首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mesoproterozoic Upper Kaimur Group consists of Bijaigarh Shale, Scarp Sandstone, and Dhandraul Sandstone. Based on the lithofacies data set, two major facies associations were identified, namely—tidal sand flat/sand bar facies association (TSFA) and tidally influenced fluvial channel facies/tidal channel facies association (TIFCFA). The Dhandraul Sandstone has been interpreted as a product of TIFCFA and the underlying Scarp Sandstone in TSFA which endorses a tidal dominated estuarine setting. Detrital modes of the Dhandraul and Scarp Sandstones fall in the quartz arenite to sub-litharenite types. Petrographical data suggest that the deposition of the Upper Kaimur Group sandstones took place in humid climate and was derived from mixed provenances. The sandstone composition suggests detritus from igneous rocks, metamorphic rocks, and recycled sedimentary rocks. The sandstone tectonic discrimination diagrams suggest that the provenances of the Upper Kaimur Group sandstones were continental block, recycled orogen, rifted continental margin to quartzose recycled tectonic regimes. It is envisaged that the Paleo- and Mesoproterozoic granite, granodiorite, gneiss, and metasedimentary rocks of Mahakoshal Group and Chotanagpur granite–gneiss present in the western and northwestern direction are the possible source rocks for the Upper Kaimur Group in the Son Valley.  相似文献   

2.
The provenance and depositional setting of Paleogene turbidite sediments from the southern Aegean are investigated using petrography and whole-rock geochemistry. Petrography indicates that Karpathos Island turbidites are consisting of compositionally immature sandstones (graywackes–litharenites) derived from igneous (plutonic–volcanic), sedimentary, low-grade metamorphic and ophiolitic sources. The studied sediments probably reflect a mixing from an eroded magmatic arc and from quartzose, recycled sources. Major and trace element data are compatible with an acidic to mixed felsic/basic source along with input of ultramafic detritus and recycling of older sedimentary components. Geochemical data also reveal that the sediments have undergone a minor degree of weathering and no significant sediment recycling. Chondrite-normalized REE plots show a light REE enrichment (LaN/YbN ca. 7) and absence of significant negative Eu anomalies, indicating provenance from young undifferentiated arc material with contribution from an old upper continental crust source. Turbidite sedimentation probably took place in a continental island arc depositional setting as a result of subduction of a branch of Neotethys beneath a continental fragment of the Anatolide domain in Early Tertiary times. The relation of Karpathos turbidites with the Pindos foreland basin (Gavrovo and Ionian Zones of western Greece) remains problematic.  相似文献   

3.
The Zoumi Basin was generated in a collisional tectonic setting during the Lower-Middle Miocene. The syn-orogenic flysch deposits of the basin have been well investigated by petrographic and geochemical studies to characterize the composition, source to sink routing system, and tectonic setting of the Zoumi flysch. Forty-three sandstone samples and 45 mudstone samples have been gathered from six measured stratigraphic sections. These samples have been analyzed using XRD, XRF, inductively coupled plasma-mass spectrometry (ICP-MS) for mudrocks and petrographic investigation for sandstones. The Lower-Middle Miocene Zoumi flysch is defined as sublitharenites and quartzarenites according to mineralogical content. Detrital grains are commonly subangular to subrounded, poorly sorted, and rich in quartz grains. Point counting modal analysis leads to craton interior and recycled orogen provenance with significant first-cycle sediment supply and low sedimentary recycling. Several chemical ratios (Al2O3/TiO2, La/Th, Cr/Th, Th/Sc, Zr/Sc) as well as chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomaly suggest a dominant felsic rock sources. However, V-Ni-La*4, V-Ni-Th*10, and Th/Sc vs. Cr/Th plots do not exclude a mafic supply source nature which is evidenced by numerous ophiolitic outcrops scattered throughout the Mesorifan Subdomain (Mesorifan Ophiolitic Suture Zone).  相似文献   

