首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The Kepler mission has identified huge flares on various stars, including some solar-type stars. These events are substantially more energetic than solar flares, and are referred to as superflares. Even a low probability of such a superflare occurring on the Sun would be a menace to modern society. A flare comparable in energy to that of superflares was observed on September 24 and 25, 1989 on the binary HK Lac. Unlike the Kepler stars, observations of differential rotation are available for HK Lac. This differential rotation appears to be anti-solar. In the case of anti-solar differential rotation, dynamo models can producemagnetic-activity waves with dipolare symmetry, as well as quasi-stationary magnetic configurations with quadrupolar symmetry. The magnetic energy of such stationary configurations is usually about two orders of magnitude higher than the energy associated with activity waves. We believe that this mechanism could provide sufficient energy to produce superflares on late-type stars. Some simple models in support of this idea are presented.  相似文献   

2.
We compare two-and three-dimensional modeling of gas-dynamical processes in the accretion disk of a binary system. The origin of spiral waves and the loss of the angular momentum related to them are considered. It is concluded that a steady state of the disk cannot exist without taking into account t he gas inflow from the donor star.  相似文献   

3.
Soft X-ray data for prolonged flares in subgiants in RS CVn binary systems and some other active late-type stars (AB Dor, Algol) are analyzed. During these nonstationary events, a large amount of hot plasma with temperatures exceeding 108 K exists for many hours. Numerical simulations of gas-dynamical processes in the X-ray source—giant loops—can yield reliable estimates of the plasma parameters and flare-source size. This confirms that such phenomena exist while considerable energy is supplied to the top part of a giant loop or system of loops. Refined estimates of the flare energy (up to 1037 erg) and scales contradict the widely accepted idea that prolonged X-ray flares are associated with the evolution of local magnetic fields. The energy of the current component of the large-scale magnetic field arising during the ejection of magnetic field by plasma jets or stellar wind is estimated. Two cases are considered: a global stellar field and fields connecting regions with oppositely directed unipolar magnetic fields. The inferred energy of the current component of the magnetic field associated with distortion of the initial MHD configuration is close to the total flare energy, suggesting that large-scale magnetic fields play an important role in prolonged flares. The flare process encompasses some portion of a streamer belt and may propagate along the entire magnetic equator of the star during the most powerful prolonged events.  相似文献   

4.
We suggest a new mechanism for the superoutbursts in SU UMa binaries, in which the increase in the accretion rate resulting in a superoutburst is associated with the formation of a spiral “precessional” wave in the inner parts of the disk, where gas-dynamical perturbations are negligible. The existence of such waves was suggested by us previously. The results of three-dimensional gas-dynamical simulations have shown that a considerable increase in the accretion rate (by up to an order of magnitude) is associated with the formation of the precessional wave. The features of the precessional spiral wave can explain both the energy release in the superoutburst and all its observational manifestations. One distinguishing feature of superoutbursts in SU UMa-type stars is the formation of a “superhump” in the light curve. Our model reproduces well both the formation of a superhump and its observational features, including its period, which is up to 3–7% longer than the orbital period, and the detectability of the superhump independent of the orbital inclination of the binary.  相似文献   

5.
Formation of planets during the evolution of single and binary stars   总被引:1,自引:0,他引:1  
Current views of the origin and evolution of single and binary stars suggest that the planets can form aroundmain-sequence single and binary stars, degenerate dwarfs, neutron stars, and stellarmass black holes according to several scenarios. Planets can arise during the formation of a star mainly due to excess angular momentum leading to the formation of an accretion-decretion disk of gas and dust around a single star or the components of a binary. It is the evolution of such disks that gives rise to planetary systems. A disk can arise around a star during its evolution due to the accretion of matter from dense interstellar clouds of gas and dust onto the star, the accretion of mass froma companion in a binary system, and the loss of matter during the contraction of a rapidly rotating star, in particular, if the star rotates as a rigid body and the rotation accelerates with its evolution along the main sequence. The fraction of stars with planetary systems is theoretically estimated as 30–40%, which is close to the current observational estimate of ∼34%.  相似文献   

