首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports a study of intrinsic attenuation and scattering in the Klyuchevskoi volcanic edifice. The data set consisted of small volcano-tectonic earthquakes occurring as deep as 30 km beneath Klyuchevskoi Volcano and recorded by radio telemetry seismograph stations installed on the edifice and near it. The digital seismograms of small volcano-tectonic earthquakes were processed by the multiple lapse time window analysis (MLTWA) method currently in use in seismology. The method uses experimental normalized integrals of 3D seismic energy density determined from several time windows applied to earthquake records that have been put through bandpass filters. The parameters that characterize the intrinsic attenuation and scattering of seismic energy of small volcano-tectonic earthquakes in Klyuchevskoi Volcano were estimated by adjusting the coefficients to ensure the best fit between experimental and theoretical integrals. An analytical solution to the seismic energy transfer equation was used to calculate the theoretical integrals of 3D seismic energy. Reliable estimates of the parameters that characterize the intrinsic attenuation and scattering in the material of the Klyuchevskoi volcanic edifice have been obtained. Our estimates of the Q for the edifice are below those derived by other workers for the Kamchatka lithosphere.  相似文献   

2.
周浩  符力耘 《地球物理学报》2018,61(3):1083-1094
实际地球介质的弹性波衰减,无论是对于地球内部结构反演、含油气储层描述,还是对于地震岩石物理本身的基础研究而言,都十分重要.通过岩石物理实验测量岩石的弹性波衰减是相关研究的基本手段,而谱比法是一种最常用的测量方法.利用谱比法测量的弹性波衰减,简称谱比法衰减,由介质的本征吸收特性和非均质散射特性共同决定.然而,在谱比法理论中,没有将这两种衰减特性的作用区分对待.因此,实验室测量的谱比法衰减中是否含有散射特性,其散射特性是否可以忽略,常不明确.本文基于对岩石物理实验中样品波形特征的基本认识,通过能流理论描述了弹性波的本征吸收和非均质散射过程,以及对应的尾波形成机理.文章还应用能流理论测量岩石的弹性波衰减,即能流法衰减.无论是通过理论推导,还是通过实验验证,谱比法衰减与能流法衰减都显示出良好的一致性.这两种直达波衰减的一致性暗示了谱比法衰减中存在着两种衰减特性.文中还对比分析了谱比法衰减与喷射流本征衰减的实验结果,该结果同样展示了谱比法衰减中可能存在着散射特性.因此,通过能流理论,可以利用样品波形的尾波特征定性判断谱比法衰减中可能存在的散射特性.即异常明显的尾波振幅可能意味着强烈的直达波非均质散射,谱比法衰减中的散射特性因而不可忽略.  相似文献   

3.
4.
This paper presents results from a monitoring study in high frequency seismic noise in Kamchatka during 1992–2006 and reports their use for predicting large regional earthquakes (M ≥ 6.0) in an epicentral distance range Δ within 400 km. The prediction is based on an original method using earth tides as the standard external excitation to study patterns of seismic emission. The method as used at present is described in detail. Guidelines are delineated for future refinement of the prediction method.  相似文献   

5.
利用云南省地震局遥测台网记录的地震波形资料,采用多流逝时间窗分析方法,得到了云南地区不同台站的散射衰减和吸收衰减,并通过单次散射模型得到了不同台站的尾波衰减.研究结果显示,云南地区的散射衰减、吸收衰减、总衰减和尾波衰减空间分布以金沙江—红河断裂带为界,均表现出西部低,东部高的特征.云南地区地震波衰减以吸收为主,2~4 Hz、4~8 Hz、8~16 Hz三个频带各台站的吸收衰减Q-1i均大于散射衰减Q-1c,1~2 Hz除个别台站的吸收衰减明显小于散射衰减,其它台站均大于或接近散射衰减.尾波衰减Q-1c在1~2 Hz稍大于吸收衰减而小于总衰减,在2~4 Hz、4~8 Hz、8~16 Hz与总衰减接近,个别台站大于总衰减Q-1t.云南地区散射衰减与频率的关系为Q-1s=0.0138f-1.61,吸收衰减与频率的关系为Q-1i=0.0119f-0.86,总衰减与频率的关系为Q-1t=0.0247f-1.1,尾波衰减与频率的关系为Q-1c=0.0129f-0.71.与世界其它地区相比,云南地区的散射衰减处于中等偏低的水平,吸收衰减处于中等偏高的水平.  相似文献   