4.
Lower Jurassic sandstones of Shemshak Formation of Kerman basin, central Iran were analyzed for major and select trace elements to infer their provenance, palaeoweathering of source rocks and tectonic setting. Average modal framework components (Qt: F: L= 67.25: 2.41: 30.48) and chemical composition of the sandstones classify them as litharenites. The sandstones are quartz-rich (~ 67% quartz; 75.34 wt.% SiO2) and derived from a recycled orogen composed of quartzose sedimentary rocks. Average CIA, PIA and CIW values (69%, 76% and 80%, respectively) indicate moderate to intense chemical weathering of the source material. The inferred index of weathering/alteration is the sum total of intensities of weathering witnessed by the lithocomponents during atleast two cycles of sedimentation involving (1) chemical weathering of the source rocks («ultimate» granodiorite source and «proximal» quartzose sedimentary source), (2) chemical weathering during fluvial transport of the detritus, (3) chemical weathering of the detritus in depocenters, and (4) chemical weathering during diagenesis. Sandstones exhibit moderate maturity and were deposited under humid climatic conditions. Plots of the chemical analyses data on tectonic setting discrimination diagrams indicate active continental margin setting, which is in agreement with the tectonic evolutionary history of the Central Iran during Jurassic period.  相似文献   

5.
The Lishui Sag, in the East China Sea Shelf Basin, is rich in hydrocarbons, with the major hydrocarbon-bearing layers being the Paleocene Mingyuefeng clastic rocks. Analysis of the implicit geologic background information of these Paleocene clastic rocks using petrological and geochemical methods has significant practical importance. These Paleocene sandstones are mainly lithic arenite, lithic arkose and greywacke, composed of K-feldspar, plagioclase, authigenic clays, silica and carbonates. As continental deposits, Yueguifeng clastic rocks have high aluminosilicate and mafic detritus contents, while the Lingfeng and Mingyuefeng Formations are rich in silica due to an oscillating coastal marine depositional environment. The major element contents of these Paleocene sandstones are low and have a concentrated distribution, indicating that the geochemical composition is non-epigenetic, transformed by sedimentary processes and diagenesis. The Yueguifeng detritus comprises recycled sediments, controlled by moderate weathering and erosion, while the Lingfeng and Mingyuefeng detritus is interpreted as primarily first-cycle materials due to low chemical weathering. In the Late Cretaceous to Early Paleocene, the Pacific Plate began subducting under the Eurasian Plate, causing an orogeny by plate collision and magma eruption due to the melting of subducted oceanic crust. This resulted in the dual tectonic settings of “active margin” and “continental island arc” in the East China Sea Shelf Basin. During the Late Paleocene, the Pacific Plate margin migrated eastward along with development of the Philippine Ocean Plate, and the tectonic setting of the Lishui Sag gradually turned into a passive continental margin. Detrital sources included both orogenic continental blocks and continental island arcs, and the parent rocks are primarily felsic volcanic rocks and granites.  相似文献   

