首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
撞击坑是月表最典型的地质单元,其溅射物作为撞击坑的坑外组成部分可分布到距离坑中心10个直径距离之外的区域,因此撞击溅射物也是月球地质编图中最重要的表达要素之一。本文使用月球勘测轨道器(LRO)的激光高度计(LOLA)数据、广角相机(WAC)影像、窄角相机(NAC)影像以及Clementine的UVVIS多光谱数据,研究了哥白尼纪正面月海区直径31km的Kepler撞击坑和背面月陆区直径30km的Necho撞击坑。哥白尼纪撞击坑溅射沉积物可以分为三个相:连续溅射沉积相(CE)、不连续溅射沉积相(DE)和辐射纹(CR)。连续溅射沉积相分布在最大约2.6个半径范围之内,不连续溅射沉积相分布在最大近11个半径范围之内,辐射纹分布在最大近29个半径范围之内。本文强调了多源数据结合在识别撞击坑溅射沉积物中的作用,对Kepler坑和Necho坑溅射沉积物进行了填图,不对称分布的特征表明这两个坑可能形成于倾斜撞击。  相似文献   

2.
The Pacific margin of the Antarctic Peninsula to the southwest of the Hero Fracture Zone (HFZ) is a former subducting margin which became inactive following the arrival of ridge crest segments of the Antarctic–Phoenix ridge at the margin during the Tertiary. In contrast, the part of the margin to the northeast of the HFZ remains active. Tertiary convergence was approximately perpendicular to the margin and ongoing motion is thought to have the same orientation. A new seismic reflection profile running along Boyd Strait, just northeast of the landward projection of the HFZ, shows major structural components similar to those typically observed along the margin to the southwest of the HFZ. In order of increasing proximity to the margin, these components are: the inner shelf, the shelf basin, the mid-shelf basement high (MSBH), and the outer shelf. The continuation of the post-subduction margin structures to the active margin suggests that the boundary between crust with passive and active margins characteristics is not sharply defined. Our postulated scenario for tectonic evolution along Boyd Strait is that: (1) before the arrival of the last ridge crest segment to the southwest of the HFZ, the inner shelf and the shelf basin were part of a Cretaceous–Tertiary arc and forearc area, (2) after the arrival, thermal effects resulting from interaction of the ridge crest with the margin just southwest of the HFZ lead to the formation of the MSBH to the northeast, but MSBH uplift in Boyd Strait did not prevent concurrent cross-shelf sediment transport contributing to development of an extensive outer shelf on the seaward flank of the MSBH, (3) Recent extension in Bransfield Strait, a marginal basin to the northeast of the landward projection of the HFZ, has caused about 10 km of seaward deflection in the strike of the part of the MSBH to the northeast of the projection of the HFZ.  相似文献   

3.
Comparison of a new compilation of available Arctic bathymetric data north of 85° N latitude with previously published charts shows large discrepancies in the position and morphology of several major Arctic sea-floor features. Near the North Pole the Lomonosov Ridge pinches to a width of about 20 km with very steep slopes. The crest of the Ridge at this location is displaced dextrally by about 80 km. Also, the crest of this ridge curves towards Ellesmere Island and does not continue towards Greenland. The Marvin Spur is actually a series of knolls or sea mounts with relief varying from 500 to over 1300 m. The 600 km wide arch known as the Alpha Cordillera consists of closed, wide (10–40 km) elongated (180–260 km) troughs and ridges with relief of over 1000 m. Circular sea mounts and deeps are also noted along this Cordillera. The Arctic Mid-Oceanic Cordillera is a rather flat 200 km wide feature that tilts gently upward by about 500 m from the Pole Abyssal Plain to the Barents Abyssal Plain. It is characterized by a series of narrow ridges and troughs usually less than 20 km wide with a central deep trough over 5100 m deep and shallow ridges rising to heights of 2600 m. These features generally parallel the Lomonosov Ridge. This cordillera appears to be abruptly truncated along the Greenwich meridian. The Morris Jesup Plateau is a single pronged northeast trending feature with relatively shallow westward slopes and steeply dipping eastward slopes.  相似文献   

