首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kah LC  Knoll AH 《Geology》1996,24(1):79-82
Silicified carbonates of the late Mesoproterozoic to early Neoproterozoic Society Cliffs Formation, Baffin Island, contain distinctive microfabrics and microbenthic assemblages whose paleo-environmental distribution within the formation parallels the distribution of these elements through Proterozoic time. In the Society Cliffs Formation, restricted carbonates--including microdigitate stromatolites, laminated tufa, and tufted microbial mats--consist predominantly of synsedimentary cements; these facies and the cyanobacterial fossils they contain are common in Paleoproterozoic successions but rare in Neoproterozoic and younger rocks. Less restricted tidal-flat facies in the formation are composed of laminated microbialites dominated by micritic carbonate lithified early, yet demonstrably after compaction; these strata contain cyanobacteria that are characteristic in Neoproterozoic rocks. Within the formation, the facies-dependent distribution of microbial populations reflects both the style and timing of carbonate deposition because of the strong substrate specificity of benthic cyanobacteria. A reasonable conclusion is that secular changes in microbenthic assemblages through Proterozoic time reflect a decrease in the overall representation of rapidly lithified carbonate substrates in younger peritidal environments, as well as concomitant changes in the taphonomic window of silicification through which early life is observed.  相似文献   

2.
Phototrophic mats (microbial mats with a phototrophic top layer) are complex systems in terms of microbial diversity, biogeochemical cycles and organic matter (OM) turnover. It has been proposed that these mats were a predominant life form in Proterozoic shallow water settings, prior to the emergence of bioturbating organisms in the Ediacaran–Cambrian transition. For most of the Precambrian, microbial mats were not only quantitative important carbon fixing systems, but also influenced the transfer and transformation of OM before it entered the geosphere. The profound alteration of compound inventories during transit through microbial mats, implying substantial consequences for OM preservation in the Proterozoic, was recently proposed as a “mat-seal effect” [Pawlowska et al. (2012) Geology 41, 103–106]. To obtain a better understanding of the early diagenetic fate of primary produced OM in microbial mats, we studied a recent calcifying mat from a hypersaline lake in Kiritimati, which showed in the deeper mat layers a maximum 14Ccarbonate age of ∼1500 years. We particularly focused on OM entrapped in the carbonate matrix, because of the better potential of such biomineral-encapsulated OM to reach the geosphere before degradation (and remineralization). Our data indicate that selective preservation is important in phototrophic mats. While a diagenetic transformation of lipid fatty acids (FAs) was evident, their fatty acyl-derived hydrocarbon moieties were not introduced into protokerogen, which was instead mainly comprised of cyanobacterial and/or algal biomacromolecules. Our data support the proposed major impact of the “mat-seal effect” on OM turnover and preservation; i.e. the suppression of biosignatures derived from the upper mat layers, while signals of heterotrophic microbes thriving in deeper mat layers become preferentially preserved (e.g. high hopane/sterane ratios). This mechanism may have broad consequences for the interpretation of biomarkers from Proterozoic shelf environments, because biosignatures of phototrophic mat dwellers as well as planktonic signals may have become heavily biased by the production and turnover of OM in microbial mat systems.  相似文献   

3.
Silicified shallow-water marine carbonate deposits of the Proterozoic Debengda Formation (the Olenek Uplift, northeastern Siberia) contain well preserved microfossils. One or two distinct assemblages consists only of filamentous Siphonophycus microfossils, which are presumably the extracellular sheaths of hormogonium cyanobacteria. The other is dominated by coccoidal microfossils, first by the entophysalidacean cyanobacterium Eoentophysalis. The coccoidal assemblage was recognized in the layered carbonate precipitate structures of a superficially stromatolite appearance. Despite its simple composition, the microfossil assemblage supports the generally accepted Mesoproterozoic (middle Riphean) age of the Debengda Formation. This conclusion corresponds to the available data on isotopic geochronology, and to the composition of columnar stromatolites from the Dehengda Formation. Both the structural features and carbon isotopic composition of its rocks are comparable to those of rocks of known Mesoproterozoic age, but differ from the characteristics of definitely Neoproterozoic deposits.  相似文献   