6.
Numerous auriferous fluvial quartz pebble conglomerates (QPCs) are present within the Late Cretaceous–Recent sedimentary sequence in southern New Zealand. The QPCs formed in low-relief settings before, during, and after regional marine transgression, in alluvial fan and a variety of fluvial and near-shore depositional settings: In particular, during slow thermal subsidence associated with Late Cretaceous–early Cenozoic rifting, and during the early stages of orogenic uplift following mid Cenozoic marine regression. QPC maturity characteristics are complex and vary with sediment transport and recycling history, stratigraphic proximity to the transgressive Waipounamu Erosion Surface, and the amount of first-cycle detritus incorporated during recycling. For pre-marine QPCs, the amount of first cycle detritus varies with tectonic intensity and proximity of the depositional setting to remnant Cretaceous topography. For post-marine QPCs, it varies with tectonic intensity and proximity to Late Cenozoic uplift of basement ranges.QPCs do not form during a single bedrock erosion–sediment deposition cycle: Non-oxidised and/or oxidized groundwater alteration (kaolinisation) of labile minerals in immature sediment and the upper part of underlying basement, and repeated sedimentary recycling, are fundamental processes of QPC formation regardless of the tectonic or sedimentary settings. Altered immature rock disaggregates easily upon erosion, and alteration clays are winnowed to leave quartz-rich residues containing resistant heavy minerals such as zircon and gold. Detrital sulfide survives recycling if deposition and burial in saturated sediments are rapid. QPCs result only if sediment recycling is not accompanied by excessive erosion of fresh basement rock. Uplift of many parts of the Otago Schist belt since late Miocene has raised rocks above the water table, increased erosion rates, and inhibited groundwater alteration and QPC formation. QPC formation is still occurring in Southland, where the water table is high, sediments are saturated and undergoing alteration, and uplift and erosion rates, topography, and fluvial gradients are all low. The QPCs accumulate as residual gravel on the valley floors of low-competence streams that are slowly incising pervasively altered dominantly late Miocene–Pliocene immature conglomerates.QPCs formation essentially represents physical and chemical lagging of precursor strata. Accumulation of detrital gold and other heavy minerals is an inevitable consequence, and most QPCs contain some gold. Three types of significant gold placer have developed in the QPCs. Type 1 placers are essentially eluvial and/or colluvial in origin and form without significant fluvial transport, by residual accumulation in low-competence valleys during low-rate uplift, fluvial incision and QPC formation. Type 2 placers have formed during significant fluvial transport and subsequent fluvial incision, mainly in higher energy proximal and medial reaches of larger pre-marine (Eocene) and post-marine fluvial systems. Type 3 placers formed by wave-base and marine current winnowing in the shallow shelf setting during low-rate regional marine transgression, especially in the Eocene.  相似文献   

7.
The SE margin of the Yangtze Block, South China is composed of the Mesoproterozoic Lengjiaxi Group and the Neoproterozoic Banxi Group, with Sinian- and post-Sinian-cover. A geochemical study was undertaken on the Mesoproterozoic–Neoproterozoic clastic sediments in order to delineate the characteristics of the sediment source and to constrain the tectonic development and crustal evolution of South China.Our results show that the Mesoproterozoic clastic sediments have a dominant component derived from a metavolcanic-plutonic terrane, with a large of mafic component. There is a minor contribution of mafic rocks and older upper crustal rocks to the provenance. Strong chemical weathering in the source area occurred before transport and deposition. The provenance for the Neoproterozoic clastic sediments was most likely old upper continental crust composed of tonalite–granodiorite-dominated, tonalite–granodiorite–granite source rocks, which had undergone strong weathering and/or recycling. A minor component of older K-rich granitic plutonic rocks and younger volcanogenic bimodal rocks is also indicated.Based on the regional geology, the geochemical data and the inferred provenance, the Mesoproterozoic Group is interpreted as a successive sedimentary sequence, deposited in an extensional/rifting back-arc basin, adjacent to a >1.80 Ga continental margin arc-terrane. The progressive extension/rifting of the back-arc basin was followed by increasing subsidence and regional uplift during continental marginal arc-continent (the Cathaysian Block) collision at 1.0 Ga caused the deposition of the Neoproterozoic Group into back-arc to retro-arc foreland basin. Therefore, the depositional setting of the Proterozoic clastic sediments and associated volcanic rocks within the back-arc basin reflected basin development from an active continental margin (back-arc basin), with extension or rifting of the back-arc basin, to a passive continental margin.  相似文献   

