首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energy coupling function between the solar wind and the magnetosphere can be obtained for two extreme situations, in which the magnetospheric geometry is determined primarily by either (i) the interplanetary magnetic field, or (ii) the solar wind pressure. In this paper, we obtained an expression for the energy coupling function by assuming a simple interpermeation of the interplanetary and geomagnetic fields. Two important quantities in this case are the potential difference between the two neutral points and the amount of open flux. From these two overall quantities, the voltage and the current of the magnetospheric dynamo are calculated. The dynamo power output represents the rate at which energy is transferred from the solar wind to the magnetosphere. The derived functional dependence on the interplanetary conditions provides a theoretical basis for the energy coupling function previously deduced from observations.  相似文献   

2.
The solar wind is a magnetized flowing plasma that intersects the Earth's magnetosphere at a velocity much greater than that of the compressional fast mode wave that is required to deflect that flow. A bow shock forms that alters the properties of the plasma and slows the flow, enabling continued evolution of the properties of the flow on route to its intersection with the magnetopause. Thus the plasma conditions at the magnetopause can be quite unlike those in the solar wind. The boundary between this “magnetosheath” plasma and the magnetospheric plasma is many gyroradii thick and is surrounded by several boundary layers. A very important process occurring at the magnetopause is reconnection whereby there is a topological change in magnetic flux lines so that field lines can connect the solar wind plasma to the terrestrial plasma, enabling the two to mix. This connection has important consequences for momentum transfer from the solar wind to the magnetosphere. The initiation of reconnection appears to be at locations where the magnetic fields on either side of the magnetopause are antiparallel. This condition is equivalent to there being no guide field in the reconnection region, so at the reconnection point there is truly a magnetic neutral or null point. Lastly reconnection can be spatially and temporally varying, causing the region of the magnetopause to be quite dynamic.  相似文献   

3.
The magnetospheric plasma convection is studied, taking into account the finite conductivity along magnetic field lines. Field-aligned currents flowing at the inner boundary of the magnetospheric plasma sheet give rise to parallel electric fields which insignificantly affect the convection on the ionospheric level but change drastically the convection system in the magnetosphere. Intense azimuthal convective streams arise along both sides of the plasma sheet boundary. A part of convection lines appears to be completely closed in the inner magnetosphere.  相似文献   

4.
A quantitative magnetospheric magnetic field model has been calculated in three dimensions. The model is based on an analytical solution of the Chapman-Ferraro problem. For this solution, the magnetopause was assumed to be an infinitesimally thin discontinuity with given geometry. The shape of the dayside magnetopause is in agreement with measurements derived from spacecraft boundary crossings.The magnetic field of the magnetopause currents can be derived from scalar potentials. The scalar potentials result from solutions of Laplace's equation with Neumann's boundary conditions. The boundary values and the magnetic flux through the magnetopause are determined by all magnetic sources which are located inside and outside the magnetospheric cavity. They include the Earth's dipole field, the fields of the equatorial ring current and tail current systems, and the homogeneous interplanetary magnetic field. In addition, the flux through the magnetopause depends on two constants of interconnection which provide the possibility of calculating static interconnection between magnetospheric and interplanetary field lines. Realistic numerical values for both constants have been derived empirically from observed displacements of the polar cusps which are due to changes in the orientation of the interplanetary field. The transition from a closed to an open magnetosphere and vice versa can be computed in terms of a change of the magnetic boundary conditions on the magnetopause. The magnetic field configuration of the closed magnetosphere is independent of the amount and orientation of the interplanetary field. In contrast, the configuration of the open magnetosphere confirms the observational finding that field line interconnection occurs primarily in the polar cusp and high latitude tail regions.The tail current system reflects explicitly the effect of dayside magnetospheric compression which is caused by the solar wind. In addition, the position of the plasma sheet relative to the ecliptic plane depends explicitly on the tilt angle of the Earth's dipole. Near the tail axis, the tail field is approximately in a self-consistent equilibrium with the tail currents and the isotropic thermal plasma.The models for the equatorial ring current depend on the Dst-parameter. They are self-consistent with respect to measured energy distributions of ring current protons and the axially symmetric part of the magnetospheric field.  相似文献   

