首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A regional chemical transport model, RAMS-CMAQ, was employed to assess the impacts of biosphere–atmosphere CO2 exchange on seasonal variations in atmospheric CO2 concentrations over East Asia. Simulated CO2 concentrations were compared with observations at 12 surface stations and the comparison showed they were generally in good agreement. Both observations and simulations suggested that surface CO2 over East Asia features a summertime trough due to biospheric absorption, while in some urban areas surface CO2 has a distinct summer peak, which could be attributed to the strong impact from anthropogenic emissions. Analysis of the model results indicated that biospheric fluxes and fossil-fuel emissions are comparably important in shaping spatial distributions of CO2 near the surface over East Asia. Biospheric flux plays an important role in the prevailing spatial pattern of CO2 enhancement and reduction on the synoptic scale due to the strong seasonality of biospheric CO2 flux. The elevation of CO2 levels by the biosphere during winter was found to be larger than 5ppm in North China and Southeast China, and during summertime a significant depletion( 7 ppm) occurred in most areas,except for the Indo-China Peninsula where positive bioflux values were found.  相似文献   

2.
3.
Information on the spatial and temporal pat- terns of surface carbon flux is crucial to understanding of source/sink mechanisms and projection of future atmospheric CO2 concentrations and climate. This study presents the construction and implementation of a terrestrial carbon cycle data assimilation system based on a dynamic vegetation and terrestrial carbon model Vegetation-Global-Atmosphere-Soil (VEGAS) with an advanced assimilation algorithm, the local ensemble transform Kalman filter (LETKF, hereafter LETKF-VEGAS). An observing system simulation experiment (OSSE) framework was designed to evaluate the reliability of this system, and numerical experiments conducted by the OSSE using leaf area index (LAI) observations suggest that the LETKF -VEGAS can improve the estimations of leaf carbon pool and LAI significantly, with reduced root mean square errors and increased correlation coefficients with true values, as compared to a control run without assimilation. Furthermore, the LETKF-VEGAS has the potential to provide more accurate estimations of the net primary productivity (NPP) and carbon flux to atmosphere (CFta).  相似文献   

4.
The carbon monoxide (CO) concentrations observed at Mt. Waliguan in China (WLG), Ulaan Uul in Mongolia (UUM), Tae-ahn Peninsula in Korea (TAP) and Ryori in Japan (RYO) were analysed between 1991 and 2008. The average annual concentration of CO, a toxic air pollutant, was the highest at TAP (235±44 ppb), followed by RYO (169±35 ppb), UUM (154±27 ppb) and WLG (138±24 ppb). These data obtained in East Asia were also compared with CO data from Mauna Loa, Hawaii. CO tends to be highest in spring and lowest in summer in East Asia, with the exception of WLG. TAP had the highest CO concentrations in all seasons compared with WLG, UUM and RYO, and displays a wide short-term variability in concentration. This is caused by large-scale air pollution owing to its downwind location, close to continental East Asia. CO concentrations observed at TAP were analysed as follows: according to the origin of the isentropic backward trajectory and its transport passage; as continental background airflows (CBG); regionally polluted continental airflows (RPC); oceanic background airflows (OBG); and partly perturbed oceanic airflows (PPO). The high concentrations of CO at TAP are because of the airflow originating from the East Asian continent, rather than the North Pacific. RPCs, which pass through eastern China, appear to have high CO concentrations in spring, autumn and winter. It is noteworthy that the overall trend at TAP does not show an increase despite the fact that energy use in China approximately doubled from 1991 to 2008. OBGs, however, are affected by North Pacific air masses with low CO concentrations in summer.  相似文献   

5.
The seasonal cycle of atmospheric CO2 at surface observation stations in the northern hemisphere is driven primarily by net ecosystem production (NEP) fluxes from terrestrial ecosystems. In addition to NEP from terrestrial ecosystems, surface fluxes from fossil fuel combustion and ocean exchange also contribute to the seasonal cycle of atmospheric CO2. Here the authors use the Goddard Earth Observing System-Chemistry (GEOS-Chem) model (version 8-02-01), with modifications, to assess the impact of these fluxes on the seasonal cycle of atmospheric CO2 in 2005. Modifications include monthly fossil and ocean emission inventories. CO2 simulations with monthly varying and annual emission inventories were carried out separately. The sources and sinks of monthly averaged net surface flux are different from those of annual emission inventories for every month. Results indicate that changes in monthly averaged net surface flux have a greater impact on the average concentration of atmospheric CO2 in the northern hemisphere than on the average concentration for latitudes 30-90°S in July. The concentration values differ little between both emission inventories over the latitudinal range from the equator to 30°S in January and July. The accumulated impacts of the monthly averaged fossil and ocean emissions contribute to an increase of the total global monthly average of CO2 from May to December.An apparent discrepancy for global average CO2 concentration between model results and observation was because the observation stations were not sufficiently representative. More accurate values for monthly varying net surface flux will be necessary in future to run the CO2 simulation.  相似文献   

