首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 728 毫秒
1.
Widespread till and moraines record excursions of middle-Pleistocene ice that flowed up-slope into several watersheds of the Valley and Ridge Province along the West Branch of the Susquehanna River. A unique landform assemblage was created by ice-damming and jökulhlaups emanating from high gradient mountain watersheds. This combination of topography formed by multiple eastward-plunging anticlinal ridges, and the upvalley advance of glaciers resulted in an ideal geomorphic condition for the formation of temporary ice-dammed lakes. Extensive low gradient (1°–2° slope) gravel surfaces dominate the mountain front geomorphology in this region and defy simple explanation. The geomorphic circumstances that occurred in tributaries to the West Branch Susquehanna River during middle Pleistocene glaciation are extremely rare and may be unique in the world. Failure of ice dams released sediment-rich water from lakes, entraining cobbles and boulders, and depositing them in elongated debris fans extending up to 9 km downstream from their mountain-front breakout points. Poorly developed imbrication is rare, but occasionally present in matrix-supported sediments resembling debris flow deposits. Clast weathering and soils are consistent with a middle Pleistocene age for the most recent flows, circa the 880-ka paleomagnetic date for glacial lake sediments north of the region on the West Branch Susquehanna River. Post-glacial stream incision has focused along the margins of fan surfaces, resulting in topographic inversion, leaving bouldery jökulhlaup surfaces up to 15 m above Holocene channels. Because of their coarse nature and high water tables, jökulhlaup surfaces are generally forested in contrast to agricultural land use in the valleys and, thus, are readily apparent from orbital imagery.  相似文献   

2.
The recent geomorphologic evolution of the statovolcano Popocatepetl (19°03′N, 98°35′W), including the volcanic activity and the evolution of the glacier that still exists on the north face, was assessed. Most of the data were obtained from references in historical sources and aerial photographs dating from 1945. This information was supplemented with data from fieldwork conducted between 1992 and 1995. Landform typology shows volcanic and glacial interactions. The conclusions affirm that a geomorphologic evolution of the volcano occurred since the maximum glacier advance in the Little Ice Age (LIA) and the formation of a proglacial ramp. Later, fluvioglacial gorges cut into the ramp, especially during the 1921/27 eruption. Once the glacier had shrunk to a small size and was left hanging above the steep slope, the streams disappeared, and the gorges filled with blocks that fell in snow and ice avalanches.  相似文献   

3.
The occurrence of tors within glaciated regions has been widely cited as evidence for the preservation of relic pre-Quaternary landscapes beneath protective covers of non-erosive dry-based ice. Here, we test for the preservation of pre-Quaternary landscapes with cosmogenic surface exposure dating of tors. Numerous granite tors are present on summit plateaus in the Cairngorm Mountains of Scotland where they were covered by local ice caps many times during the Pleistocene. Cosmogenic 10Be and 26Al data together with geomorphic relationships reveal that these landforms are more dynamic and younger than previously suspected. Many Cairngorm tors have been bulldozed and toppled along horizontal joints by ice motion, leaving event surfaces on tor remnants and erratics that can be dated with cosmogenic nuclides. As the surfaces have been subject to episodic burial by ice, an exposure model based upon ice and marine sediment core proxies for local glacial cover is necessary to interpret the cosmogenic nuclide data. Exposure ages and weathering characteristics of tors are closely correlated. Glacially modified tors and boulder erratics with slightly weathered surfaces have 10Be exposure ages of about 15 to 43 ka. Nuclide inheritance is present in many of these surfaces. Correction for inheritance indicates that the eastern Cairngorms were deglaciated at 15.6 ± 0.9 ka. Glacially modified tors with moderate to advanced weathering features have 10Be exposure ages of 19 to 92 ka. These surfaces were only slightly modified during the last glacial cycle and gained much of their exposure during the interstadial of marine Oxygen Isotope Stage 5 or earlier. Tors lacking evidence of glacial modification and exhibiting advanced weathering have 10Be exposure ages between 52 and 297 ka. Nuclide concentrations in these surfaces are probably controlled by bedrock erosion rates instead of discrete glacial events. Maximum erosion rates estimated from 10Be range from 2.8 to 12.0 mm/ka, with an error weighted mean of 4.1 ± 0.2 mm/ka. Three of these surfaces yield model exposure-plus-burial ages of 295− 71+ 84, 520− 141+ 178, and 626− 85+ 102 ka. A vertical cosmogenic nuclide profile across the oldest sampled tor indicates a long-term emergence rate of 31 ± 2 mm/ka. These findings show that dry-based ice caps are capable of substantially eroding tors by entraining blocks previously detached by weathering processes. Bedrock surfaces and erratic boulders in such settings are likely to have nuclide inheritance and may yield erroneous (too old) exposure ages. While many Cairngorm tors have survived multiple glacial cycles, rates of regolith stripping and bedrock erosion are too high to permit the widespread preservation of pre-Quaternary rock surfaces.  相似文献   

