首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H2 is the most abundant molecule in the universe. We demonstrate that this molecule may be an important component of interstellar and possibly intergalactic ices, both because it can be formed in situ, within the ices, and because gas phase H2 can freeze out onto dust grains in some astrophysical environments. The condensation-sublimation and infrared spectral properties of ices containing H2 are presented. We show that solid H2 in H20-rich ices can be detected by an infrared absorption band at 4137 cm-1 (2.417 micrometers). The surface binding energy of H2 to H2O ice was measured to the delta Hs/k = 555 +/- 35 K. Surface binding energies can be used to calculate the residence times of H2 on grain surfaces as a function of temperature. Some of the implications of these results are considered.  相似文献   

2.
Infrared spectra of Io in the region 2.5-5.0 micrometers, including new observational data, are analyzed using detailed laboratory studies of plausible surface ices. Besides the absorption bands attributable to sulfur dioxide frosts, four infrared spectral features of Io are shown to be unidentified. These unidentified features show spatial and temporal band strength variations. One pair is centered around 3.9 micrometers (3.85 and 3.91 micrometers) and the second pair is centered around 3.0 micrometers (2.97 and 3.15 micrometers). These absorptions fall close to the fundamental stretching modes in H2S and H2O, respectively. The infrared absorption spectra of an extensive set of laboratory ices ranging from pure materials, to binary mixtures of H2S and H2O (either mixed at different concentrations or layered), to H2O:H2S:SO2 mixtures are discussed. The effects of ultraviolet irradiation (120 and 160 nm) and temperature variation (from 9 to 130 K) on the infrared spectra of the ices are examined. This comparative study of Io reflectance spectra with the laboratory mixed ice transmission data shows the following: (1) Io's surface most likely contains H2S and H2O mixed with SO2. The 3.85- and 3.91-micrometers bands in the Io spectra can be accounted for by the absorption of the S-H stretching vibration (nu 1) in H2S clusters and isolated molecules in an SO2-dominated ice. The weak 2.97- and 3.15-micrometers bands which vary spatially and temporally in the Io spectra coincide with the nu 3 and nu 1 O-H stretching vibrations of clusters of H2O molecules complexed, through hydrogen bonding and charge transfer interactions, with SO2. (2) The observations are well matched qualitatively by the transmission spectra of SO2 ices containing about 3% H2S and 0.1% H2O which have been formed by the condensation of a mixture of the gases onto a 100 K surface. (3) No new features are produced in the region 2.5 to 5.0 micrometers in the spectrum of these ices under prolonged ultraviolet irradiation or temperature variation up to 120 K. (4) Comparison of the Io spectra to transmission spectra of both mixed molecular ices and layered ices indicates that only the former can explain the shifts and splitting of the absorption bands seen in the Io spectrum and additionally can account for the fact that solid H2S is observed in the surface material of Io at temperature and pressure conditions above the sublimation point of pure H2S.  相似文献   

3.
In an extension of previously reported work on ices containing H2O, CO, CO2, SO2, H2S, and H2, we present measurements of the physical and infrared spectral properties of ices containing CH3OH and NH3. The condensation and sublimation behavior of these ice systems is discussed and surface binding energies are presented for all of these molecules. The surface binding energies can be used to calculate the residence times of the molecules on grain surfaces as a function of temperature. It is demonstrated that many of the molecules used to generate radio maps of and probe conditions in dense clouds, for example CO and NH3, will be significantly depleted from the gas phase by condensation onto dust grains. Attempts to derive total column densities solely from radio maps that do not take condensation effects into account may vastly underestimate the true column densities of any given species. Simple CO condensation onto and vaporization off of grains appears to be capable of explaining the observed depletion of gas phase CO in cold, dense molecular cores. This is not the case for NH3, however, where thermal considerations alone predict that all of the NH3 should be condensed onto grains. The fact that some gas phase NH3 is observed indicates that additional desorption processes must be involved. The surface binding energies of CH3OH, in conjunction with this molecule's observed behavior during warm up in H2O-rich ices, is shown to provide an explanation of the large excess of CH3OH seen in many warm, dense molecular cores. The near-infrared spectrum and associated integrated band strengths of CH3OH-containing ice are given, as are middle infrared absorption band strengths for both CH3OH and NH3.  相似文献   

