首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have observed the J = 22-21 line of 12CO at 2528 GHz (118.8 micrometers) in the IRc2 region of Orion. The spectra at 0.6 km s-1 resolution show both plateau emission with FWHM approximately 35 km s-1 and a narrower component with FWHM approximately 8 km s-1. Comparison with heterodyne data of similar quality on the J = 17-16 line indicates that the broad and narrow components both originate in gas with an excitation temperature Tex approximately 600 K. The emission is consistent with the predictions of shock models in which the wide component arises from the heated outflow gas and postshock molecular material, while the narrow component comes from ambient material near the leading edge of the shock front where temperatures are high but significant acceleration has not yet occurred.  相似文献   

2.
SiS has been conclusively detected toward Orion-KL via its J = 6-5 and J = 5-4 rotational transitions at 91 and 109 GHz. Line profiles indicate that the species is present at an LSR velocity of 7.5 km s-1 with a half-width at zero power of 36 km s-1. Such characteristics associate SiS with the moderate velocity outflow (V approximately 18 km s-1) centered on IRc2 and observed in thermal SiO, the NH3 "plateau," and OH, H2O, and SiO masers. The column density estimated for SiS in this region is Ntot = 4 x 10(15) cm-2, corresponding to a fractional abundance of f approximately 4 x 10(-9). Such an abundance implies an SiO/SiS ratio of approximately 60 in the outflow material, remarkably close to the cosmic O/S ratio of approximately 40 and contrasting with the SiO/SiS value of > approximately 10(3) predicted by ion-molecule models. This difference is probably a result of the high temperatures and densities present in the outflow, which favor thermal equilibrium abundances similar to those observed in the circumstellar shells of late-type stars rather than "ion-molecule"-type concentrations. In addition to SiS, some twenty new unidentified lines near 91 and 109 GHz were detected toward KL, as well as transitions arising from HC5N, HC13CCN, HCC13CN, O13CS, and, possibly, CH3CH2OH, CH3CHO, and CH3OD.  相似文献   

3.
We have obtained high-resolution spectra of the 153 micrometers J = 17-16 CO line in the BN-KL region of Orion using a laser heterodyne spectrometer. The line shows broad wings (30 km s-1 FWHM at BN) characteristic of the plateau emission as well as a narrower component probably associated with the quiescent gas in the molecular ridge. From an analysis of the plateau emission together with that observed in lower J CO transitions, we derive an excitation temperature of 180 +/- 50 K and minimum column density of 1 x 10(18) cm-2 for CO in this component, which constitutes 80% of the total integrated intensity of the J = 17-16 line near BN. The peak intensity of the narrower component observed at 0.8 km s-1 resolution increases relative to that of the plateau component toward theta 1C and away from BN, while the width decreases from 10 to 4 km s-1 (FWHM).  相似文献   

4.
We report a search for the acetylene (C2H2) nu 3 infrared vibration-rotation absorption near 3 micrometers toward the Becklin-Neugebauer source in the Orion molecular cloud. The relative abundance of C2H2/CO in the quiescent gas (9 km s-1 component) is less than 3 x 10(-3) (5 sigma).  相似文献   

5.
We present the results of our observations of the maser radio emission source G188.946+0.886 in hydroxyl (OH) molecular lines with the radio telescope of the Nançay Observatory (France) and in the H2O line at λ = 1.35 cm with the RT-22 radio telescope at the Pushchino Observatory (Russia). An emission feature in the 1720-MHz satellite line of the OH ground state has been detected for the first time. The radial velocity of the feature, V LSR = 3.6 km s?1, has a “blue” shift relative to the range of emission velocities in the main 1665- and 1667-MHz OH lines, which is 8–11 km s?1. This suggests a probable connection of the observed feature in the 1720-MHz line with the “blue” wing of the bipolar outflow observed in this region in the CO line. We have estimated the magnetic field strength for three features (0.90 and 0.8 mG for 1665 MHz and 0.25 mG for 1720 MHz) from the Zeeman splitting in the 1665- and 1720-MHz lines. No emission and (or) absorption has been detected in the other 1612-MHz satellite OH line. Three cycles of H2O maser activity have been revealed. The variability is quasi-periodic in pattern. There is a general tendency for the maser activity to decrease. Some clusters of H2O maser spots can form organized structures, for example, chains and other forms.  相似文献   