6.
To estimate the parameters of ground motion in future strong earthquakes, characteristics of radiation and propagation of seismic waves in the Kamchatka region were studied. Regional parameters of radiation and propagation of seismic waves were estimated by comparing simulations of earthquake records with data recorded by stations of the Kamchatka Strong Motion Network. Acceleration time histories of strong earthquakes (M w = 6.8–7.5, depths 45–55 km) that occurred near the eastern coast of Kamchatka in 1992–1993 were simulated at rock and soil stations located at epicentral distances of 67–195 km. In these calculations, the source spectra and the estimates of frequency-dependent attenuation and geometrical spreading obtained earlier for Kamchatka were used. The local seismic-wave amplification was estimated based on shallow geophysical site investigations and deep crustal seismic explorations, and parameters defining the shapes of the waveforms, the duration, etc. were selected, showing the best-fit to the observations. The estimated parameters of radiation and propagation of seismic waves describe all the studied earthquakes well. Based on the waveforms of the acceleration time histories, models of slip distribution over the fault planes were constructed for the studied earthquakes. Station PET can be considered as a reference rock station having the minimum site effects. The intensity of ground motion at the other studied stations was higher than at PET due to the soil response or other effects, primarily topographic ones. At soil stations INS, AER, and DCH the parameters of soil profiles (homogeneous pyroclastic deposits) were estimated, and nonlinear models of their behavior in the strong motion were constructed. The obtained parameters of radiation and propagation of seismic waves and models of soil behavior can be used for forecasting ground motion in future strong earthquakes in Kamchatka.  相似文献   

7.
The phenomenon of the seismic coda, which is composed of seismic energy delayed by scattering, is seen on both the Earth and the Moon. On the Moon the scattered coda is very large relative to body wave arrivals with a delay of the time of maximum energy, whereas on Earth scattered codas are relatively small and show no delay of the energy maximum. In both cases the form of the coda is controlled by three distance scales, the mean free path L, which is the average distance seismic energy travels before it is scattered, the attenuation distance x1, which is the average distance seismic energy travels before it is attenuated, and the source-receiver distance R. Two coda models are discussed based on these parameters; a strong scattering (diffusion) model, and a weak scattering (single scattering) model. A discussion of the diffusion scattering model indicates that if x1/L ? 1, diffusion scattering is an appropriate model, but if x1/L ? 1, single scattering is the appropriate model, within the appropriate range of R. A survey of the literature indicates that for the frequency range 0.5–10 Hz, diffusion scattering is important in lunar codas, but for the frequency range 1–25 Hz single scattering is important in terrestrial codas. Another important effect of attenuation is the elimination of scattering paths much longer than x1. On the Moon, this means that seismic energy in the coda can only propagate directly in the near-surface strong scattering zone between surface sources and the seismometer for source-seismometer separations of the order of (x1L)12; otherwise, scattering is limited to regions near the source and the receiver. On Earth, this effect probably prevents multiple scattering.  相似文献   