4.
Goat Paddock in northern Western Australia is a ~5 km-diameter impact crater of Eocene age excavated in gently dipping Proterozoic sandstones. Roughly radial gorges formed by post-impact erosion provide cross-sectional views of the wall and rim zone. The predominant structural theme is one of synclinal rim folding with broad zones in which bedrock strata were deformed by impact to steep, vertical and overturned attitudes. Impact breccia is found craterward of deformed bedrock, on top of it, and downdropped into fault troughs roughly concentric to the crater. The bedrock?–?breccia contact is sharp in some places and gradational in others. In at least one section, the entire mass of upturned bedrock and breccia was displaced radially over essentially undisturbed bedrock, as indicated by slickensides on the horizontal contact. Talus deposits are similar to breccia, but show rough size sorting and clast orientation that dips steeply craterward, indicating that the talus formed as slides down the oversteepened crater wall immediately after crater formation. Shatter cones in some clasts indicate that allogenic material is incorporated in these deposits. Suevite, characterised by ropy flow textures, and by microclasts of quartz with planar deformation features, planar fractures, and of vesiculated silica glass, was found overlying deformed bedrock at a point where the surface of the bedrock forms a nearly horizontal bench midway up the crater wall. The crater was at least partially filled by later sediments, represented by bedded conglomerate close to the crater wall grading inward to sand, silt and mudstone recovered by drillholes on the crater floor. Some of the talus and conglomerate occupy re-entrants in the crater walls, suggesting an original scalloped outline to the crater. Two drillholes, one central and one halfway to the wall, both reached brecciated sandstone after penetrating 210 m of lake sediments. Goat Paddock has a flat floor with no indication of a central uplift and a depth/diameter ratio of ~0.073. This crater form, coupled with the modification of the crater walls by slumping and the scalloped outline of the crater rim suggests that Goat Paddock bridges the two traditional classes of impact crater: simple and complex.  相似文献   

5.
The Chicxulub 200 km diameter crater located in the Yucatan platform of the Gulf of Mexico formed 65 Myr ago and has since been covered by Tertiary post-impact carbonates. The sediment cover and absence of significant volcanic and tectonic activity in the carbonate platform have protected the crater from erosion and deformation, making Chicxulub the only large multi-ring crater in which ejecta is well preserved. Ejecta deposits have been studied by drilling/coring in the southern crater sector and at outcrops in Belize, Quintana Roo and Campeche; little information is available from other sectors. Here, we report on the drilling/coring of a section of 34 m of carbonate breccias at 250 m depth in the Valladolid area (120 km away from crater center), which are interpreted as Chicxulub proximal ejecta deposits. The Valladolid breccias correlate with the carbonate breccias cored in the Peto and Tekax boreholes to the south and at similar radial distance. This constitutes the first report of breccias in the eastern sector close to the crater rim. Thickness of the Valladolid breccias is less than that at the other sites, which may indicate erosion of the ejecta deposits before reestablishment of carbonate deposition. The region east of the crater rim appears different from regions to the south and west, characterized by high density and scattered distribution of sinkholes.  相似文献   

6.
The Lockne impact structure in Jämtland (63°00'20"N, 14°49'30"E) formed in the Middle Ordovician at approximately 455 Ma. The structure is a concentric crater with a total diameter of 13.5 km. The impact took place in a marine environment. Seawater played an important role in the cratering process and in crater morphology and the amount of melt remaining in the structure. Seawater rushed back into the crater in a resurge, eroding and redepositing the ejecta among the resurge deposit. Seawater furthermore facilitated the hydrothermal system, which was driven by the residual heat in the structure. The Lockne structure hosts shocked quartz and an iridium anomaly. The rim wall round the crater collapsed in the modification stage of the crater and was annihilated by the resurge. The fractured basement and the impact breccia were initially rich in open cavities. These became partly filled with dominantly calcite. The filling contributed to a low-density contrast, generating a negative gravity anomaly of 22 gu. The gravity model indicates a central uplift and a NW-directed tilt of the structure. This tilt is also seen in the magnetic models. The apparent absence of any impact melt is probably real and related to the environment of impact.  相似文献   

