首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Loess Plateau has been experiencing large‐scale land use and cover changes (LUCCs) over the past 50 years. It is well known about the significant decreasing trend of annual streamflow and sediment load in the catchments in this area. However, how surface run‐off and sediment load behaved in response to LUCC at flood events remained a research question. We investigated 371 flood events from 1963 to 2011 in a typical medium‐sized catchment within the Plateau in order to understand how LUCC affected the surface run‐off generation and sediment load and their behaviours based on the analysis of return periods. The results showed that the mean annual surface run‐off and sediment load from flood events accounted for 49.6% and 91.8% of their mean annual totals. The reduction of surface run‐off and associated sediment yield in floods explained about 85.0% and 89.2% of declines in the total annual streamflow and sediment load, respectively. The occurrences of flood events and peak sediment concentrations greater than 500 kg/m3 showed a significantly downward trend, yet the counterclockwise loop events still dominated the flood event processes in the catchment. The results suggest that LUCC over the past 50 years resulted in significant changes in the water balance components and associated soil erosion and sediment transportation in the catchment. This was achieved mainly by reducing surface run‐off and sediment yield during floods with return period of less than 5 years. Run‐off–sediment load behaviour during the extreme events with greater than 10‐year return periods has not changed. Outcomes from this study are useful in understanding the eco‐hydrological processes and assisting the sustainable catchment management and land use planning on the Loess Plateau, and the methodologies are general and applicable to similar areas worldwide.  相似文献   

2.
The dynamics of suspended sediment transport were monitored continuously in a large agricultural catchment in southwest France from January 2007 to March 2009. The objective of this paper is to analyse the temporal variability in suspended sediment transport and yield in that catchment. Analyses were also undertaken to assess the relationships between precipitation, discharge and suspended sediment transport, and to interpret sediment delivery processes using suspended sediment‐discharge hysteresis patterns. During the study period, we analysed 17 flood events, with high resolution suspended sediment data derived from continuous turbidity and automatic sampling. The results revealed strong seasonal, annual and inter‐annual variability in suspended sediment transport. Sediment was strongly transported during spring, when frequent flood events of high magnitude and intensity occurred. Annual sediment transport in 2007 yielded 16 614 tonnes, representing 15 t km?2 (85% of annual load transport during floods for 16% of annual duration), while the 2008 sediment yield was 77 960 tonnes, representing 70 t km?2 (95% of annual load transport during floods for 20% of annual duration). Analysis of the relationships between precipitation, discharge and suspended sediment transport showed that there were significant correlations between total precipitation, peak discharge, total water yield, flood intensity and sediment variables during the flood events, but no relationship with antecedent conditions. Flood events were classified in relation to suspended sediment concentration (SSC)–discharge hysteretic loops, complemented with temporal dynamics of SSC–discharge ranges during rising and falling flow. The hysteretic shapes obtained for all flood events reflected the distribution of probable sediment sources throughout the catchment. Regarding the sediment transport during all flood events, clockwise hysteretic loops represented 68% from river deposited sediments and nearby source areas, anticlockwise 29% from distant source areas, and simultaneity of SSC and discharge 3%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Hysteresis in the relationship between suspended sediment concentration and flow during run-off events is commonly used to inform on sediment sources and hydrological pathways. Less attention, however, has been paid to comparing the water and sediment hydrographs, which provide a more direct appreciation of in-event sediment dynamics and their relationship with the upstream catchment characteristics. The aim of this study is to better understand the catchment and hydrological controls on the phasing of water and sediment discharges during events and, in particular, to explore what controls sediment concentrations late on event recessions. Continuous records of flow and turbidity data (calibrated to suspended sediment concentration) were collected from 17 catchments across New Zealand for this purpose. Relationships between event sediment yield and peak flow showed, as anticipated, higher event sediment loads were generated in pasture compared with forested catchments and were also higher from catchments in more erodible terrain. One novel result was that these differences were greater during smaller, more frequent events, whereas the loads from larger flood events tended to converge between pasture and forest catchments. Another novel result was that event sediment load tends to be evenly split between rising and falling stages of the hydrograph in pasture catchments, but forested catchments yield more of their event loads on flood recessions, probably because of delayed erosion or more sediment sources remote from the channel network. Land cover, distance of the sediment sources from the monitoring site, and size of the catchments control sediment concentrations late on event recession. Pasture-dominated and more erodible catchments show longer sediment recessions and therefore stay dirtier for longer time periods. In addition, the size of previous flood events appeared to control the extent of sediment exhaustion after the flood peaks in some catchments.  相似文献   