8.
In comparison to high-frequency signals, low-frequency seismic signals suffer less from scattering and intrinsic attenuation during wave propagation, penetrate deeper strata and thus can provide more energy information related to the hydrocarbon reservoirs. Based on the asymptotic representation for the frequency-dependent reflections in the fluid-saturated pore-elastic media, we first derive a novel equation of the reservoir energy density and present an efficient workflow to calculate the reservoir energy density using low-frequency seismic data. Then, within a low-frequency range (from 1 to 30 Hz), we construct an objective function to determine the optimal frequency, using the energy densities calculated from the post-stack seismic traces close to the wells. Next, we can calculate the reservoir energy density using the instantaneous spectra of optimal frequency at the low-frequency end of the seismic spectrum. Tests on examples for synthetic and field data demonstrate that the proposed reservoir energy density can produce high-quality images for the fluid-saturated reservoirs, and it produces less background artefacts caused by elastic layers. This method provides a new way to detect the location of hydrocarbon reservoirs and characterize their spatial distribution.  相似文献   

9.
Broadband (100–4000 Hz) cross‐hole seismic data have been acquired at a borehole test site where extensive hydrological investigations have previously been performed, including in situ estimates of permeability. The rock type is homogeneous chalk and fractures and bedding planes have been identified from well logs. High values of seismic attenuation, Q= 22 ≤ 27 ≤ 33, were observed over a 10 m depth interval where fracture permeability values of 20–50 darcy had been recorded. An attempt has been made to separate the attenuation due to scattering and intrinsic mechanisms. The estimated values of intrinsic attenuation, Q= 31 ≤ 43 ≤ 71, have been reproduced using a number of current theories of seismic‐wave propagation and fluid‐flow‐induced seismic attenuation in cracked and fractured media. A model that considers wavelength‐scale pressure gradients is the preferred attenuation mechanism. Model parameters were obtained from the hydro‐geological and seismic data. However, we conclude that it is not possible to use seismic Q to measure rock permeability remotely, principally because of the inherent uncertainties arising from model parameterisations.  相似文献   

10.
Seismic coda wave is the tail portion of the earthquake record after main arrivals. Studies on the coda usually focus on high-frequency data within several hours after regional events and attribute them to the scattering effect of the heterogeneities inside the earth. Here, we use records of seven large earthquakes at globally distributed seismic stations to examine the decay of long-period (100 s to 300 s) coda in the time window of 10,000 s to 140,000 s after the origin time and fit it with a statistical model. The geometric spreading effect in the estimated initial energy and a location-independent equivalent attenuation coefficient indicate that the long-period coda energy is less affected by the heterogeneity-induced scattering effect than that of shorter-period coda. The coda energy can reach the earth's inner core and can be explained by a 1D earth model, making it more effective for constraining the global attenuation model. It also has the potential to determine the magnitudes of large earthquakes and to explore the interior of planetary bodies.  相似文献   

11.
使用山东遥测台网1994-2000年(ML2.8-4.2级)间75次地震的300多条模拟地震资料和部分数字化资料,1)测定了尾波振幅比和能量比,并估算了山东地区的尾波值和平均自由程,进而试求了吸收品质因子Qi的散射品质因子Qs,得出山东地区地震尾波的衰减主要是由散射所造成;2)检验了用来定量描述尾波振幅随时间衰减状态的参数--尾波时间熵ST,得出山东地区中强震前尾波时间熵下降是明显的,对中强震的预报效能是可行的。  相似文献   

12.
We present the regional ground-motion prediction equations for peak ground acceleration (PGA), peak ground velocity (PGV), pseudo-spectral acceleration (PSA), and seismic intensity (MSK scale) for the Vrancea intermediate depth earthquakes (SE-Carpathians) and territory of Romania. The prediction equations were constructed using the stochastic technique on the basis of the regional Fourier amplitude spectrum (FAS) source scaling and attenuation models and the generalised site amplification functions. Values of considered ground motion parameters are given as the functions of earthquake magnitude, depth and epicentral distance. The developed ground-motion models were tested and calibrated using the available data from the large Vrancea earthquakes. We suggest to use the presented equations for the rapid estimation of seismic effect after strong earthquakes (Shakemap generation) and seismic hazard assessment, both deterministic and probabilistic approaches.  相似文献   