4.
Ubiquitous microorganisms, especially cyanobacteria preferably grow on the sediment surface thereby producing microbial mats. In the absence of grazers and bioturbators, microbial mat is a unique feature of the Proterozoic. Most of the papers so far published described a wide variety of bed surface microbial mat structures with rare illustrations from sections perpendicular to bedding. Nonetheless, bed surface exposures are relatively rare in rock records. This limitation of bed surface exposures in rock records suggest that a study of microbial mats in bed-across sections is needed. The 60 m thick coastal marine interval of the Sonia Sandstone Formation is bounded between two terrestrial intervals, a transgressive lag at the base and an unconformity at the top, and has been chosen for exploration of microbial mat structures in bed-across sections. A wide variety of microbial mat-induced structures in bed-across sections are preserved within the coastal interval of the Sonia Sandstone. Though many of these structures are similar in some aspects with bed surface structures, some of those presented here are new. The palaeogeographic range of these microbial structures extends from supralittoral to neritic. Diagenetic alterations of microbial mats produce pyrite and those zones are suitable for the preservation of microbial remains. SEM and EDAX analyses show fossil preservation of filamentous microbial remains that confirm the presence of microbial mats within the coastal interval of the Sonia Sandstone. Effects of proliferation of microbial mats in the siliciclastic depositional setting are numerous. The mat-cover on sediment surfaces hinders reworking and/or erosion of the sediments thereby increases the net sedimentation rate. Successive deposition and preservation of thick microbial mat layer under reducing environments should have a great potential for hydrocarbon production and preservation and therefore these Proterozoic formations could be a target for exploration.  相似文献   

5.
Sampling of Cenomanian fossil-rich horizons within the La Luna Formation of two localities in the Zulia and Trujillo states (northern Venezuela) yielded numerous shark teeth belonging to various species within the order Lamniformes (Mackerel sharks). Twelve lamniform species were identified including three new species (Squalicorax lalunaensis sp. nov., Squalicorax moodyi sp. nov., Acutalamna karsteni gen. et sp. nov.) and the genus Microcarcharias gen. nov. is proposed to accommodate with the peculiar morphology of the small-sized odontaspidid M. saskatchewanensis. Other taxa reported here include Cretoxyrhina mantelli, Cretolamna sp., cf. Nanocorax sp. and five Squalicorax species left in open nomenclature. This is the first report of chondrichthyans from the mid-Cretaceous of Venezuela and one of the few records of this group from the Cenomanian of South America. The composition of these assemblages suggests some degree of endemism in the La Luna Sea but also possible connexions with the Western Interior Seaway. One of the most striking features of these assemblages is the high anacoracid diversity (eight species) despite the corresponding outer shelf/upper slope palaeoenvironments of the La Luna Formation. The high diversity of these opportunistic predators is probably related to the high diversity of medium to large marine vertebrates that provided food resources.  相似文献   