7.
The Chicxulub and Ries impact craters were excavated from layered continental terrains that were composed of carbonate-bearing sedimentary sequences and underlying crystalline silicate basement materials. The Chicxulub and Ries impact events were sufficiently large to produce complex peak-ring impact craters. The walls of transient craters and excavation cavities, with diameters of 12-16 km for the Ries and 90-100 km for Chicxulub, collapsed to form final crater diameters of ∼24 and ∼180 km, respectively. Debris from both the sedimentary and crystalline layers was ejected during crater formation, but the bulk of the melting occurred at depth, in the silicate basement. The volume of melt and proportion of melt among shock-metamorphosed debris was far larger at Chicxulub, producing a central melt sheet ∼3 km in depth. The central melt sheet was covered with melt-bearing polymict breccias and, at the Ries, similar breccias (crater suevites) filled the central cavity. Also at the Ries (and presumably at Chicxulub), large hill-size megablocks of crystalline basement material were deposited near the transient crater rim. Blocks and megablocks of sedimentary lithologies were ejected into the modification zone between the peak ring and final crater rim, while additional material was slumping inward during crater growth, and buried beneath a fallout deposit of melt-bearing polymict breccias. The melt and surviving clasts in the breccias are dominantly derived from the deeper, basement lithologies. At greater distances, however, the ejecta is dominated by near-surface sedimentary lithologies, large blocks of which landed with such high energy that they scoured and eroded the pre-existing surface. The excavation and ejecta pattern produced lithological and chemical variations with radial distance from the crater centers that evolve from basement components near the crater centers to sedimentary components far from the crater centers. In addition, carbonate (and anhydrite in the case of Chicxulub) was vaporized, producing environmentally active gases. The vaporized volume produced by the Ries impact event was too small to dramatically alter the evolution of life, but the vaporized volume produced by the Chicxulub impact event is probably a key factor in the Cretaceous-Tertiary boundary mass extinction event.  相似文献   

8.
冰川槽谷作为冰川作用区分布最典型的冰川地貌之一,对其形态特征及影响因素的研究,有助于揭示冰川发育的动力学过程.基于V指数模型及MATLAB半自动提取方法,分析并探讨了他念他翁山中段冰川槽谷形态发育特征及造成槽谷形态差异的影响因素.结果表明:研究区共发育206条冰川槽谷,大多为"U"形或偏"U"形,长4.5~26 km之...  相似文献   

9.
A large, roughly circular structural basin is recognised on the Falkland (Malvinas) Plateau to the NW of West Falkland (Gran Malvina) Island (S 51°00′, W 62°00′). The basin, seen in seismic‐reflection profiles and evident as a large negative gravity anomaly, has a diameter of ~250 km. The age of the basin is estimated to be Late Palaeozoic. It is completely buried by younger sediments and has no topographic expression on the sea floor. We propose that the basin and geophysical anomalies, especially the combination of a large circular negative gravity anomaly with a rim of positive anomalies, and a marked circular series of positive magnetic anomalies in the same area, may be best explained by the presence of a large buried impact structure.  相似文献   