4.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   

5.
Hyperconcentrated floods, with sediment concentrations higher than 200 kg/m3, occur frequently in the Yellow River and its tributaries on the Loess Plateau. This paper studies the fluvial hydraulics of hyperconcentrated floods by statistical analysis and comparison with low sediment concentration floods. The fluvial process induced by hyperconcentrated floods is extremely rapid. The river morphology may be altered more at a faster rate by one hyperconcentrated flood than by low sediment concentration floods over a decade. The vertical sediment concentration distribution in hyperconcentrated floods is homogeneous. The Darcy–Weisbach coefficient of hyperconcentrated floods varies with the Reynolds number in the same way as normal open channel flows but a representative viscosity is used to replace the viscosity, η. If the concentration is not extremely high and the Reynolds number is larger than 2000, the flow is turbulent and the Darcy–Weisbach coefficient for the hyperconcentrated floods is almost the same as low sediment concentration floods. Serious channel erosion, which is referred to as ‘ripping up the bottom’ in Chinese, occurs in narrow‐deep channels during hyperconcentrated floods. However, in wide‐shallow channels, hyperconcentrated floods may result in serious sedimentation. Moreover, a hyperconcentrated flood may cause the channel to become narrower and deeper, thus, reducing the flood stage by more than 1 m if the flood event lasts longer than one day. The fluvial process during hyperconcentrated floods also changes the propagation of flood waves. Successive waves may catch up with and overlap the first wave, thus, increasing the peak discharge of the flood wave during flood propagation along the river course. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Variability of suspended sediment concentration (SSC) versus discharge relationships in streams is often high and illustrates variable particle origins or availability. Particle availability depends on both new sediment supply and deposited sediment stock. The aim of this study is to improve SSC–discharge relationship interpretation, in order to determine the origins of particles and to understand the temporal dynamics of particles for two small streams in agricultural catchments from northwestern France. SSC and discharge were continuously recorded at the outlets and data were examined at different time‐scales: yearly, monthly, with distinction between flood periods and non‐flooding periods, and individual flood events. Floods are classified in relation to SSC–discharge hysteresis, and this typology is completed by the analysis of SSC–discharge ranges during rising and falling flow. We show that particles are mainly coming from channel, banks, either by hydraulic erosion or by cattle trampling. Particle availability presents a seasonal dynamics with a maximum at the beginning of autumn when discharge is low, decreasing progressively during autumn to become a minimum in winter when discharge is the highest, and increasing again in spring. Bank degradation by cattle is the determining factor in the suspended sediment dynamics. Cattle bank‐trampling produces sediment, mostly from spring to autumn, that supplies the deposited sediment stock even outside floods. This hydrologically independent process hides SSC–discharge correlation classically linked to hydraulic erosion and transport. Differences in SSC–discharge relationships and suspended sediment budgets between streams are related to differences in transport capacity and bank degradation by cattle trampling and channelization. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Geomorphological evidence and recent trash lines were used as stage indicators in a step-backwater computer model of high discharges through an ungauged bedrock channel. The simulation indicated that the peak discharge from the 26.7 m2 catchment was close to 150m3s?1 during the passage of Hurricane Charlie in August 1986. This estimate can be compared with an estimate of 130–160 m3s?1 obtained using the Flood Studies Report (FSR) unit hydrograph methodology. Other palaeostage marks indicate that higher stages have occurred at an earlier time associated with a discharge of 200 m3s?1. However, consideration of both the geometry of a plunge pool and transport criteria for bedrock blocks in the channel indicates that floods since 1986 have not exceeded 150 m3s?1. Given that the estimated probable maximum flood (PMF) calculated from revised FSR procedure is at least 240 m3s?1, it is concluded that compelling evidence for floods equal to the PMF is lacking. Taking into consideration the uncertainty of the discharge estimation, the 1986 flood computed using field evidence has a minimum return period of 100 years using the FSR procedure. This may be compared with a return period for the same event in the neighbouring gauged River Greta of > 100 years and a rainfall return period of 190 years. In as much as discharges of similar order to FSR estimates are indicated, it is concluded (a) that regional geomorphological evidence and flood simulation within ungauged catchments may be useful as a verification for hydrological estimates of recent widespread flood magnitude and (b) that palaeohydraulic computation can be useful in determining the magnitude of the local maximum [historic] flood when determining design discharges for hydraulic structures within specific catchments.  相似文献   