13.
随机弹性介质中地震波散射衰减分析(英文)   总被引:2,自引:0,他引:2  
地震波衰减一直是许多学科研究的热点,因为可以反映介质的特性。导致地震波衰减的因素很多,如:传播过程中由于能量扩散导致的几何衰减,固体岩石内部晶粒间相对滑移导致的摩擦衰减,岩石结构不均匀引起的地震波散射衰减。本文主要从统计的观点出发,通过多次数值模拟的方法研究纵波散射在随机弹性介质中所引发的衰减。首先用随机理论建立了二维空间随机弹性介质模型,然后用错格伪谱法的数值方法模拟了波在随机介质中的传播,再通过波场中虚拟检波器的记录,用谱比法估计了弹性波在随机介质中的散射衰减。不同非均匀程度随机弹性介质中的数值结果表明:介质不均匀程度越高,散射衰减越大;在散射体尺寸小于波长的前提下,不同散射体尺寸的计算结果说明:散射体尺寸越大,弹性波衰减越明显。最后提出了一种不均匀孔隙介质中流体流动衰减的方法。通过对随机孔隙介质中地震波的总衰减和散射衰减分别进行了计算,并定量得出了随机孔隙介质中流体流动衰减,结果表明:在实际地震频段下,当介质不均匀尺度101米量级时,散射衰减比流体流动衰减要大,散射衰减是地震波在实际不均匀岩石孔隙介质中衰减的主要原因。  相似文献   

14.
The quality factor of the free oscillations of the earth is calculated from the observed time rate of decay of the energy. Records of the I.P.G.P. long-period data acquisition system are used, after a process enhancing a chosen mode, so that the scatter in the Q results is reduced. Determination of attenuation is made for the spheroidal and torsional fundamental modes and two torsional higher modes.The attenuation of seismic waves is determined from the decay of energy of standing-wave patterns with time, and from the damping of travelling waves with distance, using the surface mantle waves recorded at a single I.P.G.P. long-period seismic station after each great circle path (Gaulon, 1971).  相似文献   

15.
基于地震波传播过程中能量衰减的物理机制理论分析,通过梳理已有研究成果,采用正弦函数分频、最小二乘法高阶e指数曲线拟合等技术研发了可实现时间、频率、炮检距和炮域内地震波4D球面扩散与大地吸收衰减补偿方法,解决了常规振幅补偿无法补偿振幅随频率衰减和剩余补偿的问题。实际地震资料处理结果表明,相较于常规振幅补偿方法,该方法可更准确地对球面扩散和大地吸收造成的地震波衰减进行自适应拟合与补偿,较好的恢复中、高频信号成分,提高主频,拓宽频带,有效提高成像分辨率,并较好地保持了振幅的相对关系。  相似文献   

16.
Seismic attenuation mechanisms receive increasing attention for the characterization of fractured formations because of their inherent sensitivity to the hydraulic and elastic properties of the probed media. Attenuation has been successfully inferred from seismic data in the past, but linking these estimates to intrinsic rock physical properties remains challenging. A reason for these difficulties in fluid-saturated fractured porous media is that several mechanisms can cause attenuation and may interfere with each other. These mechanisms notably comprise pressure diffusion phenomena and dynamic effects, such as scattering, as well as Biot's so-called intrinsic attenuation mechanism. Understanding the interplay between these mechanisms is therefore an essential step for estimating fracture properties from seismic measurements. In order to do this, we perform a comparative study involving wave propagation modelling in a transmission set-up based on Biot's low-frequency dynamic equations and numerical upscaling based on Biot's consolidation equations. The former captures all aforementioned attenuation mechanisms and their interference, whereas the latter only accounts for pressure diffusion phenomena. A comparison of the results from both methods therefore allows to distinguish between dynamic and pressure diffusion phenomena and to shed light on their interference. To this end, we consider a range of canonical models with randomly distributed vertical and/or horizontal fractures. We observe that scattering attenuation strongly interferes with pressure diffusion phenomena, since the latter affect the elastic contrasts between fractures and their embedding background. Our results also demonstrate that it is essential to account for amplitude reductions due to transmission losses to allow for an adequate estimation of the intrinsic attenuation of fractured media. The effects of Biot's intrinsic mechanism are rather small for the models considered in this study.  相似文献   