10.
The Gnargoo structure is located on the Gascoyne Platform, Southern Carnarvon Basin, Western Australia, and is buried beneath about 500 m of Cretaceous and younger strata. The structure is interpreted as being of possible impact origin from major geophysical and morphometric signatures, characteristic of impact deformation, and its remarkable similarities with the proven Woodleigh impact structure, about 275 km to the south on the Gascoyne Platform. These similarities include: a circular Bouguer anomaly (slightly less well-defined at Gnargoo than at Woodleigh); a central structurally uplifted area comprising a buried dome with a central uplifted plug; and the lack of a significant magnetic anomaly. Gnargoo shows a weakly defined inner 10 km-diameter circular Bouguer anomaly surrounded by a broadly circular zone, ~75 km in diameter. The north?–?south Bouguer anomaly lineament of the Giralia Range (a regional topographic and structural feature) terminates abruptly against the outer circular zone which is, in turn, intersected on the eastern flank by the Wandagee Fault. A <?28 km-diameter layered sedimentary dome of Ordovician to Lower Permian strata, surrounding a cone-shaped, central uplift plug of 7?–?10 km diameter, are inferred from the seismic data. Seismic-reflection data indicate a minimum central structural uplift of 1.5 km, as compared to a model uplift of 7.3 km calculated from the outer structural diameter. An interpretation of Gnargoo in terms of a plutonic or volcanic caldera/ring origin is unlikely as these features display less regular geometry, are typically smaller and no volcanic rocks are known in the onshore Gascoyne Platform. An interpretation of Gnargoo as a salt dome is likewise unlikely because salt structures tend to have irregular geometry, and no extensive evaporite units are known in the Southern Carnarvon Basin. Morphometric estimates of the rim-to-rim diameter based on seismic data for the central dome correspond to the observed diameter deduced from gravity data, and fall within the range of morphometric parameters of known impact structures. The age of Gnargoo is constrained between the deformed Lower Permian target rocks and unconformably overlying undeformed Lower Cretaceous strata. Because of its large dimensions, if Gnargoo is an impact structure, it may have influenced an environmental catastrophe during this period.  相似文献   

11.
During the Late Cretaceous, high global sea‐level meant that most of the NW European craton was flooded by the deep epeiric ‘chalk sea’. The classical paradigm for chalk deposition envisages a quiet rain of minute skeletal debris of coccolithophorid algae and other pelagic organisms deposited as horizontal, flat‐lying pelagic oozes with local redeposition by slumps, slides and debris flows along faults and other structural features. Seismic data from the Danish Basin and elsewhere necessitate a revision of this paradigm. These demonstrate that the chalk sea floor had a considerable relief, commonly of more than a hundred metres amplitude, comprising moats, drifts, mounds and channels. Seismic sections from the Kattegat sea illustrate the development in the Maastrichtian of a deep moat adjacent to a topographic ridge formed over the inverted NW–SE‐trending Sorgenfrei–Tornquist Zone. The moat was up to 120 m deeper than its SW flank which was formed by an internally complex elongate drift, up to 20 km wide with an estimated length of ca 200 km. Smaller mound‐like features, channels and clinoform beds are superimposed on the large‐scale relief. The sea floor relief is interpreted to have formed in response to persistent bottom currents, flowing parallel to bathymetric contours. The initial build‐up of the broad, gently convex‐up sheeted drift was controlled by relatively low‐velocity bottom currents. The region of highest current velocity was gradually shifted NE‐wards towards the inversion zone ridge, resulting in the formation of the deep moat flanked by the elongate drift. The current is interpreted to have flowed from the SE towards NW on the basis of the internal architecture of the elongate drift and the NW‐ward branching and decrease in moat relief. The architecture and morphology of the moat drift and other features of the chalk sea floor are in all aspects similar to contourite systems of modern continental margins. It is accordingly proposed that the fundamental physical oceanographic concept – contour currents and their resulting contourite drifts – is extended to include the deep epeiric seas which covered NW Europe during the Late Cretaceous.  相似文献   