5.
A mechanism of the Earth's magnetospheric substorm is proposed. It is suggested that the MHD waves may propagate across the magnetopause from the magnetosheath into the magnetotail and will be dissipated in the plasma sheet, heating the plasma and accelerating the particles. When the solar wind parameters change, the Poynting flux of the waves transferred from the magnetosheath into the tail, may be greater than 1018 erg s?1. The heated plasma and accelerated particles in the plasma sheet will be injected into the inner magnetosphere, and this may explain the process of the ring current formation and auroral substorm.The Alfvén wave can only propagate along the magnetic force line into the magnetosphere in the open magnetosphere, but the magnetosonic wave can propagate in both the open and closed magnetosphere. When the IMF turns southward, the configuration of the magnetosphere will change from a nearly closed model into some kind of open one. The energy flux of Alfvén waves is generally larger than that of the magnetosonic wave. This implies that it is easy to produce substorms when the interplanetary magnetic field (IMF) has a large southward component, but the substorm can also be produced even if the IMF is directed northward.  相似文献   

6.
A time-dependent, nonplanar, two-dimensional magnetohydrodynamic computer model is used to simulate a series, separately examined, of solar flare-generated shock waves and their subsequent disturbances in interplanetary space between the Sun and the Earth's magnetosphere. The ‘canonical’ or ansatz series of shock waves include initial velocities near the Sun over the range 500 to 3500 km s?1. The ambient solar wind, through which they propagate, is taken to be a steady-state homogeneous plasma (that is, independent of heliolongitude) with a representative set of plasma and magnetic field parameters. Complete sets of solar wind plasma and magnetic field parameters are presented and discussed. Particular attention is addressed to the MHD model's ability to address fundamental operational questions vis-à-vis the long-range forecasting of geomagnetic disturbances. These questions are: (i) will a disturbance (such as the present canonical series of solar flare shock waves) produce a magnetospheric and ionospheric disturbance, and, if so, (ii) when will it start, (iii) how severe will it be, and (iv) how long will it last? The model's output is used to compute various solar wind indices of current interest as a demonstration of the model's potential for providing ‘answers’ to these questions.  相似文献   

7.
Observations by Mariner 10 during its first and third flybys showed that Mercury possesses an intrinsic magnetic field resulting in a small magnetosphere that can keep the solar wind from directly interacting with the planet's surface under usual conditions. Since Mercury occupies a large fraction of its magnetosphere, regions of trapped charged particles in the inner magnetosphere, the plasmasphere and the energetic radiation belts, would all be absent. During the first flyby, energetic particle bursts were detected and interpreted as hermean substroms analogous to the terrestrial magnetosphere. Moreover, during this flyby, ULF waves and field-aligned currents were detected in the data. Earth-based observations of Na, K, and Ca populations in the exosphere strongly suggest the existence of dynamic magnetospheric processes at high latitudes interacting with the planet's surface.  相似文献   

8.
The relatively high contrast between planetary and solar low-frequency radio emissions suggests that the low-frequency radio range may be well adapted to the direct detection of exoplanets. We review the most significant properties of planetary radio emissions (auroral as well as satellite induced) and show that their primary engine is the interaction of a plasma flow with an obstacle in the presence of a strong magnetic field (of the flow or of the obstacle). Scaling laws have been derived from solar system planetary radio emissions that relate the emitted radio power to the power dissipated in the various corresponding flow–obstacle interactions. We generalize these scaling laws into a “radio-magnetic” scaling law that seems to relate output radio power to the magnetic energy flux convected on the obstacle, this obstacle being magnetized or unmagnetized. Extrapolating this scaling law to the case of exoplanets, we find that hot Jupiters may produce very intense radio emissions due to either magnetospheric interaction with a strong stellar wind or to unipolar interaction between the planet and a magnetic star (or strongly magnetized regions of the stellar surface). In the former case, similar to the magnetosphere–solar wind interactions in our solar system or to the Ganymede–Jupiter interaction, a hecto-decameter emission is expected in the vicinity of the planet with an intensity possibly 103–105 times that of Jupiter's low frequency radio emissions. In the latter case, which is a giant analogy of the Io–Jupiter system, emission in the decameter-to-meter wavelength range near the footprints of the star's magnetic field lines interacting with the planet may reach 106 times that of Jupiter (unless some “saturation” mechanism occurs). The system of HD179949, where a hot spot has been tentatively detected in visible light near the sub-planetary point, is discussed in some details. Radio detectability is addressed with present and future low-frequency radiotelescopes. Finally, we discuss the interests of direct radio detection, among which access to exoplanetary magnetic field measurements and comparative magnetospheric physics.  相似文献   