6.
本文在分析研究NGC7538-IRS1致密HⅡ区H_2CO和OH脉泽辐射VLBI观测结果的基础上,指出该HⅡ区合理的模型是:HⅡ区表面为厚的尘埃层包围,尘埃层两极已被突破,并形成双极流;HⅡ区外面有一个环形转动气体-尘埃云,存在由环向HⅡ区表面的物质下落;包括环和HⅡ区在内的整个系统视向速度为-61km/s,该系统居于视向速度为-57km/s的更大分子云中。H_2CO和OH脉泽发生在HⅡ区两极附近离HⅡ区表面小于0.2R_(HⅡ)的区域内。利用上述模型,还讨论了H_2O脉泽及其他分子吸收线和发射线的发生区域。  相似文献   

7.
Mid-infrared imaging photometry of the Orion BN/KL infrared cluster at eight wavelengths between 5 and 20µm using a 58 × 62 pixel imaging array camera has revealed new compact sources and the large-scale structure of the region in diffraction-limited (1 arcsec) detail. Several new objects have been detected within a few arcsec of IRc2, widely thought to be the principal luminosity source for the entire BN/KL complex. Detailed color temperature and emission opacity images are derived from the 7.8, 12.4 and 20.0µm observations, and the 9.8µm image is used to derive an image of “silicate” dust extinction for the region. The color temperature, opacity, and extinction images show that IRc2 may not be the single dominant luminosity source for the BN/KL region; substantial contributions to the luminosity could be made by IRc7, BN, KL, and five new compact 10µm sources detected within a few arcseconds of IRc2. We suggest that a luminous, early-type star near IRc2, which is associated with the compact radio source “I” and the Orion SiO maser, is the dominant luminosity source in the BN/KL region, hidden from view by cool dust material with at least Av ~ 60 mag of visible extinction.  相似文献   

8.
We present a high signal-to-noise grating spectrum between 43-196.9 μm of the Orion molecular cloud towards the massive star-forming region IRc2, obtained with the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO). CO lines up to J=20-19 have been detected around Orion-IRc2, while in the central position higher quantum numbers have been found. Lines of the 13CO isotopic species have also been observed in several directions. In addition, high quality LWS-FP observations of some CO lines have been performed towards IRc2. The data analysis suggest that at least two regions of Orion-IRc2 contribute to the observed CO emission: the ridge, responsible of the spatial extension, and the plateau, dominating the line flux observed towards the center of the map. CO emission through the Orion molecular cloud has been studied in terms of temperature, column density and H2 volume density, using and Large Velocity Gradient (LVG) model. We find that the flux ratio of the several CO lines can not be explained in terms of an homogeneous source, but a gradient in temperature and density must be involved. Besides the CO lines, several molecular and fine-structure atomic lines have been detected in all observed positions. A detailed discussion of other molecular species rather than CO (H2O, OH...) can be found in the contribution by Cernicharo et al (1998). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We have modeled the infrared emission of spherically symmetric, circumstellar dust shells with the aim of deriving the infrared absorption properties of circumstellar silicate grains and the mass-loss rates of the central stars. As a basis for our numerical studies, a simple semianalytical formula has been derived that illustrates the essential characteristics of the infrared emission of such dust shells. A numerical radiative transfer program has been developed and applied to dust shells around oxygen-rich late-type giants. Free parameters in such models include the absorption properties and density distribution of the dust. An approximate, analytical expression is derived for the density distribution of circumstellar dust driven outward by radiation pressure from a central source. A large grid of models has been calculated to study the influence of the free parameters on the emergent spectrum. These results form the basis for a comparison with near-infrared observations. Observational studies have revealed a correlation between the near-infrared color temperature, Tc, and the strength of the 10 micrometers emission or absorption feature, A10. This relationship, which essentially measures the near-infrared optical depth in terms of the 10 micrometers optical depth, is discussed. Theoretical A10-Tc relations have been calculated and compared to the observations. The results show that this relation is a sensitive way to determine the ratio of the near-infrared to 10 micrometers absorption efficiency of circumstellar silicates. These results as well as previous studies show that the near-infrared absorption efficiency of circumstellar silicate grains is much higher than expected from terrestrial minerals. We suggest that this enhanced absorption is due to the presence of ferrous iron (Fe2+) color centers dissolved in the circumstellar silicates. By using the derived value for the ratio of the near-infrared to 10 micrometers absorption efficiency, the observed A10-Tc relation can be calibrated in terms of the total dust column density of the circumstellar shell and thus the mass-loss rate of late-type giants can easily be derived. Detailed models have been made of the infrared emission of three well-studied Miras: R Cas, IRC 10011, and OH 26.5+0.6, with the emphasis on the shape of the 10 micrometers emission or absorption feature. The results show that the intrinsic shape of the 10 micrometers resonance varies from a very broad feature in R Cas to a relatively narrower feature in OH 26.5+0.6, with IRC 10011 somewhere in between. Possible origins of this variation are discussed. The mass-loss rates from these objects are calculated to be 3 x 10(-7), 2 x 10(-5), and 2 x 10(-4) M Sun yr-1 for R Cas, IRC 10011, and OH 26.5+0.6, respectively. These results are compared to other determinations in the literature.  相似文献   