8.
Rainfall, peak discharges, and suspended sediment transport were surveyed for 280 events in three small (0.8 to 10 km2) catchments in a hilly area derived from Neogene marls, silts, and sands. Under similar hydrological input conditions, stream flow behaviour and sediment delivery differed considerably from one catchment to another, depending on topography, lithology, land use, and especially sediment availability. Analytical treatment of data showed a good fit between sediment yield and peak flow discharge. Less good, although still significant, was the correlation between sediment concentration and discharge values for different flow stages. Rainfall peak/basin lag time and rainfall/discharge showed poor or no correlation, mainly due to strong variations in rainfall distribution. Sediment concentration in the catchments varied enormously according to season, from zero up to 334 g 1?1; sediment yield was 160-900 tonnes km?2 yr?1 in the two major catchments, and over 5200 tonnes km?2 yr?1 in the headwater catchment, stressing the importance of small tributaries not only in inducing floods in downstream channels, but also in sediment supply.  相似文献   

9.
Floods have become increasingly important in fluvial export of water, sediment and carbon (C). Using high-frequency sampling, the export of water, sediment and C was examined in the Wuding River catchment on the Chinese Loess Plateau. With groundwater as an important contributor to runoff all year round, floods were relatively less important in the export of water. However, large floods were disproportionately important in exporting sediment and inorganic C (DIC) and organic C (DOC and POC). The three largest floods in each year transported 53.6–97.3 and 41.4–77% of the annual sediment and C fluxes, respectively. An extreme flood in 2017 alone contributed 94.6 and 73.1% of the annual sediment and C fluxes, respectively, in just 7 days, which included 20.3, 92.1 and 35.7% of the annual DOC, POC and DIC fluxes, respectively. A stable carbon isotope (δ13C) analysis of POC indicated that modern soils and C3 plants were its primary source. Furthermore, floods greatly accelerated CO2 degassing due to elevated gas transfer velocity, although stream water CO2 partial pressure (pCO2) exhibited a decreasing trend with flow discharge. Although these results illustrated that increasing runoff diluted pCO2, the timing and magnitude of floods were found to be critical in determining the response of pCO2 to flow dynamics. Low-magnitude floods in the early wet season increased pCO2 because of enhanced organic matter input, while subsequent large floods caused a lower pCO2 due to greatly reduced organic matter supply. Finally, continuous monitoring of a complete flood event showed that the CO2 efflux during the flood (2348 ± 664 mg C m–2 day–1) was three times that under low-flow conditions (808 ± 98 mg C m–2 day–1). Our study suggests that infrequent, heavy storm events, which are predicted to increase under climate change, will greatly alter the transport regimes of sediment and C. © 2020 John Wiley & Sons, Ltd.  相似文献   

10.
Sediment transport from mountainous to lowland areas is considered one of the most important geomorphological processes. In the present study, variations in transported sediment loads and dissolved loads have been studied over 3 years (2008–2011) for two forested catchments located in the Lesser Himalayan region of India. Seasonal and annual suspended sediment flux was strongly influenced by amounts of rainfall and streamflow. On average, 93% of annual load was produced during the monsoon, of which 62–78% occurred in only five peak events. Sediment production by the degraded forest catchment (Bansigad) was 1.9-fold (suspended sediment load) to 5.9-fold (bedload) higher than the densely forested catchment (Arnigad). The dissolved organic matter potentially influences total dissolved solids in the stream. Heavy rainfall triggers both stream discharge and landslides, which lead to higher bedload transport. Total denudation rates for Arnigad and Bansigad were estimated at 0.68 and 1.02 mm?year?1, respectively.  相似文献   