4.
Sandford SA  Allamandola LJ 《Icarus》1993,106(2):478-488
In an extension of previously reported work on ices containing CO, CO2, H2O, CH3OH, NH3, and H2, measurements of the physical and infrared spectral properties of ices containing molecules relevant to Jupiter's moon Io are presented. These include studies on ice systems containing SO2, H2S, and CO2. The condensation and sublimation behaviors of each ice system and surface binding energies of their components are discussed. The surface binding energies can be used to calculate the residence times of the molecules on a surface as a function of temperature and thus represent important parameters for any calculation that attempts to model the transport of these molecules on Io's surface. The derived values indicate that SO2 frosts on Io are likely to anneal rapidly, resulting in less fluffy, "glassy" ices and that H2S can be trapped in the SO2 ices of Io during night-time hours provided that SO2 deposition rates are on the order of 5 micrometers/hr or larger.  相似文献   

5.
A cometary ice analog sample consisting primarily of carbon suboxide ice (C3O2) was produced from the irradiation of its precursor, carbon monoxide. This carbon suboxide sample was subjected to irradiation with energetic electrons at 10 K to simulate the interaction of carbon suboxide-rich cometary analog ices with ionizing radiation. The destruction of carbon suboxide as well as the production of the primary degradation products, dicarbon monoxide (C2O), and carbon monoxide (CO), were monitored quantitatively by infrared spectroscopy in situ; the gas phase was simultaneously sampled via quadrupole mass spectrometry. A kinetic model was produced to help explain the decomposition kinetics of carbon suboxide in cometary ices and to infer the underlying reaction mechanisms.  相似文献   

6.
We present the 2320-2050 cm-1 (4.31-4.88 micrometers) infrared spectra of 16 solid-state nitriles, isonitriles, and related compounds in order to facilitate the assignment of absorption features in a spectral region now becoming accessible to astronomers for the first time through the Infrared Space Observatory (ISO). This frequency range spans the positions of the strong C triple bond N stretching vibration of these compounds and is inaccessible from the ground due to absorption by CO2 in the terrestrial atmosphere. Band positions, profiles, and intrinsic strengths (A values) were measured for compounds frozen in Ar and H2O matrices at 12 K. The molecular species examined included acetonitrile, benzonitrile (phenylcyanide), 9-anthracenecarbonitrile, dimethylcyanamide, isopropylnitrile (isobutyronitrile), methylacrylonitrile, crotononitrile, acrylonitrile (vinyl cyanide), 3-aminocrotononitrile, pyruvonitrile, dicyandiamide, cyanamide, n-butylisocyanide, methylisocyanoacetate, diisopropylcarbodiimide, and hydrogen cyanide. The C triple bond N stretching bands of the majority of nitriles fall in the 2300-2200 cm-1 (4.35-4.55 micrometers) range and have similar positions in both Ar and H2O matrices, although the bands are generally considerably broader in the H2O matrices. In contrast, the isonitriles and a few exceptional nitriles and related species produce bands at lower frequencies spanning the 2200-2080 cm-1 (4.55-4.81 micrometers) range. These features also have similar positions in both Ar and H2O matrices, and the bands are broader in the H2O matrices. Three of the compounds (pyruvonitrile, dicyandiamide, and cyanamide) show unusually large shifts of their C triple bond N stretching frequencies when changing from Ar to H2O matrices. We attribute these shifts to the formation of H2O:nitrile complexes with these compounds. The implications of these results for the identification of the 2165 cm-1 (4.62 micrometers) "XCN" interstellar feature and the 4550 cm-1 (2.2 micrometers) feature of various objects in the solar system are discussed.  相似文献   