6.
The influence of the formation and evolution of a (disk) galaxy on the matter distribution in the dark-matter halo is considered. Calculations of the evolution of an isolated dark-matter halo were carried out with and without including a baryonic component. N-body simulations (for the dark-matter halo) and gas-dynamical numerical simulations (for the baryonic gas) were used for this analysis. Star formation, feedback, and heating and cooling of the interstellar medium were taken into account in the gas-dynamical calculations. The results of these numerical simulations with high spatial resolution indicate that 1) including the star formation resolves the so-called cusp problem (according to CDMcosmological models, the density distribution in the central regions of the dark-matter halo should have a distinct peak (cusp), which is not shown by observations); 2) the interaction of the dark matter with dynamical substructures of the stellar-gas galactic disk (spiralwaves, a bar) affects the shape of the dark-matter halo. In particular, the calculated dark-matter distribution in the plane of the disk is more symmetric when the baryonic component is taken into account.  相似文献   

7.
A comparative investigation of the population of Galactic binary stars is performed for two modes of star formation: star formation at a constant rate over 1010 yrs, and a burst of star formation that reprocesses the same mass of gas into stars over 109 yrs. Estimates are presented for the star-formation rates and populations of about 100 types of binaries and the products of their evolution. For most close binary systems, the models depend only weakly on the common-envelope parameter αce.  相似文献   

8.
A one-dimensional aeronomic model of the upper atmosphere of a giant planet is used to study the reaction of the atmosphere of the hot Jupiter HD 209458b to additional heating by a stellar flare. It is shown that the absorption of additional energy from the stellar flare in the extreme ultraviolet leads to local heating of the atmosphere, accompanied by the formation of two shocks propagating in the atmosphere. Possible observational manifestations of these shocks and the feasibility of their detection are discussed.  相似文献   

9.
Zhilkin  A. G.  Bisikalo  D. V. 《Astronomy Reports》2019,63(7):550-564

As a rule, the orbits of “hot Jupiter” exoplanets are located close to the Alfven point of the stellar wind of the host star. Many hot Jupiters could be in the sub-Alfven zone, where the magnetic pressure of the stellar wind exceeds the dynamical pressure. Therefore, the magnetic field in the wind should play an extremely important role in the process of stellar wind flowing around the atmosphere of a hot Jupiter. This must be taken into account when constructing theoretical models and interpreting observational data. Analyses show that many typical hot Jupiters should have shockless induced magnetospheres, which have no analogs in the solar system. Such magnetospheres are characterized first and foremost by the fact that there is no bow shock, and the magnetic barrier (ionopause) is formed by induced currents in upper layers of the ionosphere. This conclusion is confirmed here using three-dimensional numerical simulations of the flow of the stellar wind from the host star around the hot Jupiter HD 209458b, taking into account both the intrinsic magnetic field of the planet and the magnetic field in the wind.

  相似文献   

10.
Marsakov  V. A.  Gozha  M. L.  Koval’  V. V. 《Astronomy Reports》2019,63(3):203-211

The surface gravities and effective temperatures have been added to a compilative catalog published earlier, which includes the relative abundances of several chemical elements for 100 field RR Lyrae stars. These atmoshperic parameters and evolutionary tracks from the Dartmouth database are used to determine the masses of the stars and perform a comparative analysis of the properties of RR Lyrae stars with different chemical compositions. The masses of metal-rich ([Fe/H] > −0.5) RR Lyrae stars with thin disk kinematics are in the range (0.51−0.60)M. Only stars with initial masses exceeding 1M can reach the horizontal branch during the lifetime of this subsystem. To become an RR Lyrae variable, a star must have lost approximately half of its mass during the red-giant phase. The appearance of such young, metal-rich RR Lyrae stars is possibly due to high initial helium abundances of their progenitors. According to the Dartmouth evolutionary tracks for Y = 0.4, a star with an initial mass as low as 0.8 M could evolve to become an RR Lyrae variable during this time. Such stars should have lost (0.2−0.3)M in the red-giant phase, which seems quite realistic. Populations of red giants and RR Lyrae stars with such high helium abundances have already been discovered in the bulge; some of these could easily be transported to the solar neighborhood as a consequence of perturbations due to inhomogeneities of the Galaxy’s gravitational potential.

