The metamorphosed mafic igneous rocks investigated occur in the Katangan Aulacogen, the External Fold and Thrust Belt and the Domes Region. The earliest magmatic activity produced continental tholeiites emplaced on Paleoproterozoic crust during the early stages of intraplate break-up. This continental tholeiite magmatism was followed by an association of alkaline and tholeiitic basalts emplaced in the Katangan continental rift and then by tholeiitic basalts with E-MORB affinity marking a young oceanic crust. These volcanic associations mark different stages of evolution from pre-rift continental break-up up to a continental rift similar to the East African rift system and then to a Red Sea type incipient oceanic rift. A similar evolution occurs in the Damaran basin in southwestern Africa, although no pre-rift continental tholeiites have been recorded in this segment of the Pan-African belt system.  相似文献   

20.
In the Sub-Himalayan zone, the frontal Siwalik range abuts against the alluvial plain with an abrupt physiographic break along the Himalayan Frontal Thrust (HFT), defining the present-day tectonic boundary between the Indian plate and the Himalayan orogenic prism. The frontal Siwalik range is characterized by large active anticline structures, which were developed as fault propagation and fault-bend folds in the hanging wall of the HFT. Fault scarps showing surface ruptures and offsets observed in excavated trenches indicate that the HFT is active. South of the HFT, the piedmont zone shows incipient growth of structures, drainage modification, and 2–3 geomorphic depositional surfaces. In the hinterland between the HFT and the MBT, reactivation and out-of-sequence faulting displace Late Quaternary–Holocene sediments. Geodetic measurements across the Himalaya indicate a ~100-km-wide zone, underlain by the Main Himalayan Thrust (MHT), between the HFT and the main microseismicity belt to north is locked. The bulk of shortening, 15–20 mm/year, is consumed aseismically at mid-crustal depth through ductile by creep. Assuming the wedge model, reactivation of the hinterland faults may represent deformation prior to wedge attaining critical taper. The earthquake surface ruptures, ≥240 km in length, interpreted on the Himalayan mountain front through paleoseismology imply reactivation of the HFT and may suggest foreland propagation of the thrust belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号