9.
Hydrodynamic and electrodynamic problems of solar wind interaction with the Earth's magnetosphere on the day-side are investigated.The initial fact, well established, is that the density of the magnetic field energy in the solar wind is rather small. Magnetic field intensity and orientation are shown to determine the character of the solar wind flow around the magnetosphere. For mean parameters of the wind, if the tangential component of the magnetic field is more or equal 5γ, the flow in the magneto-sheath will be laminar. For other cases the flow is of a turbulent type.For turbulent flow, typical plasma parameters are estimated: mean free path, internal scale of inhomogeneities and dissipated energy. The results obtained are compared with experimental data.For the case of laminar flow, special attention is paid to the situation when magnetic fields of the solar wind and Earth are antiparallel. It is suggested, on the basis of solid arguments, that the southward interplanetary field diffuses from the magnetosheath into the Earth's magnetosphere. These ideas are used for the estimation of the distance to the magnetopause subsolar point. A detailed comparison with results of observation is made. The coincidence is satisfactory. Theoretical investigation has been made to a great extent for thin magnetopause with thickness δRHe-gyroradius of an electron.It is shown that during magnetospheric substorms relaxation oscillations with the period τ = 100–300 sec must appear. A theorem is proved about the appearance of a westward electrical field during the substorm development, when the magnetosphere's day-side boundary moves Earthward and about the recovery phase, when the magnetopause motion is away from the Earth, when there is an eastward electrical field.In the Appendix, plasma wave exitation in the magnetopause is considered and conductivity magnitudes are calculated, including the reduction due to the scattering by plasma turbulence.  相似文献   

10.
Geomagnetic pulsations recorded on the ground are the signatures of the integrated signals from the magnetosphere. Pc3 geomagnetic pulsations are quasi-sinusoidal variations in the earth’s magnetic field in the period range 10–45 seconds. The magnitude of these pulsations ranges from fraction of a nT (nano Tesla) to several nT. These pulsations can be observed in a number of ways. However, the application of ground-based magnetometer arrays has proven to be one of the most successful methods of studying the spatial structure of hydromagnetic waves in the earth’s magnetosphere. The solar wind provides the energy for the earth’s magnetospheric processes. Pc3–5 geomagnetic pulsations can be generated either externally or internally with respect to the magnetosphere. The Pc3 studies undertaken in the past have been confined to middle and high latitudes. The spatial and temporal variations observed in Pc3 occurrence are of vital importance because they provide evidence which can be directly related to wave generation mechanisms both inside and external to the magnetosphere. At low latitudes (L < 3) wave energy predominates in the Pc3 band and the spatial characteristics of these pulsations have received little attention in the past. An array of four low latitude induction coil magnetometers were established in south-east Australia over a longitudinal range of 17 degrees at L = 1.8 to 2.7 for carrying out the study of the effect of the solar wind velocity on these pulsations. Digital dynamic spectra showing Pc3 pulsation activity over a period of about six months have been used to evaluate Pc3 pulsation occurrence. Pc3 occurrence probability at low latitudes has been found to be dominant for the solar wind velocity in the range 400–700 km/s. The results suggest that solar wind controls Pc3 occurrence through a mechanism in which Pc3 wave energy is convected through the magnetosheath and coupled to the standing oscillations of magnetospheric field lines.  相似文献   

11.
AXIOM: advanced X-ray imaging of the magnetosphere   总被引:1,自引:0,他引:1  
Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.  相似文献   

12.
Flapping motions of the magnetotail with an amplitude of several earth radii are studied by analysing the observations made in the near (x = ?25 ~ ?30 RE and the distant (x? ?60 RE) tail regions. It is found that the flapping motions result from fluctuations in the interplanetary magnetic field, especially Alfvénic fluctuations, when the magnitude of the interplanetary magnetic field is larger than ~10 γ and they propagate behind the Earth with the solar wind flow. Flappings tend to be observed in early phases of the magnetospheric substorm, and they have two fundamental modes with periods of ~200 and ~500 sec. In some limited cases a good correspondence with the long period micropulsations (Pc5) in the polar cap region is observed. These observational results are explained by the model in which the Alfvénic fluctuations in the solar wind penetrate into the magnetosphere along the connected interplanetary-magnetospheric field lines. The characteristics of the flapping reveal that the geomagnetic tail is a good resonator for the hydromagnetic disturbances in the solar wind.  相似文献   