  相似文献   

11.
Effects due to the interaction of the steam from the inner Lagrangian point with the accretion disk in a cataclysmic variable star are considered. The results of three-dimensional gas-dynamical numerical simulations confirm that the disk thickness in the vicinity of the interaction with the stream is minimum when the component-mass ratio is 0.6. As a consequence, some of the matter from the stream does not collide with the outer edge of the accretion disk, and continues its motion unperturbed toward the accretor. This part of the stream subsequent interacts (collides) with a thickening of the accretion disk due to the presence of a precessional wave in the disk, leading to the appearance of an additional zone of heating at the disk surface. This additional zone of enhanced luminosity (hot spot) is a direct observational manifestation of the precessional wave in the accretion disk.  相似文献   

12.
The results of a study of the maser source IRAS 18316?0602 in the H2O line at λ = 1.35 cm are reported. The observations were carried out on the 22-m radio telescope of the Pushchino Radio Astronomy Observatory (Russia) from June 2002 until March 2017. Three superflares were detected, in 2002, 2010, and 2016, with peak flux densities of >3400, 19 000, and 46 000 Jy, respectively. An analysis of these superflares is presented. The flares took place during periods of high maser activity in a narrow interval of radial velocities (40.5–42.5 km/s), and could be associated with the passage of a strong shock. The emission of three groups of features at radial velocities of about 41, 42, and 43 km/s dominated during themonitoring. The flare in 2016 was accompanied by a considerable increase in the flux densities of several features with velocities of 35–56 km/s.  相似文献   

13.
Late-type stars with chromospheric and coronal activities exceeding those of the Sun and other stars with well-defined cycles are considered. These rotate more rapidly than stars with well established cycles; for single stars, this appears to be due to their younger ages. The spots on such stars cover several per cent of the total area, which is an order of magnitude higher than for the Sun at its activity maximum. Our wavelet analysis of the chromospheric-emission variability, which has been observed since 1965 in the framework of the HK project, indicates that the period of the axial rotation of some of these starts varies from year to year. This is most pronounced in two “Good” stars according to the classification of Baliunas et al., HD 149661 and HD 115404, and also in a star with a more complex variability, HD 101501. No similar effect is exhibited by the “Excellent” cyclic-activity stars. Such variations in the period can be observed during epochs of appreciable rotational modulations of the chromospheric-emission fluxes, most likely, immediately after the maximum of a long-period wave (cycle?). This seems to provide evidence for the existence of huge activity complexes in the chromospheres of these stars, whose longitudes remain virtually constant over several years; they drift from fairly high latitudes to the equator at speeds close to the value typical of sunspots. The observed period variations are most likely due to differential rotation of the same sign that is known for the Sun. Our results provide independent confirmation of similar conclusions obtained by us previously using zonal models for highly spotted stars. Other activity features of a selected star group and the implications of the results for the theory of stellar and solar dynamos are discussed.  相似文献   

14.
Tutukov  A. V.  Fedorova  A. V. 《Astronomy Reports》2019,63(6):460-478

Under certain conditions, stars close to intermediate-mass black holes (IMBHs) can form close binary systems with these objects, in which the Roche lobe can be filled by the star and intense accretion of the star’s matter onto the IMBH is possible. Recently, accreting IMBHs have been associated with hyperluminous X-ray sources (HLXs), whose X-ray luminosities can exceed 1041 erg/s. In this paper, the evolution of star—IMBH binary systems is investigated assuming that the IMBH mainly accretes the matter of its companion star, and that the presence of gas in the vicinity of the IMBH does not appreciably affect changes in the orbit of the star. The computations take into account all processes determining the evolution of ordinary binary systems, as well as the irradiation of a star by hard radiation during the accretion of its matter onto the IMBH. The absorption of external radiation in the stellar envelope was calculated applying the same formalism that is used to calculate the opacity of the stellar matter. The computations also assumed that, if the characteristic time for the mass transfer is less than the thermal time scale of the star, there is no exchange betwween the orbital angular momentum of the system and the angular momentum of the matter flowing onto the IMBH.