17.
为揭示地震波在地壳小尺度非均匀介质中的散射过程,更准确地描述地震波的包络展宽现象,本文基于多次各向异性散射理论,采用离散波数法求解能量密度积分方程,选取高斯型自相关函数表征的散射模式,得到S波能量密度包络.基于此,本文首先分析了单次散射和多次散射在形成S波能量密度包络中的贡献规律;然后探讨了吸收系数和总散射系数对合成S...  相似文献   

18.
We report extensive anomalies identified in seismicity parameters at different energy levels which were observed during the precursory process of the Karymskii seismovolcanic crisis of January 1–2, 1996. The seismicity of different energies includes earthquakes contained in the Kamchatka regional catalog and seismic noise (amplitudes of 10?9–10?12 m, frequencies of a few tens of hertz), which is a manifestation of the seismic process in the lowest energy range. The parameters of background seismicity are considered in retrospect using techniques for analyzing the dynamics of the seismic process: RTL and the Z function. Microseismicity is examined using these authors’ own method based on monitoring the response of high frequency seismic noise to tidal excitation  相似文献   

19.
This paper presents a set of seismicity parameters that are estimated at the Kamchatka Branch of the Geophysical Service, Russian Academy of Sciences based on the regional catalog data with the purpose of routine monitoring of the current seismic situation in the region. The focus is on the identification of changes in the seismic regime (seismic quiescences and seismicity increases) in earth volumes adjacent to the maturing rupture zone of a large earthquake. The techniques we use include estimation of the seismicity level for the region using the SOUS’09 scale; calculation of the variations in the slope of the recurrence relation, identification of statistically significant anomalies in the slope using the Z test, and calculation of the seismic activity A 10; monitoring the RTL parameter and variations in the area of seismogenic ruptures; using the Z test to detect areas of statistically significant decreases in the rate of seismicity; and identification of earthquake clusters. We furnish examples of such anomalies in these seismicity parameters prior to large earthquakes in Kamchatka.  相似文献   

20.
The Chilean subduction zone is one of the most active of the world with M?=?8 or larger interplate thrust earthquakes occurring every 10?years or so on the average. The identification and characterization of pulses propagated from dominant asperities that control the rupture of these earthquakes is an important problem for seismology and especially for seismic hazard assessment since it can reduce the earthquake destructiveness potential. A number of studies of large Chilean earthquakes have revealed that the source time functions of these events are composed of a number of distinct energy arrivals. In this paper, we identify and characterize the high frequency pulses of dominant asperities using near source strong motion records. Two very well recorded interplate earthquakes, the 1985 Central Chile (Ms?=?7.8) and the 2007 Tocopilla (Mw?=?7.7), are considered. In particular, the 2007 Tocopilla earthquake was recorded by a network with absolute time and continuos recording. From the study of these strong motion data it is possible to identify the arrival of large pulses coming from different dominant asperities. The recognition of the key role of dominant asperities in seismic hazard assessment can reduce overestimations due to scattering of attenuation formulas that consider epicentral distance or shortest distance to the fault rather than the asperity distance. The location and number of dominant asperities, their shape, the amplitude and arrival time of pulses can be one of the principal factors influencing Chilean seismic hazard assessment and seismic design. The high frequency pulses identified in this paper have permitted us to extend the range of frequency in which the 1985 Central Chile and 2007 Tocopilla earthquakes were studied. This should allow in the future the introduction of this seismological result in the seismic design of earthquake engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号