8.
The Crocker Fan of Sabah was deposited during subduction of the Proto-South China Sea between the Eocene and Early Miocene. Collision of South China microcontinental blocks with Borneo in the Early Miocene terminated deep water sedimentation and resulted in the major regional Top Crocker Unconformity (TCU). Sedimentation of fluvio-deltaic and shallow marine character resumed in the late Early Miocene. The Crocker Fan sandstones were derived from nearby sources in Borneo and nearby SE Asia, rather than distant Asian and Himalayan sources. The Crocker Fan sandstones have a mature composition, but their textures and heavy mineralogy indicate they are first-cycle sandstones, mostly derived from nearby granitic source rocks, with some input of metamorphic, sedimentary and ophiolitic material. The discrepancy between compositional maturity and textural immaturity is attributed to the effects of tropical weathering. U–Pb ages of detrital zircons are predominantly Mesozoic. In the Eocene sandstones Cretaceous zircons dominate and suggest derivation from granites of the Schwaner Mountains of southern Borneo. In Oligocene sandstones Permian–Triassic and Palaeoproterozoic zircons become more important, and are interpreted to be derived from Permian–Triassic granites and Proterozoic basement of the Malay Tin Belt. Miocene fluvio-deltaic and shallow marine sandstones above the TCU were mostly recycled from the deformed Crocker Fan in the rising central mountain range of Borneo. The provenance of the Tajau Sandstone Member of the Lower Miocene Kudat Formation in north Sabah is strikingly different from other Miocene and older sandstones. Sediment was derived mainly from granitic and high-grade metamorphic source rocks. No such rocks existed in Borneo during the Early Miocene, but potential sources are present on Palawan, to the north of Borneo. They represent continental crust from South China and subduction-related metamorphic rocks which formed an elevated region in the Early Miocene which briefly supplied sediment to north Sabah.  相似文献   

9.
The Neoproterozoic Bhander Group in the Son Valley, central India conformably overlying the Rewa Group, is the uppermost subdivision of the Vindhyan Supergroup dominantly composed of arenites, carbonates and shales. In Maihar-Nagod area, a thick pile of unmetamorphosed clastic sedimentary rocks of Bhander Group is exposed, which provides a unique opportunity to study Neoproterozoic basin development through provenance and tectonic interpretations. The provenance discrimination and tectonic setting interpretations are based on modal analysis and whole rock geochemistry. The average framework composition of the detrital sediments composed of quartz and sedimentary lithic fragments are classified as quartz arenite to sublitharenite. The sandstone geochemically reflects high SiO2, moderate Al2O3 and low CaO and Na2O type arenite. The high concentration of HFSE such as Zr, Hf, and Th/Sc, Th/U ratios in these sandstones indicate a mixed provenance. The chondrite normalized REE pattern shows moderate to strong negative Eu anomaly which suggests that major part of the sediments were derived from the granitic source area. The sandstone tectonic discrimination diagrams and various geochemical plots suggest that the provenance of the lower and upper Bhander sandstone formations was continental interior to recycled orogen.  相似文献   

10.
During the Variscan orogeny in Central Europe, partial melting in the lower continental crust formed granitic magmas, which intruded into the upper crust and left compounds of Ca (plus Eu2+), Mg, etc. in the lower crust. From the late Paleozoic decomposition of the tonalitic upper crust, sedimentary graywackes were produced reflecting the composition of this crust. The repeated reworking of the sedimentary cover caused the formation of sands. Sandstones as their products of consolidation contain increasing fractions of quartz and decreasing feldspar from Carboniferous and Triassic to Cretaceous age. A distinct negative Eu anomaly characterizes the majority of these rocks. The latter is imprinted by the Variscan magmatism. Quartz as used for numerous Medieval wood ash glasses is marked for its Central European origin by a distinct negative Eu anomaly in contrast to many soda glasses produced outside Germany mostly with a small or none Eu anomaly.  相似文献   

11.
At Mo Hin Khao on the western flank of Khorat Plateau, Thailand, the Phra Wihan Formation reveals litharenite and sublitharenite with some subarkose and arkose. A cuesta in the eroded sedimentary sequence exhibits spectacular rock pillars of considerable geotourist potential. The rock sequence is high in silica (SiO2 67–98 wt%) and contains quartz, mica, magnetite, chert fragments and accessory minerals such as zircon and tourmaline and amphibole species. These accessory minerals suggest felsic rocks, such as granite, granodiorite and pegmatite, were sources for the sandstones. Geochemical analyses of the sedimentary sequence suggest that source rocks may lie in the passive continental margin, before sediment transport and deposition in the Khorat Basin by rivers flowing across a large flood plain. Many depositional sequences/episodes formed thick beds of cross bedded clastic rocks. A high average maturity index (>5) indicates sedimentary reworking/recycling. Chemical Index of Alteration (CIA) values range from 47 to 98, suggesting variable chemical weathering within the source area rocks, largely representing moderate to high degrees of weathering. The average CIA value of these sediments (78) suggests that relatively extreme alteration factors were involved.  相似文献   