11.
Suspended sediment dynamics are still imperfectly understood, especially in the loess hilly region on the Loess Plateau, with strong temporal variability, where few studies heretofore have been conducted. Using a dataset up to eight years long in the Lower Chabagou Creek, the variability in suspended sediment load at different temporal scales (within‐flood variability, monthly–seasonal and annual) is analyzed in this paper. The results show that, on the within‐flood scale, most of the sediment peaks lag behind peak discharges, implying that slope zones are the main sediment source area; independent of the occurring sequences of the peaks of sediment and discharge, all the events could present an anti‐clockwise hysteresis loop resulting from the abundant material and the influence of hyperconcentrated flows on suspended sediment concentration. At monthly and seasonal scales, there is a ‘store–release’ process, i.e. sediment is prepared in winter, spring and late autumn, and exported in summer and early autumn. At the annual scale, the high variability in concentration and sediment yield are highly correlated with water yield, resulting from the number and magnitude of floods recorded yearly, and almost all the suspended load is transported during these events. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The peak in sediment transport in alluvial rivers generally lags behind the peak in discharge. It is thus not clear how the hysteresis in the sediment/discharge relationship may be impacted by damming, which can fundamentally alter the water and sediment regimes in the downstream reaches of the river. In this study, a total of 500 flood events in the Yichang–Chenglingji Reach (YCR) of the Middle Yangtze River immediately downstream of the Three Gorges Dam (TGD) are analysed to study the impacts of dam operations on the hysteresis of suspended sediment transport. Sediment rating curves, hysteresis patterns, as well as lag times, are investigated to determine the relationship between suspended sediment concentration (SSC) and flow discharge (Q) at different temporal scales, from inter-annual to individual flood events, for the pre- and post-TGD period from 1992 to 2002 and from 2003 to 2017, respectively. The results showed that the TGD operation decreased the frequency and magnitude of floods. The decrease in peak flow and increase in base flow weakened the flood contribution to the annual discharge by nearly 20%. However, the relative suspended sediment load contribution during flood events was much higher than the discharge contribution, and was little impacted by the dam. At seasonal and monthly scales, more than 80% of the suspended sediment was transported by ~65% of the water discharge in the summer and early autumn. The monthly SSCQ relationship changed from a figure-eight to an anti-clockwise pattern after the construction of the TGD. For single flood events, the TGD operations significantly modified the downstream SSCQ hysteresis patterns, increasing the frequency of anti-clockwise loops and the lag time between peak Q and peak SSC. These adjustments were mainly caused by differences in the propagation velocities of flood and sediment waves and the sediment ‘storage–mobilization–depletion’ process, whereas the influence of lateral diversions was small. © 2020 John Wiley & Sons, Ltd.  相似文献   

13.
High sediment concentrations in runoff are a characteristic feature of the Chinese Loess Plateau, and are probably caused by factors such as the occurrence of erodible materials on steep slopes, the characteristics of the loess and the harsh climate that results in low plant cover. When sediment concentration increases, fluid density increases, viscosity increases and settling velocity decreases. These effects become increasingly important with increasing concentration and can result in flow behaviour that is quite different from that of clear water flow. Although the net effect of these changes on the flow is not always apparent, erosion models that deal with high sediment concentrations should consider such effects and could include corrections for some of these effects. A case study in a small catchment on the Loess Plateau indicated that sediment concentrations were considerable, and literature data suggested that for such sediment concentrations, corrections for settling velocity, fluid density and viscosity are needed. Furthermore, a number of corrections are necessary to be able to compare field measurements with results of soil erosion models: sediment volume should be subtracted from runoff volume and a density correction is needed to use data from a pressure transducer. For flumes that were used to measure discharge from smaller areas inside the catchment, the measured water level should be corrected by subtracting the sediment level in the flume from the water level, while the sediment volume should also be subtracted from the discharge. Finally, measured concentration should be corrected to give concentration expressed as grams per litre of clear water, since soil erosion models express sediment concentration in this way. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
经验方法研究下垫面变化对洪水的影响   总被引:1,自引:1,他引:0  
1980s以来,人类活动对下垫面的影响加剧,研究下垫面变化对流域产汇流规律的影响具有重要意义.通过对海河流域中紫荆关、阜平两个流域分别用经验方法进行洪水模拟演算,并把洪水资料按照年代不同分时段,建立P+Pa~Rs相关关系图,分析流域下垫面变化对降雨径流相关关系的影响.建立产流量R与洪峰Qm之间的相关关系,通过统计比较不同年代的趋势线发现,在产流量相同情况下,1980s后的洪峰流量较1980s前有所减少,说明海河流域的调蓄作用有增强的趋势.同时建立流域下垫面条件改变后产流量与洪峰变化幅度的相关关系,发现流域产流量变化与洪峰变化呈正相关关系.  相似文献   

15.
Abstract

The aim of this paper is to understand the causal factors controlling the relationship between flood peaks and volumes in a regional context. A case study is performed based on 330 catchments in Austria ranging from 6 to 500 km2 in size. Maximum annual flood discharges are compared with the associated flood volumes, and the consistency of the peak–volume relationship is quantified by the Spearman rank correlation coefficient. The results indicate that climate-related factors are more important than catchment-related factors in controlling the consistency. Spearman rank correlation coefficients typically range from about 0.2 in the high alpine catchments to about 0.8 in the lowlands. The weak dependence in the high alpine catchments is due to the mix of flood types, including long-duration snowmelt, synoptic floods and flash floods. In the lowlands, the flood durations vary less in a given catchment which is related to the filtering of the distribution of all storms by the catchment response time to produce the distribution of flood producing storms.
Editor Z.W. Kundzewicz  相似文献   