6.
Diverse, cellularly preserved microbial communities are now known from stromatolitic sediments of at least twenty-eight Precambrian formations. These fossiliferous deposits, principally cherts and cherty portions of carbonate units, range in age from Early Proterozoic (Transvaal Dolomite, ca. 2250 Ma old) to Vendian (Chichkan Formation, ca. 650 Ma old) and include units from Australia, India, Canada, South Africa, Greenland, the United States and the Soviet Union. More than three-quarters of these microbiotas have been discovered since 1970. Although few, therefore, have as yet been studied in detail, virtually all of the assemblages are known to be dominated by prokaryotic (bacterial and blue-green algal) microorganisms and to contain three major categories of microfossils: spheroidal unicells, cylindrical tube-like sheaths, and cellular trichomic filaments. Analyses of data now available (including measurements of more than 7800 fossil unicells) indicate that each of these three types of microfossils exhibited a gradual, but marked, increase in mean diameter and size range during the Proterozoic and that taxonomic diversity apparently also increased, especially beginning about 1400 Ma ago. Thus, it now seems evident that (i) the microbial components of Proterozoic stomatolitic assemblages have varied systematically as a function of geologic age and that (ii) such communities are both more abundant and more widespread than had previously been recognized. These observations augur well for the future use of such assemblages in Precambrian biostratigraphy. At present, however, data are sufficient to warrant the provisional establishment of only a few microfossil-based subdivisions of the Proterozoic. Such zones, necessarily relatively long-ranging, are here tentatively defined; it is of interest to note that boundaries between certain of these microfossil-based subdivisions appear to coincide, at least approximately, with previously suggested stromatolite-based boundaries. To some extent, therefore, results of this study seem consistent with, and may be supportive of, the concept of stromatolite-based biostratigraphy. At the same time, however, the study seems to indicate that stromatolites of markedly differing age, whether of similar or of dissimilar morphology, were probably formed by distinctly differing microbiotas. Data are as yet insufficient to indicate whether differing types of coetaneous, stratigraphically useful, stromatolites were formed by differing microbial communities and two what extent the “evolution” of stromatolite morphology was a result of the biologic evolution of stromatolite-building microorganisms. There is thus continued need for investigation of the potential biostratigraphic usefulness of stromatolitic microbiotas and, especially, for more effective integration of results of such studies with those available from studies of stromatolites without preserved microbiotas and from studies of the acritarchs preserved in Proterozoic shales.  相似文献   

7.
Sang  Shilei  Dai  Heng  Hu  Bill X.  Huang  Zhenyu  Liu  Yujiao  Xu  Lijia 《Hydrogeology Journal》2022,30(6):1833-1845

Microbes live throughout the soil profile. Microbial communities in subsurface horizons are impacted by a saltwater–freshwater transition zone formed by seawater intrusion (SWI) in coastal regions. The main purpose of this study is to explore the changes in microbial communities within the soil profile because of SWI. The study characterizes the depth-dependent distributions of bacterial and archaeal communities through high-throughput sequencing of 16S rRNA gene amplicons by collecting surface soil and deep core samples at nine soil depths in Longkou City, China. The results showed that although microbial communities were considerably impacted by SWI in both horizontal and vertical domains, the extent of these effects was variable. The soil depth strongly influenced the microbial communities, and the microbial diversity and community structure were significantly different (p < 0.05) at various depths. Compared with SWI, soil depth was a greater influencing factor for microbial diversity and community structure. Furthermore, soil microbial community structure was closely related to the environmental conditions, among which the most significant environmental factors were soil depth, pH, organic carbon, and total nitrogen.

  相似文献   

8.
Three previously described species and two new species of rhaxellid microscleres, Rhaxella winspitensis sp. nov. and R. elongata sp. nov., are described from cherts collected from the Cherty Series of the Portlandian of Dorset. The classification of Rhaxella is reviewed, retaining the genus within the family Geodiidae Gray. The results of this study suggest that three time-dependent rhaxellid assemblages can be recognized which, despite being restricted to certain depositional environments, may have biostratigraphic applications. A Portlandian assemblage described here is species-rich in comparison with known Oxfordian-Kimmeridgian assemblages. Bajocian-Callovian assemblages contain only R. sorbyana. The increased faunal diversity with time is speculatively described by an evolving Rhaxella lineage.  相似文献   