10.
Vibrationally excited HCN has been observed for the first time in the interstellar medium. The J = 3-2 rotational transitions of the l-doubled (0,1(1d,1c), 0) bending mode of HCN have been detected toward Orion-KL and IRC +10216. In Orion, the overall column density in the (0,1,0) mode, which exclusively samples the "hot core", is 1.7 x 10(16) cm-2 and can be understood in terms of the "doughnut" model for Orion. The ground-state HCN column density implied by the excited-state observations is 2.3 x 10(18) cm-2 in the hot core, at least one order of magnitude greater than the column densities derived for HCN in its spike and plateau/doughnut components. Radiative excitation by 14 micrometers flux from IRc2 accounts for the (0,1,0) population, provided the hot core is approximately 6-7 x 10(16) cm distant from IRc2, in agreement with the "cavity" model for KL. Toward IRC +10216 we have detected J = 3-2 transitions of both (0,1(1c),(1d), 0) and (0, 2(0), 0) excited states. The spectral profiles have been modeled to yield abundances and excitation conditions throughout the expanding envelope.  相似文献   

11.
Spectra of objects which lie along several lines of sight through the diffuse interstellar medium (DISM) reveal an absorption feature near 3.4 micrometers, which has been attributed to saturated aliphatic hydrocarbons on interstellar grains. The similarity of the absorption bands near 3.4 micrometers (2950 cm-1) along different lines of sight indicates that the carrier of this band lies in the diffuse dust. Several materials have been proposed as "fits" to the 3.4 micrometers feature over the years. A comparison of these identifications is presented. These comparisons illustrate the need for high resolution, high signal-to-noise observational data as a means of distinguishing between laboratory organics as matches to the interstellar material. Although any material containing hydrocarbons will produce features in the 3.4 micrometers region, the proposed "matches" to the DISM do differ in detail. These differences may help in the analyses of the chemical composition and physical processes which led to the production of the DISM organics, although ISO Observations through the 5-8 micrometers spectral region are essential for a definitive identification. A remarkable similarity between the spectrum of the diffuse dust and an organic extract from the Murchison meteorite suggests that some of the interstellar organic material may be preserved in primitive solar system bodies. The 3.4 micrometers absorption feature (in the rest frame) has recently been detected in external galaxies, indicating the widespread availability of organic material for incorporation into planetary systems.  相似文献   

12.
    