12.
Provenance studies on Early to Middle Ordovician clastic formations of the southern Puna basin in north-western Argentina indicate that the sedimentary detritus is generally composed of reworked crustal material. Tremadoc quartz-rich turbidites (Tolar Chico Formation, mean composition Qt89 F7 L4) are followed by volcaniclastic rocks and greywackes (Tolillar Formation, mean Qt33 F42 L25). These are in turn overlain by volcaniclastic deposits (mean Qt24 F30 L46) of the Diablo Formation (late Arenig–early Llanvirn) that are intercalated by lava flows. All units were deformed in the Oclóyic Orogeny during the Middle and Late Ordovician. Sandstones of the Tolar Chico Formation are characterized by Th/Sc ratios > 1, La/Sc ratios ≈ 10, whereas associated fine-grained wackes show slightly lower values for both ratios. LREE (light rare earth elements) enrichment of the arenites is ≈ 50× chondrite, Eu/Eu* values are between 0·72 and 0·92, and flat HREE (heavy rare earth elements) patterns indicate a derivation from mostly felsic rocks of typical upper crustal composition. The εNd(t = sed) values scatter around −11 to −9. The calculated Nd-TDM residence ages vary between 1·8 and 2·0 Ga indicating contribution by a Palaeoproterozoic crustal component. The Th/Sc and La/Sc ratios of the Tolillar Formation are lower than those of the Tolar Chico Formation. Normalized REE (rare earth elements) patterns display a similar shape to PAAS (post-Archaean average Australian shale) but with higher abundances of HREEs. Eu/Eu* values range between 0·44 and 1·17, where the higher values reflect the abundance of plagioclase and feldspar-bearing volcanic lithoclasts. Average εNd(t = sed) values are less negative at −5·1, and Nd-TDM are lower at 1·6 Ga. This is consistent with characteristics of regional rocks of upper continental crust composition, which most probably represent the sources of the studied detritus. The rocks of the Diablo Formation have the lowest Th/Sc and La/Sc ratios, lower LREE abundances than the average continental crust and are slightly enriched in HREEs. Eu/Eu* values are between 0·63 and 1·17. The Nd isotopes (εNd(t = sed) = −3 to −1; TDM = 1·2 Ga) indicate that one source component was less fractionated than both the underlying Early Ordovician and the overlying Middle Ordovician units. Synsedimentary vulcanites in the Diablo Formation show the same isotopic composition. Our data indicate that the sedimentary detritus is generally composed of reworked crustal material, but that the Diablo Formation appears to contain ≈ 80% of a less fractionated component, derived from a contemporaneous continental volcanic arc. There are no data indicating an exotic detrital source or the accretion of an exotic block at this part of the Gondwana margin during the Ordovician.  相似文献   

13.
The formation and evolution of continental crust in the Early Earth are of fundamental importance in understanding the emergence of continents, their assembly into supercontinents and evolution of life and environment. The Dharwar Craton in southern India is among the major Archean cratons of the world, where recent studies have shown that the craton formation involved the assembly of several micro-continents during Meso- to Neoarchean through subduction-accretion-collision processes. Here we report U-Pb-Hf isotope data from detrital zircons in a suite of metasediments (including quartz mica schist, fuchsite quartzite and metapelite) from the southern domain of the Chitradurga suture zone that marks the boundary between the Western and Central Dharwar Craton. Morphology and internal structure of the zircon grains suggest that the dominant population was derived from proximal granitic (felsic) sources. Zircon U-Pb data are grouped into Paleo-Mesoarchean and Neoarchean to Paleoproterozoic with peaks at 3227 Ma and 2575 Ma. The age spectra of detrital zircon grains, in combination with the Lu-Hf isotopic analyses indicate sediment provenance from magmatic sources with model ages in the range of ca. 3.67 to 2.75 Ga. A transition from dominantly juvenile to a mixture of juvenile and recycled crustal components indicate progressive crustal maturity. The results from this study suggest major crustal growth events during ca. 3.2 Ga and 2.6 Ga in Dharwar. Our study provides insights into continental emergence, weathering and detrital input through river drainage systems into the trench during Eoarchean to Mesoarchean.  相似文献   