9.
Taxonomy and Stratigraphy of Late Mesozoic Anurans and Urodeles from China   总被引:3,自引:0,他引:3  
Three anurans (Callobatrachus sanyanensis, Liaobatrachus grabaui, Mesophryne beipiaoensis) and six urodeles (Laccotriton subsolanus, Liaoxitriton zhongjiani, Jeholotriton paradoxus, Sinerpeton fengshanensis, Chunerpeton tianyiensis, Liaoxitriton daohugouensis) are reported from the late Mesozoic tuff-interbedded lacustrine deposits (mostly of the Jehol Group) in northeastern China. They document the first discovery of Chinese Mesozoic lissamphibians, and their old geological age, superb preservation condition, and large taxoncmic diversity are unique compared with other findings worldwide. The anurans occupy a higher evolutionary position than typical Jurassic taxa, supporting a post-Late Jurassic age of the fossil horizons. The urodeles all have unicapitate ribs, suggesting an evolutionary grade at the cryptobranchoid level, and are advanced in osteological features over non-urodeles from the Middle and Upper Jurassic in England and Central Asia. Some urodeles (Jeholotriton and Chunerpeton) exhibit neot  相似文献   

10.
The upper Cenomanian–lower Turonian paleoenvironments of the Preafrican Trough carbonate platform is characterized by analyzing the structure of the ostracod assemblages and the information provided by other groups, and also by linking together the paleontological and geochemical data (detrital influx-redox-paleoproductivity proxies, δ13C curve). Two different domains (eastern and western) can be recognized on the platform during the late Cenomanian, before the onset of the OAE2. The western domain corresponds to a low-energy environment developed on a mid and/or outer ramp with hypoxic waters, low detrital influx and low paleoproductivity. The paleoecological assemblages show limited specific diversity but variable density. The ostracods are opportunistic and unspecialized (r strategists), being associated with Buliminidae, surface and intermediate-water planktonic foraminifera, and fishes. The eastern domain corresponds to an inner ramp and/or peritidal environment with oxic waters, low detrital influx and low paleoproductivity, developed in a higher energy environment with paleoecological assemblages showing high diversity but variable density. The ostracods are more specialized (K strategists), being represented by diverse and constant assemblages associated with diversified benthic foraminifera, calcareous sponges and echinoderms, as well as intermediate- and deep-water planktonic foraminifera. The onset of the OAE2 has no influence on the western ostracod assemblages, but leads to the decline of the ostracod fauna and the disappearance of the deep-water planktonic foraminifera in the eastern domain. During the early Turonian, after the OAE2, the platform becomes an outer ramp with increased paleoproductivity, but is associated with a decrease of taxonomic diversity in hypoxic waters. The ostracods are very sparse and unspecialized, associated with siliceous sponges, Buliminidae, surface-living planktonic foraminifera, fishes and pelagic crinoids. Marine paleobiogeographic communication is relatively easy across the carbonate platforms between the Preafrican Trough and other Moroccan regions, as well as between Morocco and different parts of the South Tethyan and East Atlantic margins belonging to the Cenomanian–Turonian South Tethyan Ostracod Province (STOP). Thirteen new species are described: Cytherella tazzouguertensis n. sp., Bairdiacypris chaabetensis n. sp., Bythocypris amelkisensis n. sp., Pontocypris tadighoustensis n. sp., Procytherura? elongatissima n. sp., Loxoconcha akrabouensis n. sp., Hemiparacytheridea sagittaemucronata n. sp., Rehacythereis errachidiaensis n. sp., Rehacythereis zizensis n. sp., Veenia (Nigeria) tardaensis n. sp., Veenia (Nigeria) mediacostarobusta n. sp., Xestoleberis? preafricanensis n. sp., and Xestoleberis circinatus n. sp.  相似文献   