Numerical simulations have shown that, under these assumptions, three types of evolution are possible for such a binary system, depending on the mass of the IMBH and the star, as well as on the star’s initial distance from the IMBH. The first type ends with the destruction of the star. For low-mass main sequence (MS) stars, only this option is realized, even in the case of large initial distances from IMBH. For massive MS stars, the star is also destroyed if the mass of the IMBH is high and the initial distance of the star from the IMBH is sufficiently small.

The second type of evolution can occur for massive MS stars, which are initially located farther from the IMBH than in the first type of evolution. In this case, the massive star fills its Roche lobe during its evolutionary expansion, after which a stage of intense mass transfer begins. It is in this phase of the evolution that the star- IMBH system can manifest itself as a HLX, when its X-ray luminosity LX exceeds 1041 erg/s for a fairly long time. Numerical simulations show that the initial mass of the donor star in systems with MBH = (103?105)M must be close to ~10 M in this case. The characteristic duration of the HLX stage is 30 000–70 000 years. For smaller initial donor masses close to ~5M, LX does not reach 1041 erg/s in the stage of intense mass transfer, but can exceed 1040 erg/s. The duration of this stage of evolution is 300 000–800 000 years. A characteristic feature of this second type of evolution is an increase in the orbital period of the system over time. As a result, after a period of intense mass loss, the star “retreats” inside the Roche lobe. A remnant of the star in the form of a white dwarf is left behind, and can end up fairly far from the IMBH.

The third type of evolution can occur for massive MS stars that are initially even farther from the IMBH, as well as for massive stars that are already evolved at the initial time. In this case, conservative mass exchange in the presence of intense stellar wind leads to the star moving away from the IMBH, without filling its Roche lobe at all. For massive stars with sufficiently strong stellar winds (for example, stars with masses ~50M), the accretion rate of matter onto the IMBH in this case can reach values that are characteristic of HLXs. As in the case of the second type of evolution, the stellar remnant can remain at a fairly large distance from the IMBH.

  相似文献   

15.
Two types of supernovae are considered: thermonuclear supernovae, whose explosions are due to thermonuclear energy, and core-collapse supernovae, whose explosions are due to the gravitational energy of collapsing stars released in the form of neutrinos. Numerical models of supernovae are discussed. Themain problem in devising supernova explosion mechanisms is producing the energy required to disperse the envelope. In theoretical models, it is necessary to solve multi-dimensional problems involving complex physics (3D gas dynamics, neutrino transport, large-scale convective instability, and other important physical processes). In recent years, the development of large-scale convection during supernova explosions has been reconsidered. Self-consistent problems problems in three-dimensional, gas-dynamical instability have been considered. Two-dimensional gas-dynamical calculations taking into account neutrino absorption in the envelope have been performed. The spherically symmetric collapse and neutrino transport were calculated including all reactions, leading to a new understanding of possible paths for the development of supernova theory. The main emphasis is placed on the neutrino transport and the basis for promising multidimensional models taking into account large-scale convective instability.  相似文献   

16.
We use a two-phase model for the structure of the circumstellar nebulae of hot stars to analyze the radiative cooling of a dense, compact cloud behind the shock produced by the compression of the cloud by hot gas from the stellar wind, taking into account ionization and heating by radiation from the central star. We can distinguish three stages of the evolution of the cloud during its compression. In the first stage, relevant for the entire cloud before compression and the gas ahead of the shock front, the state of the gas is determined purely by ionization by the stellar radiation. The next stage is characterized by the simultaneous action of two gas excitation mechanisms—photoionization by the stellar radiation and shock heating. In this stage, the gas intensively radiates thermal energy received at the shock front. After radiative cooling, in the final stage, ionization and heating of the gas are again determined mainly by the star. To compute the spectrum of the cloud radiation, we solved for the propagation of a plane-parallel, homogeneous flux through the shock front in the radiation field of the hot star. The computations show that a combination of two excitation mechanisms considerably enriches the theoretical spectrum. The relative intensities of emission lines of a single cloud may resemble either those for an HII region or of a supernova remnant.  相似文献   