13.
The passage of Ulysses through Jupiter's magnetosphere presents a new opportunity to investigate the contribution to the Jovian magnetosphere of ions of atmospheric origin. A determination of the magnetospheric H+/He2+ flux ratio allows an estimate of the relative abundance of ionospheric material in the Jovian magnetosphere. We find that the H+/He2+ flux ratio, measured in the energy/charge range between 0.65 and 60 keV/e, steadily increases from a solar wind level of 25 at the magnetopause to a value of 700 at the point of closest approach, and then steadily decreases whilst approaching the magnetopause on the outbound path. We conclude from this that: (1) there is a significant solar wind component throughout the outer and middle magnetosphere; and (2) a significant fraction of the protons in the middle magnetosphere are of nonsolar origin.  相似文献   

14.
In order to understand the reason of the existence of the electric field in the magnetosphere, and for the theoretical evaluation of its value, it is necessary to find the solution of the problem of determination of the magnetosphere boundary form in the frameworks of the continuum medium model which takes into account part of the magnetospheric plasma movement in supporting the magnetospheric boundary equilibrium. A number of problems for finding the distribution of the pressure, the density, the magnetic field and the electric field on the particular tangential discontinuity is considered in the case when the form of discontinuity is set (the direct problem) and a number of problems for finding the form of the discontinuity and the distribution of the above-mentioned physical quantities on the discontinuity is considered when the law of the change of the external pressure along the boundary is set (for example, with the help of the approximate Newton equation). The problem which is considered here, which deals with the calculation of the boundary form and with the calculation of the distribution of the corresponding physical quantities on the discontinuity of the 1st kind for the compressible fluid with the magnetic field with field lines which are perpendicular to the plane of the flow in question, concerns the last sort of problems. The comparison of the results of the calculation with the data in the equatorial cross-section of the magnetosphere demonstrates that the calculated form of the boundary, the value of the velocity of the return flow and the value of the electric field on the magnetopause, agree satisfactorily with the observational data.  相似文献   

15.
The plasma of the solar wind incident upon the Earth’s magnetosphere can produce several types of geoeffective events. Among them, an important phenomenon consists of the interrelation of the magnetospheric–ionospheric current systems and the charged-particle population of the Earth’s Van Allen radiation belts. Ultra-low-frequency (ULF) waves resonantly interacting with such particles have been claimed to play a major role in the energetic particle flux changes, particularly at the outer radiation belt, which is mainly composed of electrons at relativistic energies. In this article, we use global magnetohydrodynamic simulations along with in situ and ground-based observations to evaluate the ability of two different solar wind transient (SWT) events to generate ULF (few to tens of mHz) waves in the equatorial region of the inner magnetosphere. Magnetic field and plasma data from the Advanced Composition Explorer (ACE) satellite were used to characterize these two SWT events as being a sector boundary crossing (SBC) on 24 September 2013, and an interplanetary coronal mass ejection (ICME) in conjunction with a shock on 2 October 2013. Associated with these events, the twin Van Allen Probes measured a depletion of the outer belt relativistic electron flux concurrent with magnetic and electric field power spectra consistent with ULF waves. Two ground-based observatories apart in 90° longitude also showed evidence of ULF-wave activity for the two SWT events. Magnetohydrodynamic (MHD) simulation results show that the ULF-like oscillations in the modeled electric and magnetic fields observed during both events are a result from the SWT coupling to the magnetosphere. The analysis of the MHD simulation results together with the observations leads to the conclusion that the two SWT structures analyzed in this article can be geoeffective on different levels, with each one leading to distinct ring current intensities, but both SWTs are related to the same disturbance in the outer radiation belt, i.e. a dropout in the relativistic electron fluxes. Therefore, minor disturbances in the solar wind parameters, such as those related to an SBC, may initiate physical processes that are able to be geoeffective for the outer radiation belt.  相似文献   

16.
G.L. Siscoe 《Icarus》1975,24(3):311-324
In 1985 the spin axis of Uranus points within 10° of the Sun and the planet's position is very near the solar apex direction. A Uranus mission with an encounter near 1985 might expect to measure the unusual particle and field configuration of a “pole-on” magnetosphere and also properties of the interstellar medium. We give here estimates of the particle and field environment of Uranus based on extrapolation of solar wind data from 1 AU and on scaling relations for an Earth-type magnetosphere. Since the magnetic moment of Uranus is unknown, all magnetospheric parameters are derived as a function of the dipole strength. The onset of special magnetospheric properties are identified as the dipole moment increases from small to large values. A fairly complete set of magnetospheric parameters is given for a specific dipole moment to illustrate the case of a large moment.  相似文献   

