首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal and spatial rupture process of the 14 November 2001 Kunlun Mountain Pass earthquake (KMPE) is obtained by inverting the high signal-to-noise-ratio P-waveform data of vertical components of 20 stations with epicentral distances less than 90°, which are of Global Digital Seismogragh Network (GDSN). The inverted results indicate that the KMPE consists of 3 sub-events. The rupture of the first sub-event initiated at the instrumental epicenter (35.97°N, 90.59°E) and then propagated both westwards and eastwards, extending 140 km westwards at the speed of 4.0 km/s and 80 km eastwards at the speed of 2.2 km/s, which appeared to be an asymmetrical bilateral rupture dominantly from east to west. This sub-event formed a 220-km-long fault. Fifty-two seconds after initiation of the first sub-event, at which time the first sub-event was not over but in its healing phase, the rupture of the second sub-event initiated 220 km west of the epicenter and propagated both westwards and eastwards, extending 50  相似文献   

2.
We use interferometric synthetic aperture radar (InSAR) observations to investigate the coseismic deformation and slip distribution of the 1997 Mw7.5 Manyi earthquake, a left-lateral strike-slip earthquake occurred on the west portion of the Kunlun fault in the northern Tibet, China. The fault trace is constrained by the combination of interferometric coherence image and azimuth offset image. The total length of the identified fault is about 170 km. We estimate the source parameters using a seven-segment fault model in a homogeneous elastic half-space. We first use a uniform slip model to estimate the slip, width, dip and rake for each segment, resulting in a maximum slip of 5.5 m with a depth of 11 km on the fourth segment. The average dip of the uniform slip model is about 93° northward and the average rake is about −2°. We then use a distributed slip model to estimate the pure strike-slip and oblique slip distribution, respectively. In the distributed slip model, the fault plane is discretized into 225 patches, each of them 4 km × 4 km. We fix the optimal geometric parameters and solve for the slip distribution using a bounded variable least-squares (BVLS) method. We find a geodetic moment of 1.91 × 1020 Nm (Mw7.5), of which almost 68% released in the uppermost 8 km and 82% in the uppermost 12 km. For all the models used in this study, the synthetic profiles along strike show asymmetric displacements on the opposite sides of the fault, which are in agreement with the observations. This suggests that a linear elastic model with variable and non-vertical dips is also reasonable for the mechanism of the Manyi earthquake.  相似文献   

3.
本文应用ISOLA近震全波形方法,以2017年1月4日西藏仲巴4.7级地震为例,反演稀疏台网记录的中小地震震源机制解。该地震反演所得最佳双偶机制参数为:节面Ⅰ的走向109°/倾角85°/滑动角-177°,节面Ⅱ的走向19°/倾角88°/滑动角-4°,最佳矩心位置为30.590°N、83.784°E,最佳质心深度为6km,矩震级MW4.6。震源机制反演结果表明此次地震是一次走滑型为主的事件,其与震源区域附近历史地震震源机制解具有相同性质。本文还应用CSPS初动扫描法,利用P波初动资料和近震波形联合约束反演此次地震的震源机制,并与ISOLA近震全波形反演结果进行比较,结果表明,联合少量台站的的三分量波形数据,能够定量地判断最佳震源机制解,降低了P波初动反演结果的非唯一性,同时也约束了由于少量台站参与全波形反演引起的解的不稳定性。本文研究为中小地震震源参数测定提供了一种简单有效的方法,具有较高的稳定性和可靠性。  相似文献   