17.
We present the results of simultaneous UBVRI photometry and polarimetry of the classical T Tauri star CO Ori carried out at the Crimean Astrophysical Observatory during the 18 years between 1986 and 2004. We show that the variations of linear polarization accompanying the star’s brightness variations follow the law characteristic of UX Ori stars. This suggests that the brightness variations of the star are mainly due to changes of the circumstellar extinction due to non-uniform structure of the circumstellar environment, and to an “optimal” orientation of the circumstellar gas and dust disk relative to the observer, whose line of sight crosses the gas and dust atmosphere of the disk. We determine the star’s intrinsic polarization due to scattering of light in the circumstellar disk. The polarization position angle indicates the orientation of the disk’s symmetry axis in the plane of the sky. Our analysis of an archival light curve for CO Ori confirms the existence of a many-year cycle of photometric activity, suspected by us earlier. The refined period of this cycle is 12.4 years. The existence of such activity cycles of UX Ori stars testifies to considerable deviations of their circumstellar disks from axial symmetry, a reflection of either stellar binarity or the commencement of the process of planetary formation.  相似文献   

18.
Recent data from the Kepler mission has revealed the occurrence of superflares in Sun-like stars which exceed by far any observed solar flares in released energy. Radionuclide data do not provide evidence for occurrence of superflares on the Sun over the past eleven millennia. Stellar data for a subgroup of superflaring Kepler stars are analysed in an attempt to find possible progenitors of their abnormal magnetic activity. A natural idea is that the dynamo mechanism in superflaring stars differs in some respect from that in the Sun. We search for a difference in the dynamo-related parameters between superflaring stars and the Sun to suggest a dynamo mechanism as close as possible to the conventional solar/stellar dynamo but capable of providing much higher magnetic energy. Dynamo based on joint action of differential rotation and mirror asymmetric motions can in principle result in excitation of two types of magnetic fields. First of all, it is well-known in solar physics dynamo waves. The point is that another magnetic configuration with initial growth and further stabilisation can also be excited. For comparable conditions, magnetic field of second configuration is much stronger than that of the first one just because dynamo does not spend its energy for periodic magnetic field inversions but uses it for magnetic field growth. We analysed available data from the Kepler mission concerning the superflaring stars in order to find tracers of anomalous magnetic activity. As suggested in a recent paper [1], we find that anti-solar differential rotation or anti-solar sign of the mirror-asymmetry of stellar convection can provide the desired strong magnetic field in dynamo models. We confirm this concept by numerical models of stellar dynamos with corresponding governing parameters. We conclude that the proposed mechanism can plausibly explain the superflaring events at least for some cool stars, including binaries, subgiants and, possibly, low-mass stars and young rapid rotators.  相似文献   

19.
We discuss characteristic features of the magnetic gas-dynamical structure of the flows in a semi-detached binary system obtained from three-dimensional simulations, assuming that the intrinsic magnetic field of the accreting star is dipolar. The turbulent diffusion of the magnetic field is taken into account. The SS Cyg system is considered as an example. Including the magnetic field can alter the basic parameters of the accretion disk, such as the accretion rate and the characteristic density. The magnetic field in the disk is primarily toroidal.  相似文献   

20.
Numerical simulations of gas-dynamical processes taking place in the accretion disk of a stellar binary system are presented. The initial state of the disk is an equilibrium gaseous configuration. Mechanisms for the development of spiral waves and associated variations in the angular momentum of the gas are considered. The influence of the ratio of the binary-component masses and the initial disk configuration are investigated. It is concluded that the existence of a steady-state disk is impossible without a flow of gas from the donor star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号