11.
The Kostenki–Borshchevo localities include 26 Upper Paleolithic sites on the first and second terraces along the west bank of the Don River, near Voronezh on the central East European Plain. Geoarchaeological research from 2001 through 2004 focused on sites Kostenki 1, 12, and 14, with additional work at Kostenki 11 and 16, and Borshchevo 5. The strata are grouped into three units (bottom up): Unit 1, > 50 ka, consists of coarse alluvium (representing upper terrace 2 deposits) and colluvium, overlain by fine‐grained sediments. Unit 2 includes archaeological horizons sealed within two sets of thin lenses of silt, carbonate, chalk fragments, and organic‐rich soils (termed the Lower Humic Bed and Upper Humic Bed) dating 50–30 ka. Separating the humic beds is a volcanic ash lens identified as the Campanian Ignimbrite Y5 tephra, dated elsewhere by Ar/Ar to ca. 40 ka. The humic beds appear to result from the complex interplay of soil formation, spring deposition, slope action, and other processes. Several horizons buried in the lower part of Unit 2 contain Upper Paleolithic assemblages. The springs and seeps, which are still present in the area today, emanated from the bedrock valley wall. Their presence may account for the unusually high concentration of Upper Paleolithic sites in this part of the central East European Plain. Unit 3, < 30 ka, contains redeposited loess with a buried soil (Gmelin Soil) overlain by a primary full‐glacial loess with an associated Chernozem (Mollisol), forming the surface of the second terrace. © 2007 Wiley Periodicals, Inc.  相似文献   

12.
  rgen Schieber 《Sedimentary Geology》1998,120(1-4):105-124
It has been suspected for some time that microbial mats probably colonized sediment surfaces in many terrigenous clastic sedimentary environments during the Proterozoic. However, domination of mat morphology by depositional processes, post-depositional compaction, and poor potential for cellular preservation of mat-building organisms make their positive identification a formidable challenge. Within terrigenous clastics of the Mid-Proterozoic Belt Supergroup, a variety of sedimentary structures and textural features have been observed that can be interpreted as the result of microbial colonization of sediment surfaces. Among these are: (a) domal buildups resembling stromatolites in carbonates; (b) cohesive behaviour of laminae during soft-sediment deformation, erosion, and transport; (c) wavy–crinkly character of laminae; (d) bed surfaces with pustular–wrinkled appearance; (e) rippled patches on otherwise smooth surfaces; (f) laminae with mica enrichment and/or randomly oriented micas; (g) irregular, curved–wrinkled impressions on bedding planes; (h) uparched laminae near mud-cracks resembling growth ridges of polygonal stromatolites; and (i) lamina-specific distribution of certain early diagenetic minerals (dolomite, ferroan carbonates, pyrite). Although in none of the described examples can it irrefutably be proven that they are microbial mat deposits, the observed features are consistent with such an interpretation and should be considered indicators of possible microbial mat presence in other Proterozoic sequences.  相似文献   

13.
江西乐平沿沟剖面均一的碳酸盐相岩沉积, 完整地记录了二叠系-三叠系界线附近生物演变过程.通过对该剖面系统的化石切片研究, 共鉴别出有孔虫27属39种, 包含类4属7种.该剖面有孔虫的演变在二叠纪-三叠纪之交呈现出单幕式的消减过程, 对应于华南两幕生物灭绝中的第1幕.有孔虫的个体数和多样性在21-2层顶部发生了突然降低.4个不同有孔虫组合的演替关系, 揭示了有孔虫在灭绝事件中的演变过程, 即由灭绝前的高丰度、高分异度组合转变为灭绝后低丰度、低分异度组合.通过对二叠系-三叠系界线处鲕状灰岩的化石和沉积特征研究, 发现Hindeodus changxingensis带内的鲕状灰岩中仍存在较为丰富的有孔虫等化石.剧烈的海平面变化以及鲕状灰岩形成使下伏地层中的化石颗粒发生再沉积作用, 是形成这一特殊现象的主要原因.通过对鲕状灰岩中化石和沉积特征的深入研究, 论证了该鲕状灰岩形成于二叠纪-三叠纪之交大灭绝之后, 是当时特殊的海洋生态系产物, 反映了当时较高的海水回旋速率、微生物繁盛、海水碳酸盐超饱和等异常的环境条件.   相似文献   