6.
To assess individual direct radiative effects of diverse aerosol species on a regional scale,the air quality modeling system RAMS-CMAQ(Regional Atmospheric Modeling System and Community Multiscale Air Quality) coupled with an aerosol optical properties/radiative transfer module was used to simulate the temporal and spatial distributions of their optical and radiative properties over East Asia throughout 2005.Annual and seasonal averaged aerosol direct radiative forcing(ADRF) of all important aerosols and individual components,such as sulfate,nitrate,ammonium,black carbon(BC),organic carbon(OC),and dust at top-of-atmosphere(TOA) in clear sky are analyzed.Analysis of the model results shows that the annual average ADRF of all important aerosols was in the range of 0 to-18 W m?2,with the maximum values mainly distributed over the Sichuan Basin.The direct radiative effects of sulfate,nitrate,and ammonium make up most of the total ADRF in East Asia,being concentrated mainly over North and Southeast China.The model domain is also divided into seven regions based on different administrative regions or countries to investigate detailed information about regional ADRF variations over East Asia.The model results show that the ADRFs of sulfate,ammonium,BC,and OC were stronger in summer and weaker in winter over most regions of East Asia,except over Southeast Asia.The seasonal variation in the ADRF of nitrate exhibited the opposite trend.A strong ADRF of dust mainly appeared in spring over Northwest China and Mongolia.  相似文献   

7.
The carbon dioxide (CO2) concentrations and fluxes measured at a height of 17.5 m above the ground by a sonic anemometer and an open-path gas analyzer at an urban residential site in Seoul, Korea from February 2011 to January 2012 were analyzed. The annual mean CO2 concentration was found to be 750 mg m-3, with a maximum monthly mean concentration of 827 mg m-3 in January and a minimum value of 679 mg m-3 in August. Meanwhile, the annual mean CO2 flux was found to be 0.45 mg m-2 s-1, with a maximum monthly mean flux of 0.91 mg m-2 s-1 in January and a minimum value of 0.19 mg m-2 s-1 in June. The hourly mean CO2 concentration was found to show a significant diurnal variation; a maximum at 0700-0900 LST and a minimum at 1400-1600 LST, with a large diurnal range in winter and a small one in summer, mainly caused by diurnal changes in mixing height, CO2 flux, and surface complexity. The hourly mean CO2 flux was also found to show a significant diurnal variation, but it showed two maxima at 0700-0900 LST and 2100-2400 LST, and two minima at 1100-1500 LST and 0300-0500 LST, mainly caused by a diurnal pattern in CO2 emissions and sinks from road traffic, domestic heating and cooking by liquefied natural gas use, and the different horizontal distribution of CO2 sources and sinks near the site. Differential advection with respect to wind direction was also found to be a cause of diurnal variations in both the CO2 concentration and flux.  相似文献   

8.
农田近地面层CO2和湍流通量特征研究   总被引:11,自引:0,他引:11  
刘树华  麻益民 《气象学报》1997,55(2):187-199
利用1985年5月至6月在北京郊区中国科学院农业生态试验研究站的麦田中实测的小麦不同生长期的CO2浓度梯度、光合有效辐射、净辐射、土壤热通量和温度、湿度及风速梯度等量的数据,采用空气动力学方法,计算了CO2通量、感热通量、潜热通量和动量通量。并对观测场地、仪器设备、校准方法及误差分析进行了描述。结果表明:从5月14日到6月15日,在1m,2m和10m处,CO2浓度振幅的日变化分别为103.4到27.5,87.5到27.3和69.8到11.5ppm;光合型和呼吸型的平均CO2浓度分别为345.3,350.6,357.5ppm和373.9,369.7,362.1ppm。在白天,CO2通量和梯度的输送方向是从大气向植被,在中午(11时到13时)输送达到负的最大值。在夜间,CO2通量和梯度输送的方向与白天相反,并且,在早晨(4时到6时)达到正的最大值。CO2通量与净辐射(Rn)、可利用能(H+LE)、光合有效辐射和动量通量之间有较好的相关关系  相似文献   