12.
The Toga tuff ring is a large, dissected tuff ring located on the modern shoreline of the Oga Peninsula, NE Japan. The crater measures 2 km by 2.4 km and the inner crater walls are inclined inward at 40–50° to form a funnel shape. Intra-crater beds are mainly composed of platy or blocky, non- to variably vesicular glass shards and pumice lapilli of K-rich rhyolite composition and dip inward at 10°–30° or less. A gravity model suggests they fill the downward-tapering conduit to a depth of 548 m below sea level. Fission-track dates from the intra-crater deposits indicate the age of the Toga tuff ring is ca. 420 ka, likely corresponding to a stage of global sea-level fall, MIS 12. Subsequent sea-level rise and marine transgression is inferred to have resulted in erosion of almost the entire outer tuff ring by post-eruptive wave action.The intra-crater deposit`s are exposed over a thickness of 50 m in the deeply incised crater floor. They comprise mainly monomictic tephra of phreatomagmatic origin and are similar in grain-size distribution and sedimentary structures to relatively high and low density turbidites, although the constituents, sparse block-sag structures, and multiple fluid-escape dikes suggest that they are the subaqueous equivalents of high- and low-density pyroclastic currents with similar grain-sizes and degree of grain-size sorting. Marine diatom frustules sparsely contained in the deposits suggest that the crater was likely open to the sea, enabling rapid access of seawater to the vent. Pyroclasts ejected through the water flowed back into the crater to form eruption-fed oscillatory or circular turbidity currents and were repeatedly recycled and variably abraded by subsequent explosions, while many juvenile pumice lapilli and ash grains were carried beyond the crater rim to form relatively dilute pyroclastic currents. The Toga example suggests that primary deposits emplaced in crater lakes are well sorted, graded and stratified with polymodal flow directions, sparse block-sags, and vesicular and fragile fragments that are more or less abraded by repeated explosions and recycling.  相似文献   

13.
In the Hazara arc region of northern Pakistan, some of the active basements structures buried below a thick, detached sedimentary layer are inferred from the distribution of lineaments and the drainage patterns, as viewed in Landsat satellite imagery and from river profiles.A prominent set of NW-trending lineaments seen on satellite imagery, coincides approximately with the southwest or updip side of the Indus—Kohistan seismic zone (IKSZ) —the most active basement structure of the region, even though this structure is buried beneath and decoupled from a 12 km thick sedimentary layer. The IKSZ has been interpreted as an extension of the Himalayan Basement Thrust, and is also associated with a prominent topographic “step”.Knickpoints on major rivers in the region lie on or north of the IKSZ. All Indus River tributaries, examined north of the IKSZ, show prominent knickpoints, while two tributaries draining south of the IKSZ have no knickpoints. These results suggest ongoing uplift above and north of the IKSZ, and are consistent with the tectonic model obtained from the seismic data.Another prominent lineament set is detected along the north—south section of the Indus River. This set is probably related to the Indus River horst—anticline and associated reentrant.One of the two highest lineament concentrations occurs at the intersection between the NW-trending IKSZ lineament and the N-trending Indus River lineament. The other is along the west bank of the Indus Valley, 25 km north of Tarbela Dam.A topographic ridge (Swabi—Nowshera ridge) appears to be forming along the west side of the Indus River, in the Peshawar Basin. The rising ridge is ponding the Kabul River upstream of Nowshera, where the drainage is braided.  相似文献   

14.
The ridge and swale topography of the Middle Atlantic Bight is best developed on the Delaware-Maryland inner shelf. Here sand ridges can be seen in all stages of formation. Several aspects of the ridge field are pertinent to the problem of ridge genesis. The first is ridge morphology. There is a systematic morphologic change from shoreface ridges through nearshore ridges to offshore ridges, which reflects the changing hydraulic regime. As successively more seaward ridges are examined, maximum side slope decreases, the ratio of maximum seaward slope to maximum landward slope decreases, and the cross-sectional area increases. These changes in ridge morphology with depth and distance from shore appear to be equivalent to the morphologic changes experienced by a single ridge during the course of the Holocene transgression. A second aspect is the change in bottom sediment characteristics that accompanies these large-scale morphologic changes. Megaripples, sand waves and mud lenses appear in the troughs between nearshore and offshore ridges. These changes indicate that the storm flows which maintain ridges are less frequently experienced in the deeper sector, and that the role of high-frequency wave surge becomes less important relative to the role of the mean flow component in shaping the sea-floor. A third aspect is the systematic relationship of grain size to topography. Grain size is 90° out of phase with topography, so that the coarsest sand lies between the axis of the landward trough and the ridge crest, while the finest sand lies between the ridge crest and the axis of the seaward trough. This relationship is characteristic of large-scale bedforms. Finally, flow was measured and transport calculated on the same ridge during a one-month period (November 1976). Threshold was exceeded only during storm events. Mean transport was southerly and a little seaward with respect to both the ridge crest and the shoreline. These flow measurements are in conformity with the pattern of smaller bedforms. A 43-year time series of bathymetric change for this ridge reveals a systematic pattern of landward flank erosion, seaward flank deposition, and seaward crest migration. Sand ridges are considered the consequence of constructive feedback between an initial topography and the resulting distribution of bottom shear stress. The relationship between grain size and topography supports this model, but does not account directly for the oblique angle of the ridge with respect to the coastline. This feature may be due to a more rapid alongshore migration rate of the inshore edge of the ridge than the offshore edge, and the relationship between this migration rate, and the rate of shoreface retreat.  相似文献   