4.
The distribution of the focal mechanisms of the shallow and intermediate depth (h>40 km) earthquakes of the Aegean and the surrounding area is discussed. The data consist of all events of the period 1963–1986 for the shallow, and 1961–1985 for the intermediate depth earthquakes, withM s 5.5. For this purpose, all published fault plane solutions for each event have been collected, reproduced, carefully checked and if possible improved accordingly. The distribution of the focal mechanisms of the earthquakes in the Aegean declares the existence of thrust faulting following the coastline of southern Yugoslavia, Albania and western Greece extending up to the island of Cephalonia. This zone of compression is due to the collision between two continental lithospheres (Apulian-Eurasian). The subduction of the African lithosphere under the Aegean results in the occurrence of thrust faulting along the convex side of the Hellenic arc. These two zones of compression are connected via strike-slip faulting observed at the area of Cephalonia island. TheP axis along the convex side of the arc keeps approximately the same strike throughout the arc (210° NNE-SSW) and plunges with a mean angle of 24° to southwest. The broad mainland of Greece as well as western Turkey are dominated by normal faulting with theT axis striking almost NS (with a trend of 174° for Greece and 180° for western Turkey). The intermediate depth seismicity is distributed into two segments of the Benioff zone. In the shallower part of the Benioff zone, which is found directly beneath the inner slope of the sedimentary arc of the Hellenic arc, earthquakes with depths in the range 40–100 km are distributed. The dip angle of the Benioff zone in this area is found equal to 23°. This part of the Benioff zone is coupled with the seismic zone of shallow earthquakes along the arc and it is here that the greatest earthquakes have been observed (M s 8.0). The deeper part (inner) of the Benioff zone, where the earthquakes with depths in the range 100–180 km are distributed, dips with a mean angle of 38° below the volcanic arc of southern Aegean.  相似文献   

5.
We use teleseismic data to calculate the source model of the 24 May 2014 earthquake and regional catalogues to examine the spatial-temporal characteristics of the sequence. The sequence started in Saros Basin but almost simultaneously aftershocks spread along a ∼200 km zone, activating the entire North Aegean Trough. The aftershock sequence was rich in moderate (M < 4) size events, but very deficient in strong events – only two Mw4.9 aftershocks-a characteristic observed in previous sequences in the region. The teleseismic waveforms were best fit by two sub-events, which were lagged by 18 s in time and by a 50 km jump in space, along the same fault line. The centroid depth of the first sub-event is 22 km, at the base of the lower crust, and for the second is 14 km. The resolved total source time function is ∼30 s. The finite-fault slip model is characterized by an asymmetric bilateral rupture propagation, to the west and east of the hypocentre. The major slip is confined downdip from the hypocentre, within the deeper 12–25 km part. This deep slip migrated updip from the hypocentre to form the second slip patch, in the eastward segment. In all our models the maximum dislocation was of the order of 1 m. For our preferred model parametrization, the rupture speed is 3 km/s, and the scalar moment equal to 1.76 × 1019 Nm (Mw6.8). This earthquake highlighted the fact that strike-slip faulting in the North Aegean Sea, can attain large lengths and activate very wide zones, reaching densely populated regions.  相似文献   

6.
The double-difference earthquake location algorithm was applied to the relocation of 10,057 earthquakes that occurred in central-western China (21N to 36N, 98E to 111E) during the period from 1992 to 1999. In total, 79,706 readings for P waves and 72,169 readings for S waves were used in the relocation. The relocated seismicity (6,496 earthquakes) images fault structures at seismogenic depths that are in close correlation with the tectonic structure of major fault systems expressed at the surface. The new focal depths confirm that most earthquakes (91%) in this region occur at depths less than 20 km.  相似文献   

7.
Observations taken by aircraft and conventional platforms are used to investigate dynamical, physical, and radiative processes within a marine stratus cloud during the Canadian Atlantic Storms Program (CASP) II field project which took place over the east coast of Canada. Stratus which formed over the ocean on February 6, 1992 during the nighttime, is studied to analyze cloud top and base processes. The cloud was supercooled during the study period. Fluctuations and fluxes are calculated along constant flight altitude legs approximately 100 km long in space. The scales of structures larger than 5 km are removed from the analysis using a running average technique. Droplet spectra obtained by a forward scattering spectrometer probe (FSSP) were used in a 1-D radiative transfer model to calculate infrared (IR) fluxes and radiative heating rates. A heat conservation equation was used to estimate vertical air velocity (w a ) within the cloud. The results showed that, because of a warmer ocean surface, significant moisture and heat were transferred from the ocean surface to the boundary layer. The cloud base was at about 400 m height and the top was at about 1.4 km.w a at the cloud base was estimated about 5 cm s–1. Strong IR cooling rate at the cloud top was calculated to be 75°C day–1 for a 100 m thick layer. Negative skewness inw a , suggesting narrow downdrafts, was likely due to radiative cooling at the cloud top. The entrainment velocity was found to be about 1.5 cm s–1 at cloud top. Mean moisture and heat fluxes within the cloud were estimated to be comparable to those from the ocean surface. Vertical air velocity at the cloud top due to radiative cooling was found to be about –40 cm s–1.  相似文献   