14.
扫描电镜定量分析沉积物矿物组合的方法,可以快速准确得到大量详细的矿物组合、矿物颗粒大小和岩屑组成等信息。尝试利用这一方法,研究渭河流域现代河流样品的矿物组合和沉积物碎屑组分,探究其在沉积物源示踪上的应用。研究表明,渭河流域现代沉积重矿物组合主要以角闪石、帘石类矿物和石榴石为主,不同区域沉积物矿物组合通过主成分分析图表(Principal Component Analysis,PCA)可以较好地区分开。轻矿物以石英和长石为主。碎屑组分石英—长石—岩屑(QFL)三角图解显示渭河干流和流经鄂尔多斯高原的两大主要支流北洛河和泾河的沉积物碎屑组分,主要位于再旋回造山带区域;而北秦岭山前河流沉积碎屑组分则主要位于岩浆岛弧区域。这一结果符合区域地质构造背景,表明扫描电镜定量分析手段可很好地应用于沉积物碎屑组分QFL三角图解、重矿物组合物源示踪研究。  相似文献   

15.
The chemical and mineralogical composition of the Sidi Aïch Formation sandstones in central and southwestern Tunisia has been investigated in order to infer the provenance and tectonic setting, as well as to appraise the influence of weathering. The sixteen studied samples are mainly composed of quartz, feldspar, kaolinite and/or illite. Sidi Aïch sandstones are mainly arkosic, potassic feldspar-rich and immature. Much of the feldspar was transformed to kaolinite. Concerning the relation between sandstone detrital composition and their depositional setting, the Sidi Aïch Formation sandstone in the major studied localities, probably accumulated in relatively proximal small basins within the continental interior. However, for the Khanguet El Ouara study site, sandstones may have been deposited in a foreland basin which received recycled sediments from an adjacent orogenic belt.The source area may have included quartzose sedimentary rocks. The dominance of quartz and enrichment in immobile elements suggest that the depositional basins were associated with a passive margin. The petrography and geochemistry reflect a stable continental margin and sediments were derived from granitic and pegmatitic sources located in the southern parts of the Gafsa basin. High values for the chemical index of alteration (CIA) indicate that recycling processes might have been important. Particularly high CIA values in the Garet Hadid locality indicate more intense chemical alteration, either due to weathering processes or tectonic control.  相似文献   

16.
Petrographical and geochemical studies of Silurian Niur sandstones, Derenjal Mountains, Central Iran, were carried out to infer their provenance and tectonic setting. Modal analysis data of 37 medium sand size and well-sorted samples revealed that most quartz is composed of monocrystalline grains with straight to slightly undulos extinction and about 3 % polycrystalline quartz has inclusions, such as rutile needles. The sandstones are classified as quartzarenite, sublitharenite, and subarkose types based on framework composition and geochemistry. Petrographic studies reveal that these sandstones contain quartz, feldspars, and fragments of sedimentary rocks. The detrital modes of these sandstones indicate that they were derived from recycled orogen and stable cratonic source. Major and trace element contents of them are generally depleted (except SiO2) relative to upper continental crust which is mainly due to the presence of quartz and absence of Al-bearing minerals. Modal composition (e.g., quartz, feldspar, and lithic fragments) and discrimination diagrams based on major elements, trace elements (Ti, La, Th, Sc, and Zr), and also such ratios as La/Sc, Th/Sc, La/Co, and Th/Co, in sandstones suggest a felsic igneous source rock and quartzose polycyclic sedimentary provenance in a passive continental margin setting. Furthermore, high Zr/Sc values in these sandstones are considered as a sign of recycling. We indicated paleo-weathering conditions by modal compositions, the CIA index and Al2O3?+?K2O?+?Na2O% vs. SiO2% bivariate for these sandstones. Based on these results, although recycling is important to increase the maturity of the Niur sandstones, humid climate conditions in the source area have played a decisive role.  相似文献   