15.
The sedimentary infills of subglacially eroded bedrock troughs in the Alps are underexplored archives for the timing, extent and character of Pleistocene glaciations but may contain excellent records of the Quaternary landscape evolution over several glacial–interglacial cycles. The onset of sedimentation in these bedrock troughs is often reflected by diamicts and gravels directly overlying bedrock in the deepest basin segments. Subglacial or proglacial depositional environments have been proposed for these coarse‐grained basal units but their characteristics and origin remain controversial. This article presents results from drill cores that recovered a coarse‐grained basal unit in a major buried bedrock‐trough system in the Lower Glatt Valley, northern Switzerland. The excellent core recovery allowed a detailed study combining macroscopic, microscopic and geochemical methods and gives unprecedented insights into the transition from erosion to deposition in overdeepened bedrock troughs. These results show that the basal infill comprises diamicts, interpreted as subglacial tills, separated by thin sorted interbeds, originating from subglacial cavity deposition. The stacking of these units is interpreted to represent repeated switching between a coupled and decoupled ice–bed‐interface indicating an ever‐transforming mosaic of subglacial bed conditions. Decoupling in response to high basal water pressures is probably promoted by the confined subglacial hydraulic conditions resulting from the bedrock acting as aquitards, the narrow reverse sloping outlet and a large catchment area. While stratigraphic and lithological evidence suggests that erosion and the onset of basal sedimentation occurred during the same glaciation, different scenarios for the relative timing of infilling in relation to formation and glaciation of the bedrock trough are discussed. Overlying deltaic and glaciolacustrine sediments suggest deposition during subsequent deglaciation of the bedrock trough. The basal sediment characteristics are in agreement with previous reports in hydrogeological and seismic exploration and suggest the occurrence of similar basal successions in other subglacially overdeepened basins in the Alps and elsewhere.  相似文献   

16.
月表典型区撞击坑形态分类及分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
月球表面环形构造主要有撞击坑、火山口和月海穹窿3种,其中撞击坑分布最广泛,是研究月表环形构造的主要内容。由于月表撞击坑数量大、种类多及其形成伴随着整个月球地质的演化过程,因此这种月表地形地貌比较完整地记录了月球表面地貌随时间的改造过程以及改造类型。文中通过研究撞击坑遥感影像及形貌特征,总结归纳为简单型、碗型、平底型、中央隆起型、同心环型、复杂型及月海残留型7种撞击坑类型,用来描述月表典型区域撞击坑的形态特征。从结构和物质两方面进行了月表典型区域撞击坑的形态地貌参数提取,综合利用嫦娥一号CCD 影像数据、LROC数据,得到了该区域撞击坑形态数据(坑底、坑唇、坑壁、坑缘、溅射物覆盖层、中央峰)和形态测量数据(直径、深度、地理位置)。研究发现,LQ 4地区的撞击坑分布可分为月陆区和月海区,月陆区的撞击坑多以中小型撞击坑为主,其分布密度极高,形成年代较早,月海区撞击坑多为年轻的撞击坑,分化程度较低,分布密度也较低。  相似文献   

17.
Al Wahbah, on Harrat Kishb, is the most spectacular of several volcanic explosion craters found on the lava fields of western Saudi Arabia. A Quaternary phreatic event drilled out a crater 2 km in diameter through Proterozoic basement rocks and Quaternary lava flows. The crater is rimmed with a tuff ring of debris from the explosion, around which were diverted Holocene basaltic lavas.  相似文献   