16.
Book reviews     
Abstract

Statistical and deterministic modelling estimates of flood magnitudes and frequencies that can affect flood-plain ecology in the upper Ahuriri River catchment, a mountainous high country catchment in the New Zealand Southern Alps, were evaluated. Statistical analysis of 46 years of historical data showed that floods are best modelled by the generalized extreme value and lognormal distributions. We evaluated application of the HEC-HMS model to this environment by modelling flood events of various frequencies. Model results were validated and compared with the statistical estimates. The SCS curve number method was used for losses and runoff generation, and the model was very sensitive to curve number. The HEC-HMS flood estimates matched the statistical estimates reasonably well, and, over all return periods, were on average approximately 1% greater. However, the model generally underestimated flood peaks up to the 25-year event and overestimated magnitudes above this. The results compared well with other regional estimates, including studies based on L-moments, and showed that this catchment has smaller floods than other similarly-sized catchments in the Southern Alps.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Caruso, B.S., Rademaker, M., Balme, A., and Cochrane, T.A., 2013. Flood modelling in a high country mountain catchment, New Zealand: comparing statistical and deterministic model estimates for ecological flows. Hydrological Sciences Journal, 58 (2), 328–341.  相似文献   

17.
The principle that formative events, punctuated by periods of evolution, recovery or temporary periods of steady‐state conditions, control the development of the step–pool morphology, has been applied to the evolution of the Rio Cordon stream bed. The Rio Cordon is a small catchment (5 km2) within the Dolomites wherein hydraulic parameters of floods and the coarse bedload are recorded. Detailed field surveys of the step–pool structures carried out before and after the September 1994 and October 1998 floods have served to illustrate the control on step–pool changes by these floods. Floods were grouped into two categories. The first includes ‘ordinary’ events which are characterized by peak discharges with a return time of one to five years (1·8–5·15 m3 s?1) and by an hourly bedload rate not exceeding 20 m3 h?1. The second refers to ‘exceptional’ events with a return time of 30–50 years. A flood of this latter type occurred on 14 September 1994, with a peak discharge of 10·4 m3 s?1 and average hourly bedload rate of 324 m3 h?1. Step–pool features were characterized primarily by a steepness parameter c = (H/Ls)/S. The evolution of the steepness parameter was measured in the field from 1992 to 1998. The results indicate that maximum resistance conditions are gradually reached at the end of a series of ordinary flood events. During this period, bed armouring dominate the sediment transport response. However, following an extraordinary flood and unlimited sediment supply conditions, the steepness factor can suddenly decrease as a result of sediment trapped in the pools and a lengthening of step spacing. The analogy of step spacing with antidune wavelength and the main destruction and transformation mechanism of the steps are also discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates suspended sediment transport and dynamics of two nested agricultural lowland Mediterranean catchments with a difference of two orders of magnitude in the surface area (i.e., 1 and 264 km2). The effects of the drainage catchment area over the specific suspended sediment yield are assessed by using the nested approach over various timeframes. A detailed analysis of the rainfall–runoff–sediment transport relationships during the 2‐year study period shows that the hydrological and sedimentological responses were extremely variable for both catchments. Very low or no correlations were observed between the rainfall intensity and the selected hydrological variables and sediment loads. However, remarkable or high correlations were obtained between the rainfall intensity and the maximum and average suspended sediment concentrations, indicating that rainfall per unit time has little control on the hydrological response, but that, simultaneously, its high‐erosive power triggers sediment production, increasing the sedimentary response of the catchments. This study also illustrates how sediment is mainly transported during floods, producing predominantly clockwise hysteretic loops. Moreover, the small headwater catchment exerts a reduced (or even negligible) effect over the hydro‐sedimentary response of the larger downstream catchment, caused by the reduced sediment availability in a landscape with an inherent disconnection of the sediment pathways.  相似文献   

19.
In mixed bedrock–alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20–50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

20.
The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river–ocean temporal coherence for four coastal river–shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river–shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river–ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river–shelf systems. Although there are seasonal variations in river–ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river–ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号