17.
The petrography and geochemistry (major, trace, and rare earth elements) of clastic sedimentary rocks from the Paleogene Dainan Formation (E2 d) in the North Jiangsu Basin, eastern China, are investigated to trace their provenance and to constrain their tectonic setting. The studied samples are characterized by LREE enrichment, flat HREE, and negative Eu anomaly similar to the upper continental crust composed chiefly of felsic components in the source area. Petrographic observation indicates that the sandstones contain predominant metamorphic and sedimentary clasts that were derived from peripheral recycled orogen and intrabasinal materials. The trace element ratios (Co/Th, La/Sc, La/Th, and Th/U) and the La-Th-Sc ternary plot further confirm that the sandstones are derived from granitic gneiss sources from recycled orogen and the intrabasinal mixed sedimentary provenance. The granitic gneiss source rocks may have derived from the Proterozoic granitic gneiss denuded in the eastern Dabie-Sulu orogen; and the intrabasinal provenance may come from the underlying strata during the Late Paleocene Wubao movement. The chemical index of alteration (CIA) and A-CN-K plot show that these source rocks may have experienced weak to medium chemical weathering. Analysis on tectonic setting of the source area suggests an active continental margin, which is intimate with tectonic feature of the Dabie-sulu orogen and the Yangtze block. In summary, we suggest that the North Jiangsu Basin is an ideal site for the study of the coupling between the uplift of the orogen and the subsidence of the foreland basin.  相似文献   

18.
In Central Iran, the mixed siliciclastic?carbonate Nakhlak Group of Triassic age is commonly seen to have a Cimmerian affinity, although it shows considerable resemblances with the Triassic Aghdarband Group in far northeastern Iran, east of Kopeh-Dagh area, with Eurasian affinity. The Nakhlak Group is composed of the Alam (Late Olenekian?Anisian), Baqoroq (Late Anisian??Early Ladinian), and Ashin (Ladinian??Early Carnian) formations consisting mainly of volcanoclastic sandstone and shale and fossiliferous limestone. The Baqoroq Formation contains also metamorphic detritus. Sandstone petrofacies reflect the detrital evolution from active volcanism to growing orogen and again active volcanism. Textural and modal analyses of volcanic lithic fragments from the Alam Formation reflect the eruption style and magma composition of a felsic to intermediate syn-sedimentary arc activity. The detrital modes of the Baqoroq Formation sediments suggest a recycled orogenic source followed by arc activity in a remnant fore-arc basin. The sandstone samples from the Ashin Formation demonstrate a continuity of felsic to intermediate arc activity. Major and trace element concentrations of the Nakhlak Group clastic samples support sediment supply from first-cycle material and felsic magmatic arc input. The enrichment in LREE, the negative Eu anomalies, and the flat HREE patterns indicate origination from the old upper continental crust and young arc material. The chemical index of alteration (CIA ~51–70 for sandstone and 64–76 for shale samples) indicates medium degrees of chemical weathering at the source. Petrographical and geochemical evidence together with facies analysis constructed the following depositional conditions for the Nakhlak Group sediments: In the Olenekian, a fore-arc shallow to deep marine depositional basin developed that later was filled by recycled and arc-related detritus and changed into a continental basin in the Anisian. Ladinian extension let to a deepening of the basin. With respect to the similarities between the Nakhlak and Aghdarband (NE Iran) groups and unusual present-day position of the Nakhlak Group with no stratigraphic connection to the surrounding area, the development of first a fore-arc basin and later change into a back-arc depositional basin in close relation with the Aghdarband basin at the southern Eurasian active margin in the Triassic are here proposed. Understanding the basin development recorded in the Nakhlak Group provides constraints on the closure history of Palaeotethys and of the tectonic evolution of early Mesozoic basins at the southern Eurasian margin before the Cimmerian Orogeny.  相似文献   