8.
SourceparametersoftheGonghe,QinghaiProvince,China,earthquakefrominversionofdigitalbroadbandwaveformdataLI-SHENGXU(许立生)andYUN...  相似文献   

9.
The implications of the earthquakes that took place in the central Ionian Islands in 2014 (Cephalonia, M w6.1, M w5.9) and 2015 (Lefkas, M w6.4) are described based on repeat measurements of the local GPS networks in Cephalonia and Ithaca, and the available continuous GPS stations in the broader area. The Lefkas earthquake occurred on a branch of the Cephalonia Transform Fault, affecting Cephalonia with SE displacements gradually decreasing from north (~100 mm) to south (~10 mm). This earthquake revealed a near N–S dislocation boundary separating Paliki Peninsula in western Cephalonia from the rest of the island, as well as another NW–SE trending fault that separates kinematically the northern and southern parts of Paliki. Strain field calculations during the interseismic period (2014–2015) indicate compression between Ithaca and Cephalonia, while extension appears during the following co-seismic period (2015–2016) including the 2015 Lefkas earthquake. Additional tectonically active zones with differential kinematic characteristics were also identified locally.  相似文献   

10.
The earthquake was modeled using regional broad-band stations in Greece (epicentral distances up to 340 km). Inversion of the amplitude spectra of complete waveforms (0.05–0.08 Hz), later confirmed by the forward waveform modeling, provided strike = 150°, dip = 70°, rake = 10°, scalar moment M o = 4.1e18 Nm, and depth of 8 km. As the aftershock distribution had the same strike, the earthquake was interpreted as a left-lateral strike slip. The fault length was estimated by combining observed mainshock spectra and synthetic spectra of a weak event, representing impulse response of the medium. This gave the fault length estimate of 16 to 24 km. Similar results were obtained by means of a true M w = 5 aftershock. The waveform modeling (0.05–0.20 Hz) was performed for the 20 × 10 km finite-extent fault, with a homogenous slip of 0.63 m. It showed that the rupture propagation along the 150° strike was predominantly unilateral, from NW to SE.  相似文献   

11.
Hysteresis in the relationship between capillary pressure (Pc), wetting phase saturation (Sw) and nonwetting–wetting interfacial area per volume (anw) is investigated using multiphase lattice-Boltzmann simulations of drainage and imbibition in a glass bead porous system. In order to validate the simulations, the PcSw and anwSw main hysteresis loops were compared to experimental data reported by Culligan et al. [Culligan KA, Wildenschild D, Christensen BS, Gray WG, Rivers ML, Tompson AB. Interfacial area measurements for unsaturated flow through porous media. Water Resour Res 2004;40:W12413]. In general, the comparison shows that the simulations are reliable and capture the important physical processes in the experimental system. PcSw curves, anwSw curves and phase distributions (within the pores) show good agreement during drainage, but less satisfactory agreement during imbibition. Drainage and imbibition scanning curves were simulated in order to construct PcSwanw surfaces. The root mean squared error (RMSE) and mean absolute error (MAE) between drainage and imbibition surfaces was 0.10 mm−1 and 0.03 mm−1, respectively. This small difference indicates that hysteresis is virtually nonexistent in the PcSwanw relationship for the multiphase system studied here. Additionally, a surface was fit to the main loop (excluding scanning curves) of the drainage and imbibition PcSwanw data and compared to the surface fit to all of the data. The differences between these two surfaces were small (RMSE = 0.05 mm−1 and MAE = 0.01 mm−1) indicating that the PcSwanw surface is adequately represented without the need for the scanning curve data, which greatly reduces the amount of data required to construct the non-hysteretic PcSwanw surface for this data.  相似文献   