14.
Silicified carbonates of the latest Mesoproterozoic Sukhaya Tunguska Formation, northwestern Siberia, contain abundant and diverse permineralized microfossils. Peritidal environments are dominated by microbial mats built by filamentous cyanobacteria comparable to modern species of Lyngbya and Phormidium. In subtidal to lower intertidal settings, mat-dwelling microbenthos and possible coastal microplankton are abundant. In contrast, densely woven mat populations with few associated taxa characterize more restricted parts of tidal flats; the preservation of vertically oriented sheath bundles and primary fenestrae indicates that in these mats carbonate cementation was commonly penecontemporaneous with mat growth. Eoentophysalis mats are limited to restricted environments where microlaminated carbonate precipitates formed on or just beneath the sediment surface. Most microbenthic populations are cyanobacterial, although eukaryotic microfossils may occur among the simple spheroidal cells interpreted as coastal plankton. Protists are more securely represented by large (up to 320 micrometers in diameter) but poorly preserved acritarchs in basinal facies. The Sukhaya Tunguska assemblage contains 27 species in 18 genera. By virtue of their stratigraphic longevity and their close and predictable association with specific paleoenvironmental conditions, including substrates, Proterozoic cyanobacteria support a model of bacterial evolution in which populations adapt rapidly to novel environments and, thereafter, resist competitive replacement. The resulting evolutionary pattern is one of accumulation and stasis rather than the turnover and replacement characteristic of Phanerozoic plants and animals.  相似文献   

15.
Distinctive lithological associations and geological relationships, and initial geochronological results indicate the presence of an areally extensive region of reworked Archaean basement containing polymetamorphic granulites in the Rauer Group, East Antarctica.
Structurally early metapelites from within this reworked region preserve complex and varied metamorphic histories which largely pre-date and bear no relation to a Late Proterozoic metamorphism generally recognized in this part of East Antarctica. In particular, magnesian metapelite rafts from Long Point record extreme peak P–T conditions of 10–12 kbar and 100–1050°C, and an initial decompression to 8 kbar at temperatures of greater than 900°C. Initial garnet–orthopyroxene–sillimanite assemblages contain the most magnesian (and pyrope-rich) garnets ( X Mg= 0.71) yet found in granulite facies rocks. A high-temperature decompressional P–T history is consistent with reaction textures in which the phase assemblages produced through garnet breakdown vary systematically with the initial garnet X Mg composition, reflecting the intersection of different divariant reactions in rocks of varied composition as pressures decreased. This history is thought to relate to Archaean events, whereas a lower-temperature ( c. 750–800°C) decompression to 5 kbar reflects Late Proterozoic reworking of these relict assemblages.
The major Late Proterozoic ( c. 1000 Ma) granulite facies metamorphism is recorded in a suite of younger Fe-rich metapelites and associated paragneisses in which syn- to post-deformational decompression, through 2–4 kbar from maximum recorded P–T conditions of 7–9 kbar and 800–850°C, is constrained by geothermobarometry and reaction textures. This P–T evolution is thought to reflect rapid tectonic collapse of crust previously thickened through collision.  相似文献   

16.
Varying correlations of Triassic continental deposits are the chief cause of the differences in biogeographic zonation of the Triassic continents. In order to correlate the continental deposits of Triassic age on the basis of their plant fossils, one must appraise the stratlgraphic significance of the most important foral assemblages in Triassic deposits. Within the Triassic system there are plant fossil assemblages associated with marine deposits, which can be dated directly. Age of the plant assemblages In the German basin can be determined by correlation with the Alpine section. The age of the homotaxic plant fossil assemblages of Europe and Asia can be established on the basis of a comparison with the above-mentioned standard assemblages. Four phytostratigraphic horizons (the Indian, Olenekian-Anisian, Ladinian-Carnian, and Norian-Rhaetian) can be distinguished in Eurasia. Biogeographic zonation is considered separately for the time interval represented by each of these horizons. Correlation of the fossil floral assemblages of North America and Gondwana with those of Eurasia is based on different paleontological data (tetrapod fossils playing the leading part in North America). Maps of the biogeographic zonation of the continental Triassic were prepared for the Oleneklan-Anisian and the Ladinian- Carnian intervals of time; for the southern hemisphere these are based on the mobilist concept. —Author.  相似文献   