7.
G Notesco 《Icarus》2003,162(1):183-189
The effect of water ice formation temperature and rate of ice deposition on a cold plate on the amount of trapped argon (equivalent to CO), and the ratios of Ar/Kr/Xe trapped in the water ice were studied at 50, 27 and 22 K and at ice formation rates ranging over four orders of magnitude, from 10−1 to 10−5 μm min−1. Contrary to our previous conclusions that cometary ices were formed at 50-60 K, we now conclude that these ices were formed at about 25 K. At 25 K the enrichment ratios for Ar, Kr, and Xe remained the same as those at 50 K, reinforcing our suggestion of cometary contribution of these noble gases to the atmospheres of Earth and Mars.  相似文献   

8.
We report the detection of a broad absorption band at 2165 cm-1 (4.619 microns) in the spectrum of L1551 IRS 5. New laboratory results over the 2200-2100 cm-1 wavenumber interval (4.55-4.76 microns), performed with realistic interstellar ice analogs, suggest that this feature is due to a CN-containing compound. We will refer to this compound as XCN. We also confirm the presence of frozen CO (both in nonpolar and polar matrices) through absorption bands at 2140 cm-1 (4.67 microns) and 2135 cm-1 (4.68 microns). The relative abundance of solid-state CO to frozen H2O is approximately 0.13 while the abundance of XCN seems comparable to that of frozen CO.  相似文献   

9.
The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton and Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450 cm-1 (2.25 micrometers) and extends to lower frequencies, may be due to alkanes (C(n)H2n+2) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemistry of N2:CH4 and N(2):CH4:CO ices was explored demonstrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances. For example, using these A values the abundance ratios CH4/N2 approximately 1.3 x 10(-3), C2H4/N2 < or = 9.5 x 10(-7) and H2CO/N2 < or = 7.8 x 10(-7) are deduced for Triton and CH4/N2 approximately 3.1 x 10(-3), C2H4/N2 < or = 4.1 x 10(-6), and H2CO/N2 < or = 5.2 x 10(-6) deduced for Pluto. The small amounts of C2H4 and H2CO in the surface ices of these bodies are in disagreement with the large abundances expected from many theoretical models.  相似文献   

10.
This report arises from an ongoing program to monitor Neptune’s largest moon Triton spectroscopically in the 0.8 to 2.4 μm range using IRTF/SpeX. Our objective is to search for changes on Triton’s surface as witnessed by changes in the infrared absorption bands of its surface ices N2,CH4,H2O, CO, and CO2. We have recorded infrared spectra of Triton on 53 nights over the ten apparitions from 2000 to 2009. The data generally confirm our previously reported diurnal spectral variations of the ice absorption bands (Grundy and Young, 2004). Nitrogen ice shows a large amplitude variation, with much stronger absorption on Triton’s Neptune-facing hemisphere. We present evidence for seasonal evolution of Triton’s N2 ice: the 2.15 μm absorption band appears to be diminishing, especially on the Neptune-facing hemisphere. Although it is mostly dissolved in N2 ice, Triton’s CH4 ice shows a very different longitudinal variation from the N2 ice, challenging assumptions of how the two ices behave. Unlike Triton’s CH4 ice, the CO ice does exhibit longitudinal variation very similar to the N2 ice, implying that CO and N2 condense and sublimate together, maintaining a consistent mixing ratio. Absorptions by H2O and CO2 ices show negligible variation as Triton rotates, implying very uniform and/or high latitude spatial distributions for those two non-volatile ices.  相似文献   