Mid-infrared imaging photometry of the Orion BN/KL infrared cluster at eight wavelengths between 5 and 20µm using a 58 × 62 pixel imaging array camera has revealed new compact sources and the large-scale structure of the region in diffraction-limited (1 arcsec) detail. Several new objects have been detected within a few arcsec of IRc2, widely thought to be the principal luminosity source for the entire BN/KL complex. Detailed color temperature and emission opacity images are derived from the 7.8, 12.4 and 20.0µm observations, and the 9.8µm image is used to derive an image of silicate dust extinction for the region. The color temperature, opacity, and extinction images show that IRc2 may not be the single dominant luminosity source for the BN/KL region; substantial contributions to the luminosity could be made by IRc7, BN, KL, and five new compact 10µm sources detected within a few arcseconds of IRc2. We suggest that a luminous, early-type star near IRc2, which is associated with the compact radio source I and the Orion SiO maser, is the dominant luminosity source in the BN/KL region, hidden from view by cool dust material with at least Av 60 mag of visible extinction.  相似文献   

13.
High spatial resolution observations (approximately 5") were made for the 3 mm transitions of methanol (CH3OH), methyl formate (HCOOCH3), and dimethyl ether [(CH3)2O] toward Orion-KL using the Nobeyama Millimeter Array. The 15(3)-14(4) A- CH3OH emission appears to be elongated along the line connecting IRc2 and "the southern condensation (SC)", which may suggest a relation between methanol and the outflow from IRc2. The HCOOCH3 (7(1,6)-6(1,5)) and (CH3)2O (15(2,13)-15(1,14)) emissions appear to be well concentrated toward SC with an angular size of approximately 6".5 (at the 2 sigma level). There also exists another oxygen-rich condensation to the west of IRc2 (angular size approximately 4".5) having column densities of HCOOCH3 and (CH3)2O comparable to those of SC. We derive the total column densities 6.8 x 10(16) cm-2, 1.4 x 10(16) cm-2 and 2.7 x 10(16) cm-2 for CH3OH, HCOOCH3, and (CH3)2O, respectively, at the core of SC.  相似文献   

14.
使用澳大利亚Parkes64m射电望远镜,在五个不同的位置上观测了OH17.72.0附近的弱OH脉泽源.发现了一个新的弱OH脉泽源,其峰值速度为52.5km/s.利用二维Gaussian拟合技术,得到了这个源的最佳拟合位置  相似文献   

15.
2 to 20 micrometers photometry of the inner dust coma of comet Halley was obtained at the NASA IRTF on Mar 6.85, 12.8, 13.75, 17.7, and 24.8. Positions offset 10" were measured as well as the central brightness. The strength of the 10 micrometers emission feature was observed to vary with location in the coma. The infrared emission is in general agreement with the dust size distribution measured from the Vega and Giotto spacecraft. Mar 6.8, 17.7, and 24.8 corresponded to strong dust jet activity. The strength of the 10 micrometers silicate emission is shown to be a sensitive indicator of grain size and thus of jet activity. Dust production rate on March 13.75, 6 h before Giotto encounter, was approximately 10(7) gm s-1.  相似文献   

16.
We have studied the spectral and spatial distribution across the Orion Bar of the 3-14 micrometers emission, including hydrogen Brackett alpha and 12.8 micrometers [Ne II] emission lines and several "dust" emission features. The data indicate that the "dust" consists of three components; (1) "classical" dust with a temperature of approximately 60 K accounting for emission longward of 20 micrometers, (2) amorphous carbon particles or polycyclic aromatic hydrocarbon (PAH) clusters (approximately 400 C atoms) which produce broad emission features in the 6-9 and 11-13 micrometers bands, and (3) free PAHs which emit in sharper bands (most strongly at 3.3, 6.2, 7.7, 8.6, and 11.3 micrometers). The 3.3 and 11.3 micrometers features, which are due to C-H modes, are well correlated spatially, while the 7.7 micrometers band, due to C=C modes, has a different distribution than the 3.3 and 11.3 micrometers bands. We conclude that the sharp emission bands arise in the photodissociation transition region between the H II region and the molecular cloud and are not present in the H II region. The broad continuum feature extending from 11-13 micrometers is strong in both regions. Previous broad-band observations of the 10 and 20 micrometers flux distributions, which show that the 10 micrometers radiation extends farther into the neutral gas to the south than the 20 micrometers radiation, suggest that some of the 10 micrometers flux is supplied via a nonthermal mechanism, such as fluorescence.  相似文献   