18.
The Diamantina ~120 km-diameter ring feature, a unique feature in western Queensland, is manifested by a near-360° circular drainage pattern, radial creeks and a coincident radiometric K–Th–U pattern. The structure has been studied in the context of an investigation of the nature and origin of Australian circular structures. Geophysical signatures, including total magnetic intensity (TMI), gravity and seismic reflection transect data from the region of the ring feature are examined to help test the origin of the structure. A western subdued TMI arc with a ~110 km diameter is offset by ~30 km eastward from the western rim of the drainage ring. Bouguer anomaly data show a gravity low near the centre of the ring structure, but no outer circular pattern. Two recent seismic transects indicate a moderately reflective to weakly reflective crust below flat lying strata of the Jurassic–Cretaceous Eromanga and Permian–Triassic Galilee basins, and above a usually well-defined ~39–45 km-deep Moho. An approximately ~100 km-wide seismically non-reflective to weakly reflective zone overlapping the Diamantina ring feature separates crust of different seismic reflection character to either side. The nature of the seismic non-reflective crust is unknown. A potential interpretation of the ring structure in terms of asteroid impact cannot be confirmed or rejected given the present state of knowledge, owing to (1) the near-30 km depth of the seismically non-reflective zone along the transects; and (2) the shift of the TMI part ring zone relative to the geomorphic expression of the Diamantina ring feature. A test of the nature and origin of the Diamantina ring feature requires a cored drill hole near the centre of the TMI ring structure.  相似文献   

19.
The 85°E Ridge extends from the Mahanadi Basin, off northeastern margin of India to the Afanasy Nikitin Seamount in the Central Indian Basin. The ridge is associated with two contrasting gravity anomalies: negative anomaly over the north part (up to 5°N latitude), where the ridge structure is buried under thick Bengal Fan sediments and positive anomaly over the south part, where the structure is intermittently exposed above the seafloor. Ship-borne gravity and seismic reflection data are modelled using process oriented method and this suggest that the 85°E Ridge was emplaced on approximately 10–15 km thick elastic plate (Te) and in an off-ridge tectonic setting. We simulated gravity anomalies for different crust-sediment structural configurations of the ridge that were existing at three geological ages, such as Late Cretaceous, Early Miocene and Present. The study shows that the gravity anomaly of the ridge in the north has changed through time from its inception to present. During the Late Cretaceous the ridge was associated with a significant positive anomaly with a compensation generated by a broad flexure of the Moho boundary. By Early Miocene the ridge was approximately covered by the post-collision sediments and led to alteration of the initial gravity anomaly to a small positive anomaly. At present, the ridge is buried by approximately 3 km thick Bengal Fan sediments on its crestal region and about 8 km thick pre- and post-collision sediments on the flanks. This geological setting had changed physical properties of the sediments and led to alter the minor positive gravity anomaly of Early Miocene to the distinct negative gravity anomaly.  相似文献   

20.
高桂云  王成虎  王春权 《岩土力学》2018,39(Z1):191-202
直接拉伸试验是测量岩石抗拉强度最直接有效且最有理论和实际价值的方法,但在传统直接拉伸试验中试样加工难度大,测试设备要求高。为克服传统直接拉伸试验加载困难的缺点,准确测定岩石的抗拉强度,设计研发了多直径岩芯双圆环直接拉伸试验机,从试验和数值模拟两方面重点研究了双圆环直接拉伸试验中试样尺寸的影响和最优取值范围,包括外环直径与试样直径比r1/R、内环直径与试样直径比r2/R、内环直径与外环直径比r2/r1三个比值的最优范围。研究结果发现,外环直径和内环直径满足r1/R=0.62±0.08、r2/R=0.45±0.12、r2/r1=0.64±0.06时内外环根部与内外环重叠部位最大应力值相近,获得的抗拉强度与理论值较一致,与其他试验相比,双圆环直接拉伸试验的结果标准差和振荡系数最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号