17.
Magnetic flux ropes are characterized by coherently twisted magnetic field lines, which are ubiquitous in magnetized plasmas. As the core structure of various eruptive phenomena in the solar atmosphere, flux ropes hold the key to understanding the physical mechanisms of solar eruptions,which impact the heliosphere and planetary atmospheres. The strongest disturbances in the Earth's space environments are often associated with large-scale flux ropes from the Sun colliding with the Earth's magnetosphere, leading to adverse, sometimes catastrophic, space-weather effects. However, it remains elusive as to how a flux rope forms and evolves toward eruption, and how it is structured and embedded in the ambient field. The present paper addresses these important questions by reviewing current understandings of coronal flux ropes from an observer's perspective, with an emphasis on their structures and nascent evolution toward solar eruptions, as achieved by combining observations of both remote sensing and in-situ detection with modeling and simulation. This paper highlights an initiation mechanism for coronal mass ejections(CMEs) in which plasmoids in current sheets coalesce into a 'seed' flux rope whose subsequent evolution into a CME is consistent with the standard model, thereby bridging the gap between microscale and macroscale dynamics.  相似文献   

18.
S Massetti  S Orsini  A Mura  H Lammer 《Icarus》2003,166(2):229-237
The presence of a magnetosphere around Mercury plays a fundamental role on the way the solar wind plasma interacts with the planet. Since the observations suggest that Mercury should occupy a large fraction of its magnetosphere and because of lack of an atmosphere, significant differences in solar wind-magnetosphere coupling are expected to exist with respect to the Earth case. On the basis of a modified Tsyganenko T96 model we describe the geometry of the magnetic field that could characterize Mercury, and its response to the variations of the impinging solar wind and of the interplanetary magnetic field. The investigation is focused on the shape and dimension of the open magnetic field regions (cusps) that allow the direct penetration of magnetosheath plasma through the exosphere of Mercury, down to its surface. The precipitating particle flux and energy are evaluated as a function of the open field line position, according to different solar wind conditions. A target of this study is the evaluation of the sputtered particles from the crust of the planet, and their contribution to the exospheric neutral particle populations. Such estimates are valuable in the frame of a neutral particle analyser to be proposed on board of the ESA/BepiColombo mission.  相似文献   

19.
We discuss the results of our simultaneous observations of interplanetary and geomagnetic field fluctuations as well as solar wind parameters and meter radio emission in near-Earth space at mid-latitudes (near Kharkov) based on ground measurements before and during a unique magnetic storm on October 22, 1999. The electron flux dynamics in interplanetary space, geostationary orbit, and the magnetosphere is analyzed to find the interconnection with UHF radio background bursts at a frequency of 151 MHz. We conclude that the acceleration processes in the inner magnetospheric layers affect the generation processes of high-frequency radio bursts and that this phenomenon should be studied further using the SINP (MSU) instruments onboard the CORONAS-F satellite.  相似文献   

20.
The giant planetary magnetospheres surrounding Jupiter and Saturn respond in quite different ways, compared to Earth, to changes in upstream solar wind conditions. Spacecraft have visited Jupiter and Saturn during both solar cycle minima and maxima. In this paper we explore the large-scale structure of the interplanetary magnetic field (IMF) upstream of Saturn and Jupiter as a function of solar cycle, deduced from solar wind observations by spacecraft and from models. We show the distributions of solar wind dynamic pressure and IMF azimuthal and meridional angles over the changing solar cycle conditions, detailing how they compare to Parker predictions and to our general understanding of expected heliospheric structure at 5 and 9 AU. We explore how Jupiter’s and Saturn’s magnetospheric dynamics respond to varying solar wind driving over a solar cycle under varying Mach number regimes, and consider how changing dayside coupling can have a direct effect on the nightside magnetospheric response. We also address how solar UV flux variability over a solar cycle influences the plasma and neutral tori in the inner magnetospheres of Jupiter and Saturn, and estimate the solar cycle effects on internally driven magnetospheric dynamics. We conclude by commenting on the effects of the solar cycle in the release of heavy ion plasma into the heliosphere, ultimately derived from the moons of Jupiter and Saturn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号