17.
We present subarcsec angular resolution observations of the neutral gas in the nearby starburst galaxy NGC 520. The central kpc region of NGC 520 contains an area of significantly enhanced star formation. The radio continuum structure of this region resolves into ∼10 continuum components. By comparing the flux densities of the brightest of these components at 1.4 GHz with published 15-GHz data we infer that these components detected at 1.4 and 1.6 GHz are related to the starburst and are most likely to be collections of several supernova remnants within the beam. None of these components is consistent with emission from an active galactic nuclei. Both neutral hydrogen (H  i ) and hydroxyl (OH) absorption lines are observed against the continuum emission, along with a weak OH maser feature probably related to the star formation activity in this galaxy. Strong H  i absorption  ( N H∼ 1022 atoms cm−2)  traces a velocity gradient of 0.5 km s−1 pc−1 across the central kpc of NGC 520. The H  i absorption velocity structure is consistent with the velocity gradients observed in both the OH absorption and in CO emission observations. The neutral gas velocity structure observed within the central kpc of NGC 520 is attributed to a kpc-scale ring or disc. It is also noted that the velocity gradients observed for these neutral gas components appear to differ with the velocity gradients observed from optical ionized emission lines. This apparent disagreement is discussed and attributed to the extinction of the optical emission from the actual centre of this source hence implying that optical ionized emission lines are only detected from regions with significantly different radii to those sampled by the observations presented here.  相似文献   

18.
Images of neutral hydrogen 21 cm absorption and radio continuum emission at 1.4 GHz from Mrk 273 were made using the Very Long Baseline Array and Very Large Array. These images reveal a gas disk associated with the northern nuclear region with a diameter 0&farcs;5 (370 pc) at an inclination angle of 53 degrees. The radio continuum emission is composed of a diffuse component plus a number of compact sources. This morphology resembles those of nearby, lower luminosity starburst galaxies. These images provide strong support for the hypothesis that the luminosity of the northern source is dominated by an extreme compact starburst. The H i 21 cm absorption shows an east-west gradient in velocity of 450 km s-1 across 0&farcs;3 (220 pc), which implies an enclosed mass of 2x109 M middle dot in circle, comparable to the molecular gas mass. The brightest of the compact sources may indicate radio emission from an active nucleus, but this source contributes only 3.8% to the total flux density of the northern nuclear regions. The H i 21 cm absorption toward the southeast radio nucleus suggests infall at 200 km s-1 on scales 相似文献   

19.
Solar Mesosphere Explorer (SME) observations of the 3 a.m. 1.27 micrometers nightglow at 45 N latitude, averaged over the period 10-31 July 1984, are reported. From the deduced volume emission rates, we derive the O2(a1 delta g) night-time production rates for the 80-100 km altitude range. Utilizing the mean SME-acquired 3 p.m. ozone profile for the same latitude and time period and an updated photochemical model, we determine night-time O, O3, H, OH, HO2, and H2O2 profiles. These are used in calculating the rates of reactions which are sufficiently exothermic to produce O2(1 delta) or excited states of OH or HO2, which could transfer their energy to O2 to form O2(1 delta). Of these reactions, most have rates that are quite small compared with the observed night-time O2(1 delta) production rate. For several others, laboratory experiments have found O2(1 delta) yields which are insufficient for simulating the observed O2(1 delta). Using yields of O2(1 delta) based on published laboratory and observational studies, we find that the sum of two reaction sequences can approximate the SME measurements: (1) O+O+M and (2) H+O3 followed by OH*+O2.  相似文献   

20.
We have obtained velocity-resolved spectra of the 12C II 157.8 microns 2P3/2-2P1/2 fine structure line in the M42 region of Orion. Observations at 0.8 km s-1 resolution with a laser heterodyne spectrometer show multiple velocity components in some locations, with typical linewidths of 3-5 km s-1. Spectra of theta 1C and BN-KL also show weak emission from the F = 2-1 hyperfine component of the equivalent 13C II line. From the observed 12C II/13C II line intensity ratios, we deduce that the 12C II emission is optically thick with tau approximately 5 at both positions. Excitation temperatures of 128 K and 90 K, together with column densities of approximately 1 x 10(19) cm-2 and approximately 4 x 10(18) cm-2, are derived for theta 1C and BN-KL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号