9.
Episode Simulation of Asian Dust Storms with an Air Quality Modeling System   总被引:1,自引:0,他引:1  
A dust deflation module was developed and coupled with the air quality modeling system RAMS-CMAQ to simultaneously treat all the major tropospheric aerosols(i.e.,organic and black carbons,sulfate,nitrate, ammonia,soil dust,and sea salt).Then the coupled system was applied to East Asia to simulate Asian dust aerosol generation,transport and dry/wet removal processes during 14-25 March 2002 when two strong dust storms occurred consecutively.To evaluate model performance and to analyze the observed features of dust aerosols over the East Asian region,model results were compared to concentrations of suspended particulate matter of 10μm or less(PM10;1-h intervals) at four remote Japanese stations and daily air pollution index (API) values for PM10 at four large Chinese cities.The modeled values were generally in good agreement with observed data,and the model reasonably reproduced two dust storm outbreaks and generally predicted the dust onset and cessation times at each observation site.In addition,hourly averaged values of aerosol optical thickness(AOT) were calculated and compared with observations at four Aerosol Robotic Network (AERONET) stations to assess the model’s capability of estimating dust aerosol column burden.Analysis shows that modeled and observed AOT values were generally comparable and that the contribution of dust aerosols to AOT was significant only with regard to their source regions and their transport paths.  相似文献   

10.
温室效应引起的东亚区域气候变化   总被引:16,自引:2,他引:14  
用中国科学院大气物理研究所的两层大气和二十层大洋环流模式耦合的海气模式进行了控制试验和瞬变响应试验两个长期积分,并用它们的差异来分析大气中二氧化碳含量加倍所引起的东亚区域的气候变化。二氧化碳加倍以后,东亚年平均温度升高,降水增加,土壤湿度也是增加的,但存在着显著的季节性和区域性的差异。因此,又把东亚分成8个区,来详细探讨二氧化碳增加所引起的区域气候变化。选取了3个具有代表性的气候量:温度、降水和土壤湿度。二氧化碳加倍以后,温度的增加和土壤湿度的增加主要出现在冬半年的高纬度,降水增加的最大值也出现在冬半年的高纬度。另外,还初步分析了二氧化碳浓度加倍所引起的温度和降水年际变率的变化  相似文献   

11.
Carbon dioxide(CO_2) is an important greenhouse gas that influences regional climate through disturbing the earth's energy balance. The CO_2 concentrations are usually prescribed homogenously in most climate models and the spatiotemporal variations of CO_2 are neglected. To address this issue,a regional climate model(RegCM4) is modified to investigate the non-homogeneous distribution of CO_2 and its effects on regional longwave radiation flux and temperature in East Asia. One-year simulation is performed with prescribed surface CO_2 fluxes that include fossil fuel emission, biomass burning, air-sea exchange, and terrestrial biosphere flux. Two numerical experiments(one using constant prescribed CO_2 concentrations in the radiation scheme and the other using the simulated CO_2 concentrations that are spatially non-homogeneous) are conducted to assess the impact of non-homogeneous CO_2 on the regional longwave radiation flux and temperature. Comparison of CO_2 concentrations from the model with the observations from the GLOBALVIEW-CO_2 network suggests that the model can well capture the spatiotemporal patterns of CO_2 concentrations. Generally, high CO_2 mixing ratios appear in the heavily industrialized eastern China in cold seasons, which probably relates to intensive human activities. The accommodation of non-homogeneous CO_2 concentrations in the radiative transfer scheme leads to an annual mean change of -0.12 W m~(-2) in total sky surface upward longwave flux in East Asia. The experiment with non-homogeneous CO_2 tends to yield a warmer lower troposphere.Surface temperature exhibits a maximum difference in summertime, ranging from -4.18 K to 3.88 K, when compared to its homogeneous counterpart. Our results indicate that the spatial and temporal distributions of CO_2 have a considerable impact on regional longwave radiation flux and temperature, and should be taken into account in future climate modeling.  相似文献   