4.
The Basin of Ubaté–Chichinquirá (5°28′N, 73°45′ W, c. 2580 m altitude) includes the Fúquene Valley and is located in the central part of the Eastern Cordillera of Colombia. Rocks and sediments were folded and faulted during the Miocene, uplifted during the (late) Pliocene, and affected by glaciers during the Pleistocene. Successive glacial and interglacial periods left significant marks in the landscape which were used to reconstruct six stages in the development of the landscape along a relative chronology. During early Pleistocene episode 1 glaciers formed U-shape valleys. Evidence of the impact of ice sheets has been found as far downslope as ca. 2900 m elevation. During episode 2 moraines developed which were cut by the present San José River. During episode 3 abundant sediment was produced by glacial erosion. It accentuated the sculpturing of hard rock and deepening of the drainage basin. The ancestral Ubaté–Suarez River constituted a dynamic erosive system that gave rise to deep V-shaped valleys and progressively formed a set of intricate valleys with a high sediment production. Finally, intense glacial and fluvio-glacial erosion led to a geomorphological system with high energy levels and intensive sediment transport leading to wide valleys. During episode 4 the Ubaté–Suarez River eroded and deepened its valley until it captured the old El Hato–San José Valley. It caused intense erosion of the moraine and the fluvio-glacial gravels. Deep V-shaped valleys stabilized in the high areas of the main drainage system and these valleys form the present-day fluvial sub-basins. During episode 5 the deep valley in the northern part of the Basin of Ubaté–Chichinquirá developed. During middle Pleistocene episode 6 colluvial sediments formed the Saboya dam and a lake was formed in the river valley of which the present Lake Fúquene is only a small remnant. Lithological changes indicate fluctuating water levels and Lake Fúquene must have expanded periodically up to an area 5 to 10 times the present-day surface.  相似文献   

5.
Geological controls on Pleistocene glaciation and cirque form in Greece   总被引:2,自引:0,他引:2  
Limestone and ophiolite rocks are common across the eastern Mediterranean and many of the highest mountains are formed in these rock types. In northwest Greece, Pleistocene glacial erosion was much more effective on limestone terrain where pronounced glacial incision and subglacial glacio-karst processes produced locally-complex topography. This enabled Pleistocene glaciers to form on a range of slope orientations in contrast to ophiolite terrains, where glaciers were strongly controlled by aspect. On limestone terrains, the largest ice masses formed on south-facing slopes, whereas in neighbouring higher mountains formed in ophiolite, glaciers were much more restricted and predominantly formed on north- and east-facing slopes.  相似文献   

6.
This article examines how snow plays a role in current erosive processes in a high mountain area (1800—2400 m a.s.l.) known as Peñalara, located in Spain's Central Range (40°50' N; 3°58' W). The hypothesis maintains that snow becomes an important erosive factor when it accumulates over sedimentary or weathered materials, therefore geomorphological heritage is a key factor in nival erosion. To test this hypothesis, the authors identified the landforms in the study area and determined their relative ages by weathering and lichenometry ( Rizocarpon geographicum ag. ), differentiating between preglacial, glacial (Recent Pleistocene) and postglacial (Holocene) forms. The information was used to plot a reticulate pattern of observation sites for the study area. Snow depth and the movement of selected blocks at each site were recorded from October 1991 to June 1995. The relationship between late-lying snowpatches, geomorphological heritage and current erosive processes was determined. Between 1800 and 2000 m a.s.l., there is an indirect relationship between snowpatches and predominant processes (stream incision and gelifluction) on terminal moraines. Between 2000 and 2200 m, direct action is present where there are late-laying snowpatches on lateral moraines and some glacial steps. Between 2200 and 2400 m, gelifraction and gravity processes are also in direct relation to snowpatches.  相似文献   

7.
The relationship between geomorphological features and water geochemistry was studied for a group of mountainous rivers (from ~ 900 to ~ 2200 m a.s.l.) with similar geology and climate, in the Sierras Pampeanas of Córdoba (Argentina, 31° 30′, 32° 00′S, and 64° 30′, 65° 10′W). A multivariate approach was used to identify three morphological domains that describe the set of sampled rivers, namely “size” dominance, slope dominance, and drainage density dominance. The links between physicochemical and geomorphological variables show that “size” dominance is mostly related to major ions, conductivity, and pH, which tend to increase downstream. Slope dominance is associated with the total concentration of heavy metal (i.e., high heavy metal concentrations are associated with relatively flat areas with slightly acid to circumneutral pH, which promotes desorption). The drainage density dominance results in an association between well-drained catchments and low Cl concentration (i.e., preserving the chemical signature of atmospheric precipitation).  相似文献   