11.
Moore  M. H.  Hudson  R. L.  Ferrante  R. F. 《Earth, Moon, and Planets》2003,92(1-4):291-306
Near the inner edge of the Edgeworth-Kuiper Belt (EKB) are Pluto and Charon, which are known to have N2- and H2O-dominated surface ices, respectively. Such non-polar and polar ices, and perhaps mixtures of them, also may be present on other trans-Neptunian objects. Pluto, Charon, and all EKB objects reside in a weak, but constant UV-photon and energetic ion radiation environment that drives chemical reactions in their surface ices. Effects of photon and ion processing include changes in ice composition, volatility, spectra, and albedo, and these have been studied in a number of laboratories. This paper focuses on ice processing by ion irradiation and is aimed at understanding the volatiles, ions, and residues that may exist on outer solar system objects. We summarize radiation chemical products of N2-rich and H2O-rich ices containing CO or CH4, including possible volatiles such as alcohols, acids, and bases. Less-volatile products that could accumulate on EKB objects are observed to form in the laboratory from acid-base reactions, reactions promoted by warming, or reactions due to radiation processing of a relatively pure ice (e.g., CO → C3O2). New IR spectra are reported for the 1–5 mu;m region, along with band strengths for the stronger features of carbon suboxide, carbonic acid, the ammonium and cyanate ions, polyoxymethylene, and ethylene glycol. These six materials are possible contributors to EKB surfaces, and will be of interest to observers and future missions.  相似文献   

12.
“Water and related chemistry in the Solar System” is a Herschel Space Observatory Guaranteed-Time Key Programme. This project, approved by the European Space Agency, aims at determining the distribution, the evolution and the origin of water in Mars, the outer planets, Titan, Enceladus and the comets. It addresses the broad topic of water and its isotopologues in planetary and cometary atmospheres. The nature of cometary activity and the thermodynamics of cometary comae will be investigated by studying water excitation in a sample of comets. The D/H ratio, the key parameter for constraining the origin and evolution of Solar System species, will be measured for the first time in a Jupiter-family comet. A comparison with existing and new measurements of D/H in Oort-cloud comets will constrain the composition of pre-solar cometary grains and possibly the dynamics of the protosolar nebula. New measurements of D/H in giant planets, similarly constraining the composition of proto-planetary ices, will be obtained. The D/H and other isotopic ratios, diagnostic of Mars’ atmosphere evolution, will be accurately measured in H2O and CO. The role of water vapor in Mars’ atmospheric chemistry will be studied by monitoring vertical profiles of H2O and HDO and by searching for several other species (and CO and H2O isotopes). A detailed study of the source of water in the upper atmosphere of the Giant Planets and Titan will be performed. By monitoring the water abundance, vertical profile, and input fluxes in the various objects, and when possible with the help of mapping observations, we will discriminate between the possible sources of water in the outer planets (interplanetary dust particles, cometary impacts, and local sources). In addition to these inter-connected objectives, serendipitous searches will enhance our knowledge of the composition of planetary and cometary atmospheres.  相似文献   

13.
We present a simple, semianalytic model of the vaporization of H2O and HDO ice from a comet nucleus. We use this model to show that the flux of HDO relative to H2O can be much higher, at times, than would be expected from the D/H ratio in the nuclear ice itself. This effect varies with position in the comet's orbit. It is negligible sufficiently near the Sun but could lead to erroneous interpretations of the primordial D/H ratio in cometary ice if measurements are made in other parts of the cometary orbit.  相似文献   

14.
Noll KS  Geballe TR  Knacke RF  Pendleton YJ 《Icarus》1996,124(2):625-631
We have measured the spectrum of Titan near 5 micrometers and have found it to be dominated by absorption from the carbon monoxide 1-0 vibration-rotation band. The position of the band edge allows us to constrain the abundance of CO in the atmosphere and/or the location of the reflecting layer in the atmosphere. In the most likely case, 5 micrometers radiation is reflected from the surface and the mole fraction of CO in the atmosphere is qCO=10(+10/-5) ppm, significantly lower than previous estimates for tropospheric CO. The albedo of the reflecting layer is approximately 0.07(+0.02/-0.01) in the 5 micrometers continuum outside the CO band. The 5 micrometers albedo is consistent with a surface of mixed ice and silicates similar to the icy Galilean satellites. Organic solids formed in simulated Titan conditions can also produce similar albedos at 5 micrometers.  相似文献   