17.
段冶  张立君  李莉  程绍利 《世界地质》2006,25(2):113-119
辽西是世界上研究鸟类起源、恐龙进化、鸟类、哺乳动物以及被子植物的早期演化等最重要地区之一。本文重点论述了辽西大平房—梅勒营子盆地九佛堂组含珍稀化石的地层划分与对比。珍稀化石层自下而上包括有:九佛堂组第二段的喇嘛沟层、第三段下部的黄花沟层及第三段上部的原家洼层。根据所含介形类化石组合特征,将联合乡小鱼沟和胜利乡南炉一带含鸟类、翼龙类的化石层与喇嘛沟层对比,胡家营子、八棱观和车杖子一带的含鸟类、翼龙类的化石层与原家洼层对比。  相似文献   

18.
皱饰构造研究进展综述   总被引:1,自引:0,他引:1  
在综述皱饰构造成因研究历程和国内外最新研究成果的基础上,总结评述了 4种有代表性的皱饰构造形成模式,其核心问题是在皱饰构造的形成过程中微生物席和物理作用的参与方式,以及受造席者、透光性、水动力条件、基底类型和生物扰动五大因素的影响程度.在对皱饰构造和现代微生物席对比研究的基础上,发现皱饰构造与微生物席的分布在很大程度上具有一致性,所以通过对现代微生物席的生长发育环境进行综合研究,推测了有利于皱饰构造发育的古环境.皱饰构造一般发育于潮间坪和滨外过渡带,并且在显生宙一般与生物扰动作用具有不相容性.皱饰构造是发育最普遍、受关注最广泛的保存在硅质碎屑岩中的微生物诱导形成的原生沉积构造,所以理清皱饰构造的成因模式及古地理分布,有利于碎屑岩微生物席学的发展,可以为理解硅质碎屑岩中的特殊沉积构造提供重要线索.  相似文献   

19.
贺兰山地区中元古代微生物席成因构造   总被引:23,自引:2,他引:21  
贺兰山中段中元古界黄旗口组石英砂岩中发现丰富的微生物席成因构造(MISS),包括由微生物席生长、破坏和腐烂过程形成的3种类型、9种不同形态的构造;与华北大红峪组发现的同类构造在成因类型与多样性方面具有很强的可对比性.砂岩中发育双向交错层理、冲洗层理、高角度单斜层理系和波痕,泥质粉砂岩夹层中发育波痕与泥裂,表明微生物席主要发育于潮间带上部至潮上带下部环境.MISS构造在华北地台长城系下部砂岩中的广泛存在表明在1.6 Ga前以蓝细菌为主的微生物群在环潮坪碎屑环境也很活跃.可能代表了微生物由海洋向陆地环境发展的过渡阶段.具光合作用功能的制氧蓝细菌的蓬勃发展可能是引发中元古代海洋化学条件发生转变、含氧量增高的重要原因,并为真核生物及宏观藻类的兴起创造了条件.研究表明,黄旗口组与华北大红峪组大致同时,反映了Columbia超大陆裂解期华北地台开始拉伸-张裂、缓慢沉降的构造古地理背景.  相似文献   

20.
《International Geology Review》2012,54(11):1305-1315
Certain stratigraphic horizons of the lower Proterozoic Udokan contain ore deposits and shows in cupriferous sandstones of the Kodar-Uclokan structural and fades zone. Copper mineralization occurs in the Chitkanda, Aleksandrovst, Butun, Talakan, Salcukan and Naminga formations and is of sedimentary origin, syngenetic with its carrier rocks. Most cupriferous sandstones are found in the Chitkanda, Talakan and Sakukan formations; these facies are arranged in definite belts with relation to the copper source area. Areas of the Kodar-Udokan zone lying north of the southern boundary of the several copper belts (fig. 4) are the most promising for copper production. Also prospective are areas of young depressions in the north and southeast of the zone of copper belts. It may be that considerable stretches of the Udokan cupriferous horizons are to be found here.--IGR Staff  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号