12.
Earthquake surface rupture is the result of transformation from crustal elastic strain accumulation to permanent tectonic deformation. The surface rupture zone produced by the 2001 Kunlunshan earthquake (M w 7.8) on the Kusaihu segment of the Kunlun fault extends over 426 km. It consists of three relatively independent surface rupture sections: the western strike-slip section, the middle transtensional section and the eastern strike-slip section. Hence this implies that the Kunlunshan earthquake is composed of three earthquake rupturing events, i.e. the M w =6.8, M w =6.2 and M w ⩽=7.8 events, respectively. The M w =7.8 earthquake, along the eastern section, is the main shock of the Kunlunshan earthquake, further decomposed into four rupturing subevents. Field measurements indicate that the width of a single surface break on different sections ranges from several meters to 15 m, with a maximum value of less than 30 m. The width of the surface rupture zone that consists of en echelon breaks depends on its geometric structures, especially the stepover width of the secondary surface rupture zones in en echelon, displaying a basic feature of deformation localization. Consistency between the Quaternary geologic slip rate, the GPS-monitored strain rate and the localization of the surface ruptures of the 2001 Kunlunshan earthquake may indicate that the tectonic deformation between the Bayan Har block and Qilian-Qaidam block in the northern Tibetan Plateau is characterized by strike-slip faulting along the limited width of the Kunlun fault, while the blocks themselves on both sides of the Kunlun fault are characterized by block motion. The localization of earthquake surface rupture zone is of great significance to determine the width of the fault-surface-rupture hazard zone, along which direct destruction will be caused by co-seismic surface rupturing along a strike-slip fault, that should be considered before the major engineering project, residental buildings and life line construction. Supported by the National Natural Science Foundation of China (Grant No. 40474037) and the National Basic Research Program of China (Grant No. 2004CB418401)  相似文献   

13.
The M w 6.2 Lefkada earthquake occurred on 14 August 2003 beneath the western coastline of Lefkada Island. The main shock was followed by an intense aftershock activity, which formed a narrow band extending over the western coast of the Island and the submarine area between Lefkada and Kefalonia Islands, whereas additional off fault aftershocks formed spatial clusters on the central and northwestern part of the Island. The aftershock spatial distribution revealed the activation of along-strike adjacent fault segment as well as of secondary faults close to the main rupture. The properties of the activated segments were illuminated by the precisely located aftershocks, fault plane solutions determination and the cross sections performed parallel and normal to their strike. The aftershock focal mechanisms exhibited mainly strike slip faulting throughout the activated area, although deviation of the dominant stress pattern is also observed. The results help to emphasize the importance of the identification of activated nearby fault segments possibly triggered by the main rupture. Because such segments are capable to produce moderate events causing appreciable damage, they should be viewed with caution in seismic hazard assessment in addition to the major regional faults.  相似文献   

14.
15.
In October and November 2002, the Molise region (southern Italy) was struck by two moderate magnitude earthquakes within 24 hours followed by an one month long aftershocks sequence. Soon after the first mainshock (October 31st, 10.32 UTC, Mw 5.7), we deployed a temporary network of 35 three-component seismic stations. At the time of occurrence of the second main event (November 1st, 15.08 UTC, Mw 5.7) the eight local stations already installed allowed us to well constrain the hypocentral parameters. We present the location of the two mainshocks and 1929 aftershocks with 2 < ML < 4.2. Earthquake distribution reveals a E-trending 15 km long fault system composed by two main segments ruptured by the two mainshocks. Aftershocks define two sub-vertical dextral strike-slip fault segments in agreement with the mainshock fault plane solutions. P- and T-axes retrieved from 170 aftershocks focal mechanisms show a coherent kinematics: with a sub-horizontal NW and NE-trending P and T-axes, respectively. For a small percentage of focal mechanisms (∼ 10%) a rotation of T axes is observed, resulting in thrust solutions. The Apenninic active normal fault belt is located about 80 km westward of the 2002 epicentral area and significant seismicity occurs only 20-50 km to the east, in the Gargano promontory. Seismic hazard was thought to be small for this region because neither historical earthquake are reported in the Italian seismic catalogue or active faults were previously identified. In this context, the 2002 seismic sequence highlights the existence of trans-pressional active tectonics in between the extensional Apenninic belt and the Apulian foreland.  相似文献   