19.
ABSTRACT

The Sawtooth Metamorphic Complex (SMC) of central Idaho contains exposures of metasupracrustal rocks, in a crucial location between the Archaean Wyoming craton to the east and the adjacent Mesozoic terranes to the west, that provide constraints on Precambrian crustal evolution in the northwestern United States. Mineral textures, whole-rock geochemistry, and thermobarometry of calc-silicate gneisses record multiple stages of crustal evolution, including protolith deposition, burial and multiple metamorphic and deformational overprints. Whole-rock signatures are consistent with derivation from post-Archaean, continental sources that have undergone sedimentary maturation and recycling typical of clastic sedimentation in passive-margin environments and with a metamorphosed sequence of calcareous sandstones and marls, containing varying proportions of clay and quartzo-feldspathic detritus. The sandstone-to-marl continuum may reflect a shallow-to-deep water transition in the depositional environment of the calc-silicate protoliths. Two metamorphic events and three deformational events are preserved. The assemblage clinopyroxene + quartz + plagioclase + K-feldspar + rutile represents peak metamorphic conditions (M1), estimated at 750–775°C with relatively oxidized metamorphic fluids, during development of D1a foliation. Deformation twinning in clinopyroxene records a widespread, high strain D1b event at high temperature. A second static thermal event (M2), associated with randomly oriented amphiboles overprinting M1 and D1b features, records conditions of ~550–725°C and H2O-rich fluids. Late-stage, brittle–ductile D2 deformation is characterized by mylonitic lenses of quartz, fractures within M1 clinopyroxenes that crosscut D1b deformation twins, and localized fracturing of M2 amphiboles. Geochemical and mineral chemical signatures of SMC calc-silicates preserve fingerprints of the original protolith through burial to mid-crustal conditions and high-grade metamorphism and suggest crustal thickening to about 20 km. The SMC may reflect rocks at depth beneath the Idaho batholith. These data, indicative of newly recognized post-Archaean terrain with passive-margin, continental sediments suggest that a continuous Cordilleran passive margin sequence may have extended along the western edge of Laurentia.  相似文献   

20.
《China Geology》2019,2(2):169-178
A comparative comparative study on the detrital mineral composition of stream sediments of the Yangtze River (Changjiang) and Yellow River (Huanghe) shows that, light minerals of the Yangtze River basin were mainly quartz, feldspar, and detritus, the compositional characteristics of light minerals differed among tributaries, the main stream had a generally higher maturity index than tributaries; heavy mineral content tended to decrease progressively from the upper stream to lower stream of the Yangtze River, the primary assemblage was magnetite-hornblende-augite-garnet-epidote, and diagnostic minerals of different river basins were capable of indicating the nature and distribution of the source rock. Detrital mineral assemblages in sediments of tributaries and the main stream of the Yellow River were basically similar, Primary heavy mineral assemblage was opaque mineral-garnet-epidote-carbonate mineral and alteration mineral. Variations in the contents of garnet, opaque mineral, and hornblende mainly reflected the degree of sedimentary differentiation in suspended sediment and the hydrodynamic intensity of a drainage system. The heavy mineral differentiation index F revealed sedimentary differentiation of diagnostic detrital mineral composition due to changes in regional hydrodynamic intensity and can serve as an indicator for studying the dynamic sedimentary environment of a single-provenance river and the degree of sedimentary differentiation of its detrital minerals. Changes in detrital mineral content of the Yellow River was not completely controlled by provenance but reflected gravity sorting of the detrital mineral due to variations in the ephemeral river hydrodynamic intensity and sedimentary environment, however the index changing of Yangtze River were mainly influenced by the complex sediment sources. Therefore caution must be exercised in using the detrital mineral composition of marginal sea to determine the contribution of the Yangtze River and Yellow River.© 2019 China Geology Editorial Office.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号