12.
Carbon monoxide concentrations were measured over an 8-day period (March 1997) in freshly fallen snow samples collected at Mount Sonnblick (Austria). Diurnal changes were systematically observed in the snow, with higher CO during daytime, indicating that light-dependent CO production processes are active in surface snow layers. Mean daytime CO concentrations in snow varied significantly from one day to another and were found to be well correlated with the daily mean atmospheric CO concentrations. Thus, the more polluted the air mass during the snow fall, the more CO was produced through photolytical processes. Furthermore closed chamber experiments were made, giving similar observations: rapid increases of CO concentration occurred within the chamber when the snow was exposed to sunlight. In the dark, however, CO concentrations decreased. CO fluxes between the surface of the snowpack and the atmosphere were estimated at 0.6 ppb/day which may be significant in the local CO budget but not on a global scale. Laboratory experiments showed that CO was rapidly formed when melted snow samples were exposed to the light from a solar simulator and that the initial CO formation rate was strongly correlated with the concentrations of Total Organic Carbon in the melted snow samples. This correlation indicates that organic compounds present in snow precipitation are the major substrate for the photochemical CO production observed in freshly fallen snow. Recent studies have reported high formaldehyde concentrations in the snowpack and we suggest HCHO photolysis to be partly responsible of CO production in snow.  相似文献   

13.
The interest in the national levels of the terrestrial carbon sink and its spatial and temporal variability with the climate and CO2 concentrations has been increasing. How the climate and the increasing atmospheric CO2 concentrations in the last century affect the carbon storage in continental China was investigated in this study by using the Modified Sheffield Dynamic Global Vegetation Model (M-SDGVM). The estimates of the M-SDGVM indicated that during the past 100 years a combination of increasing CO2 with historical temperature and precipitation variability in continental China have caused the total vegetation carbon storage to increase by 2.04 Pg C, with 2.07 Pg C gained in the vegetation biomass but 0.03 Pg C lost from the organic soil carbon matter. The increasing CO2 concentration in the 20th century is primarily responsible for the increase of the total potential vegetation carbon. These factorial experiments show that temperature variability alone decreases the total carbon storage by 1.36 Pg C and precipitation variability alone causes a loss of 1.99 Pg C. The effect of the increasing CO2 concentration alone increased the total carbon storage in the potential vegetation of China by 3.22 Pg C over the past 100 years. With the changing of the climate, the CO2 fertilization on China's ecosystems is the result of the enhanced net biome production (NBP), which is caused by a greater stimulation of the gross primary production (GPP) than the total soil-vegetation respiration. Our study also shows notable interannual and decadal variations in the net carbon exchange between the atmosphere and terrestrial ecosystems in China due to the historical climate variability.  相似文献   

14.
应用NCEP地面热通量资料, 研究了青藏高原地面感热、潜热的气候状况及其与初夏东亚大气环流之间的关系。发现高原地面热通量的异常将影响高原地区上空的垂直运动与辐散辐合运动, 从而引起东亚地区高度场及风场的异常。同时, 青藏高原地区地面热通量与后期东亚地区的环流变化也有密切关系, 这种关系可为预测东亚地区初夏环流异常提供有意义的指标。  相似文献   

15.
利用简单生物圈模式SiB2模拟锡林浩特草原地表湍流通量   总被引:1,自引:0,他引:1  
利用简单生物圈模式SiB2模拟了2007年7月1日至9月30日期间锡林浩特草原的地表能量分配、CO2通量、地表有效辐射温度和土壤湿度.采用锡林浩特国家气候观象台野外试验基地实地测量资料确定SiB2所需要的参数和初始值后,由该资料中30 min一次的太阳短波辐射、大气长波辐射、水汽压、气温、水平风速和降水驱动SiB2,最...  相似文献   

16.
目前CO的模式模拟结果与实际观测存在着很大的差别,需要结合观测资料的分析研究来验证和改善模式能力。而南亚地区源汇的复杂性和站点观测资料的严重不足,使得对该地区CO分布与变化特征的认识更为有限。本文尝试使用2000~2011年MOPITT卫星资料,分析该地区CO的气候态空间分布特征,并结合再分析风场和卫星出射长波辐射资料,对大气运动影响CO分布进行探讨。主要结论是:1)南亚对流层中上层四季都存在CO高浓度带,其位置随着季节有南北变化,其中夏季高值带范围最小,但极值最大。2)在南亚季风区东侧,夏季对流层CO垂直廓线呈连续的高值分布,而在西侧对流层中上层出现孤立的高值分布,验证了东风急流的水平输送效果。3)CO浓度的季节变化在南北(27.5°N/12.5°S)纬度基本反相,并且在12年内500 h Pa高度上呈减少趋势,而在300 h Pa高度上有增加趋势。4)南亚中上对流层CO浓度值的分布和赤道附近垂直风场之间存在较好的相关性,对于该区域CO的来源问题提供了一个新的研究方向。  相似文献   