15.
We have studied the spectral and spatial distribution across the Orion Bar of the 3-14 micrometers emission, including hydrogen Brackett alpha and 12.8 micrometers [Ne II] emission lines and several "dust" emission features. The data indicate that the "dust" consists of three components; (1) "classical" dust with a temperature of approximately 60 K accounting for emission longward of 20 micrometers, (2) amorphous carbon particles or polycyclic aromatic hydrocarbon (PAH) clusters (approximately 400 C atoms) which produce broad emission features in the 6-9 and 11-13 micrometers bands, and (3) free PAHs which emit in sharper bands (most strongly at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers). The 3.3 and 11.3 micrometers features, which are due to C-H modes, are well correlated spatially, while the 7.7 micrometers band, due to C=C modes, has a different distribution than the 3.3 and 11.3 micrometers bands. We conclude that the sharp emission bands arise in the photodissociation transition region between the H II region and the molecular cloud and are not present in the H II region. The broad continuum feature extending from 11-13 micrometers is strong in both regions. Previous broad-band observations of the 10 and 20 micrometers flux distributions, which show that the 10 micrometers radiation extends farther into the neutral gas to the south than the 20 micrometers radiation, suggest that some of the 10 micrometers flux is supplied via a nonthermal mechanism, such as fluorescence.  相似文献   

16.
17.
H2O, CO and CO2 ices are condensed on carbonaceous and silicate dust grains in dense interstellar clouds and circumstellar environments. The presence of these ices is inferred by analysing their infrared (IR) spectra. The upcoming Herschel space observatory (HERSCHEL) and ground-based astronomy project (ALMA) will provide new spectral data in the unexplored far infrared (FIR) and sub-millimetre range. In our laboratory we are developing instrumentation to study ices at IR region. One of the key components of our laboratory is a silicon composite bolometer in our IFS. This detector allows us to obtain spectra with a sensitivity much greater than that obtained with a standard deuterated triglycine sulphate (DTGS) detector working at room temperature and under vacuum conditions. We plan to collect mid infrared (MIR) and FIR spectra of simple ices and their mixtures and compare these with observational data. It is also planned to do a systematic laboratory study of the effects that ultraviolet (UV) photolysis and thermal annealing have on the ice band profiles and their structure.  相似文献   