16.
Intraplate seismic activity in Bolivia is mainly located in the central region (16°–19°S, 63°–67°W) which includes the East Andean Cordillera and the Sub-Andean Sierras. At this region there is a bend in the trend of the main geological structures from NW-SE in the north to N-S in the south. Focal mechanisms have been calculated for 10 earthquakes of magnitudes 4.9–5.6, using first motionP-waves from long period instruments. Their solutions correspond to reverse faulting, some with a large component of strike-slip motion. Their solutions can be grouped into two types; one with pure reverse faulting on planes with azimuth NW-SE and the other with a large strike-slip component on planes with azimuths nearly N-S or WNW-ESE. The maximum stress axis (P-axis) is practically horizontal (dipping less than 5°) oriented in a mean N56°E direction. This orientation may be related with the direction of compression resulting from the collision of the Nazca plate against the western margin of the South American continent. Wave-form analysis of long-periodP-waves for one event restricts the focal depth to 8 km in the Sub-Andean region. Seismic moments and source dimensions determined from spectra of Rayleigh waves are in the range of 1016–1017Nm and 17–24 km, respectively. The Central Bolivia region can be considered as a zone of intraplate deformation situated between the Bolivian Altiplano and the Brazil shield.  相似文献   

17.
The Hokkaido-Nansei-Oki earthquake (M w 7.7) of July 12, 1993, is one of the largest tsunamigenic events in the Sea of Japan. The tsunami magnitudeM t is determined to be 8.1 from the maximum amplitudes of the tsunami recorded on tide gauges. This value is larger thanM w by 0.4 units. It is suggested that the tsunami potential of the Nansei-Oki earthquake is large forM w . A number of tsunami runup data are accumulated for a total range of about 1000 km along the coast, and the data are averaged to obtain the local mean heightsH n for 23 segments in intervals of about 40 km each. The geographic variation ofH n is approximately explained in terms of the empirical relationship proposed byAbe (1989, 1993). The height prediction from the available earthquake magnitudes ranges from 5.0–8.4 m, which brackets the observed maximum ofH n , 7.7 m, at Okushiri Island.  相似文献   

18.
Wave-form modelling of body waves has been done to study the seismic source parameters of three earthquakes which occurred on October 21, 1964 (M b =5.9), September 26, 1966 (M b =5.8) and March 14, 1967 (M b =5.8). These events occurred in the Indochina border region where a low-angle thrust fault accommodates motion between the underthrusting Indian plate and overlying Himalaya. The focal depths of all these earthquakes are between 12–37 km. The total range in dip for the three events is 5°–20°. TheT axes are NE-SW directed whereas the strikes of the northward dipping nodal planes are generally parallel to the local structural trend. The total source durations have been found to vary between 5–6 seconds. The average values of seismic moment, fault radius and dislocation are 1.0–11.0×1025 dyne-cm, 7.7–8.4km and 9.4–47.4 cm, respectively whereas stress drop, apparent stress and strain energy are found to be 16–76 bars, 8.2–37.9 bars and 0.1–1.7×1021 ergs, respectively. These earthquakes possibly resulted due to the tension caused by the bending of the lithospheric plate into a region of former subduction which is now a zone of thrusting and crustal shortening.  相似文献   

19.
During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m–2 · a–1 (1,42 tC · lake–1 · a–1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (< 7 mg · m–3) and comparatively high background light attenuation (kw = 0,525 m–1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent.Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (A) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis.  相似文献   

20.
On 22 September 2002, the largest UK earthquake (mb4.3) of the last 10 years occurred near the town of Dudley in the West Midlands. Here we determine the earthquake focal mechanism and depth using data from stations at regional and teleseismic distances. Short-period teleseismic seismograms are interpreted in terms of P and surface reflections pP and sP. This analysis suggests that the source depth is deeper than the 9.7 km initially determined by the British Geological Survey (BGS). The relative amplitude method is applied to four teleseismic seismograms to support our interpretation of the surface reflections, and constrain the focal mechanism. Our preferred focal mechanism, a near vertical strike-slip with s = 94°, = 88° and = –179°, is in reasonable agreement with a moment tensor determined by the Swiss Seismological Service. Synthetic regional surface wave seismograms match the observed seismograms for a model focal depth of 19.5 (±3.0) km and scalar moment, M0, of 3.2 × 1015 N m. Our results emphasize that due to the well-known trade-off between depth and M0 from inversions of long period (0.02–0.1 Hz) surface waves, it is preferable to combine long- and short-period data to constrain reliably the depth and hence estimate M0. Our focal mechanism and depth are further validated by generating short-period synthetic seismograms that match the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号