17.
Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM development in East Asia.The Regional Integrated Environment Modeling System,version 2.0 (RIEMS2.0),has been developed from an earlier RCM,RIEMS1.0,by the Key Laboratory of Regional ClimateEnvironment for Temperate East Asia (RCE-TEA) and Nanjing University.A numerical experiment covering 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) with a 50-km spatial resolution was performed to test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications.The simulated surface air temperature (SAT) was compared with observed meteorological data.The results show that RIEMS2.0 simulation reproduced the SAT spatial distribution in East Asia but that it was underestimated.The simulated 30-year averaged SAT was approximately 2.0°C lower than the observed SAT.The annual and interannual variations in the averaged SAT and their anomalies were both well reproduced in the model.A further analysis of three sub-regions representing different longitudinal ranges showed that there is a good correlation and consistency between the simulated results and the observed data.The annual variations,interannual variations for the averaged SAT,and the anomalies in the three sub-regions were also captured well by the model.In summary,RIEMS2.0 shows stability and does well both in simulating the long-term SAT in East Asia and in expressing sub-regional characteristics.  相似文献   

18.
The air quality modeling system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multi-scale Air Quality) is developed to simulate the aerosol optical depth (AOD) and aerosol direct forcing (DF). The aerosol-specific extinction, single scattering albedo, and asymmetry factor are parameterized based on Mie theory taking into account the aerosol size distribution, composition, refractive index, and water uptake of solution particles. A two-stream solar radiative model considers all gaseous molecular absorption, Rayleigh scattering, and aerosols and clouds. RAMSCMAQ is applied to simulate all major aerosol concentrations (e.g., sulfate, nitrate, ammonium, organic carbon, black carbon, fine soil, and sea salt) and AOD and DF over East Asia in 2005. To evaluate its performance, the simulated AOD values were compared with ground-based in situ measurements. The comparison shows that RAMSCMAQ performed well in most of the model domain and generally captured the observed variations. High AOD values (0.2-1.0) mainly appear in the Sichuan Basin as well as in central and southeastern China. The geographic distribution of DF generally follows the AOD distribution patterns, and the DF at the top-of-the-atmosphere is less than -25 and -20 W m^-2 in clear-sky and all-sky over the Sichuan Basin. Both AOD and DF exhibit seasonal variations with lower values in July and higher ones in January. The DF could obviously be impacted by high cloud fractions.  相似文献   

19.
具有较优垂直分辨率和反演精度的MLS(Microwave Limb Sounder)数据与MOPITT(Measurements of Pollution in the Troposphere)数据在上对流层—下平流层(UT-LS)区域有一个交集,因而将MOPITT与MLS测量的200 hPa高度上CO数据进行对比分析。比较结果显示,两者在中低纬度分布较为接近,在非洲中西部、南美中北部和东南亚地区均有大范围高值中心区存在;MOPITT CO在浓度值上明显高于MLS CO,并且MOPITT CO浓度在低纬度存在约35 ppb(10-6)的全球性系统性偏差。通过CALIOP云层数据对MOPITT和MLS CO差异原因进行分析,表明CO高值区的形成与旺盛的对流有关。  相似文献   

20.
本文基于北京325米气象塔在47,140,和280米三层高度的5年涡动相关观测资料,研究了城市下垫面与大气间的CO2交换过程.由于北京市2011年开始实行工作日汽车尾号限行,140米高度CO2通量的年增长率由2008-2010年的7.8%降低到2010-2012年的2.3%.140米高度通量源区内植被比例最小且人口密度最大,因此140米高度的5年平均CO2通量年总量)6.41 kg C m-2 yr-1(大于47米)5.78 kg C m-2 yr-1(和280米)3.99 kg C m-2 yr-1(.在年尺度上,北京汽车总保有量和总人口是最重要的CO2通量控制因子.CO2通量随风向的变化主要与风向对应的通量源区内下垫面土地利用方式有关.三层高度的夏季CO2通量均与道路的比例呈正相关关系.47,140,和280米的决定系数分别为0.69,0.57,和0.54(P<0.05).植被比例的下降,会导致CO2年总量上升,两者存在近似于指数的关系.城市人口密度的上升会引起CO2年总量上升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号