18.
Infrared observations of comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp) benefited from the high spectral resolution and sensitivity of échelle spectrometers now equipping ground-based telescopes and from the availability of the Infrared Space Observatory (ISO). From the ground, several hydrocarbons were unambiguously detected for the first time: CH4, C2H2, C2H6. Water was observed through several of its hot vibrational bands, escaping telluric absorption. CO, HCN, NH3 and OCS were also observed, as well as several radicals. This permitted the evaluation of molecular production rates, of rotational temperature, and — taking advantage of the 1-D imaging of long-slit spectroscopy — of the space distribution of these species. With ISO, carbon dioxide was directly observed for the second time in a comet (after its detection from the Vega probes in P/Halley). The spectrum of water was investigated in detail (several bands of vibration and far-infrared rotational lines), permitting the evaluation of the rotational temperature of water, and of it spin temperature from the ortho-to-para ratio. Water ice was identified in the grains of Hale-Bopp as far as 7 AU from the ground and possibly at 3 AU with ISO. The composition of cometary volatiles appears to be strikingly similar to that of interstellar ices. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The discovery of C/1995 O1 (Hale-Bopp) at 7 AU from the Sun provided the first opportunity to follow the activity of a bright comet over a large range of heliocentric distances rh. Production rates of a number of parent molecules and daughter species have been monitored both pre- and postperihelion. CO was found to be the major driver of the activity far from the Sun, surpassed by water within 3 AU whose production rate reached 1031 s−1 at perihelion. Gas production curves obtained for various species show several behaviours with rh. Gas production curves contain important information concerning the physical state of cometary ices, the structure of the nucleus and all the processes taking place inside the nucleus leading to outgassing. They are relevant to the study of several other phenomena such as the sublimation from icy grains, dust mantling or seasonal effects. For some species, such as H2CO or HNC, they permit to constrain their origin in the coma. We discuss models of subsurface gas production in distant comets and predictions of how such a source may vary as the comet moves along its orbit, approaching perihelion and receding again. Features in the observed gas production curves of comet Hale-Bopp are generally interpretable in terms of either subsurface production (typical example: CO at large rh) or free sublimation (typical example: H2O). Possible implications for the vertical stratification of the cometary ices are reviewed, and preference is found for a model with crystallization of amorphous ice close to the nuclear surface. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A coupled problem of diffusion and condensation is solved for the H2SO4-H2O system in Venus' cloud layer. The position of the lower cloud boundary and profiles of the H2O and H2SO4 vapor mixing ratios and of the H2O/H2SO4 ratio of sulfuric acid aerosol and its flux are calculated as functions of the column photochemical production rate of sulfuric acid, phi H2SO4. Variations of the lower cloud boundary are considered. Our basic model, which is constrained to yield fH2O (30 km) = 30 ppm (Pollack et al. 1993), predicts the position of the lower cloud boundary at 48.4 km coinciding with the mean Pioneer Venus value, the peak H2SO4 mixing ratio of 5.4 ppm, and the H2SO4 production rate phi H2SO4 = 2.2 x 10(12) cm-2 sec-1. The sulfur to sulfuric acid mass flux ratio in the clouds is 1 : 27 in this model, and the mass loading ratio may be larger than this value if sulfur particles are smaller than those of sulfuric acid. The model suggests that the extinction coefficient of sulfuric acid particles with radius 3.7 micrometers (mode 3) is equal to 0.3 km-1 in the middle cloud layer. The downward flux of CO is equal to 1.7 x 10(12) cm-2 sec-1 in this model. Our second model, which is constrained to yield fH2SO4 = 10 ppm at the lower cloud boundary, close to the value measured by the Magellan radiooccultations, predicts the position of this boundary to be at 46.5 km, which agrees with the Magellan data; fH2O(30 km) = 90 ppm, close to the data of Moroz et al. (1983) at this altitude; phi H2SO4 = 6.4 x 10(12) cm-2 sec-1; and phi co = 4.2 x 10(12) cm-2 sec-1. The S/H2SO4 flux mass ratio is 1 : 18, and the extinction coefficient of the mode 3 sulfuric acid particles is equal to 0.9 km-1 in the middle cloud layer. A strong gradient of the H2SO4 vapor mixing ratio near the bottom of the cloud layer drives a large upward flux of H2SO4, which condenses and forms the excessive downward flux of liquid sulfuric acid, which is larger by a factor of 4-7 than the flux in the middle cloud layer. This is the mechanism of formation of the lower cloud layer. Variations of the lower cloud layer are discussed. Our modeling of the OCS and CO profiles in the lower atmosphere measured by Pollack et al. (1993) provides a reasonable explanation of these data and shows that the rate coefficient of the reaction SO3 + CO --> CO2 + SO2 is equal to 10(-11) exp(-(13,100 +/- 1000)/T) cm3/s. The main channel of the reaction between SO3 and OCS is CO2 + (SO)2, and its rate coefficient is equal to 10(-11) exp(-(8900 +/- 500)T)cm3/s. In the conditions of Venus' lower atmosphere, (SO)2 is removed by the reaction (SO)2 + OCS --> CO + S2 + SO2. The model predicts an OCS mixing ratio of 28 ppm near the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号