8.
Dawn T. Nicholson   《Geomorphology》2008,101(4):655-665
Microweathering of ice-smoothed bedrock surfaces was investigated in the Røldal area of Hardanger Plateau (60°), southern Norway. Postglacial rates of weathering were determined from surface lowering using quartz veins as reference surfaces. Weathering processes are inferred from assessment of weathering rind formation, surface hardness, and the preservation of small-scale glacial erosional features.Surface lowering rates for a range of metamorphic rocks vary from 0.05 to 2.20 mm ka− 1 and are broadly comparable with those obtained from crystalline rocks in other periglacial environments. The mean rate of surface lowering at 0.55 mm ka− 1 is low and demonstrates the relatively small impact of microweathering on postglacial landscape evolution. Variations in bedrock microweathering can be explained by lithological variation. Amphibolite and mica-rich bedrock surfaces experience greater denudation and weakening, least weathering rind formation, and abundant preservation of glacial striae, despite greater surface lowering. Conversely, quartz-rich bedrock surfaces are most resistant to denudation and weakening, but have greater weathering rind formation and fewer preserved striae. Postglacial microweathering is achieved primarily through granular disintegration involving detachment and removal of mineral grains and weakening from increased porosity. Granular decomposition is manifest in the formation of weathering rinds. Analysis of interactions between weathering indices indicates that rind accumulation is limited by microerosion.A conceptual model is proposed that illustrates the temporal interrelationships between in situ and erosional facets of microweathering in two contrasting mineral assemblages. The model proposes that cyclic processes of in situ disintegration, decomposition, and erosion are at work. The relative balance between these processes varies with lithology so that in more resistant quartz-rich rocks the net effect is minimal surface lowering and accumulation of weathering rind. In weaker, amphibolitic and micaceous rocks, the net effect is greater surface lowering and minimal accumulation of weathering rind. The results of the research demonstrate the important influence of rock properties, notably mineral composition, in postglacial microweathering of crystalline bedrock in a periglacial environment.  相似文献   

9.
Pleistocene glaciations have promoted important landscape transformations as a result of high rates of erosion and rapid sediment evacuation to adjacent marine basins. In the Patagonian Andes the role of the Patagonian Ice Sheet on landscape evolution, in particular the spatial patterns of glacial erosion and its influence on sediment fluxes, is poorly documented. Here, we investigate the Middle and Late Pleistocene sedimentary record of the continental slope from Ocean Drilling Program (ODP) Site 861, offshore Patagonia (46°S), to evaluate the link between glaciations, mountain range erosion and continental margin strata formation. Petrographic analysis of the sand-size fraction (0.063–2 mm) and ɛNd and 87Sr/86Sr measurements in the silt-size fraction (10–63 µm) indicate that glacial erosion over the last 350,000 years has focused within the Patagonian Batholith, with a minor influence of a proximal source to the drilling site, the Chonos Metamorphic Complex. This shows that erosion has focused in the core of the northern Patagonian Andes, coinciding roughly with the location of the Liquiñe-Ofqui Fault Zone and the zone of concentrated precipitation during glaciations, suggesting a combined climatic and structural control on glacial erosion. Temporal variation in the provenance signal is contemporaneous with a marked change in the stratigraphy of ODP Site 861 that occurred after the glaciation of MIS 8 (~240 kyr ago). Before MIS 8, a restricted provenance signal and coarse lithofacies accumulated on the continental slope indicates spatially restricted erosion and efficient transfer of sediment towards the ocean. In contrast, very high provenance variability and finer continental slope lithofacies accumulation after MIS 8 suggest a disorganized expansion of the areas under erosion and a more distal influence of ice sediment discharge to this site. We argue that this change may have been related to a re-organization of the drainage patterns of the Patagonian Ice Sheet and flow of outlet glaciers to the continental margin during the last two glaciations.  相似文献   

10.
Geomorphological investigations carried out on 15 tor-like features located on the Aurivaara plateau (North Sweden, 68° N) provide new insights in the greatly debated age of these landforms. Erratics and till trapped deep in the tor joints support a pre-Weichselian age for tor formation. Moreover, the occurrence of various weathering stages in allochtonous material, the joint width up to 1.5 m (requiring long-term weathering), and the frequent association of tors with pediment-like forms, suggest pre-Quaternary tor formation. The juxtaposition of fresh erratics and in situ old weathering features (mushroom rocks, concentrically weathered well-rounded corestones, and grus) indicates a predominantly cold-based regime for the Scandinavian ice sheet, with erratics carried by the overlying moving ice being repeatedly deposited on tor summits during deglaciation phases. The relationships between tors and ice action indicated for the Aurivaara plateau result in the proposal of a morphodynamical succession of five tor subtypes ranging from the preservation of well-rounded corestones still embedded in grus (suggesting negligible glacial erosion) to the almost complete removal of tor features by ice scouring. A comparison with tors in similar geological and topographical contexts from the unglaciated Dartmoor area allows a tentative evaluation of an average overall glacial erosion of 0–10 m on the northern Sweden plateaus, in sharp contrast with the 190 m overdeepening of the nearby Torneträsk basin. Thus, this case study of Swedish tors provides additional support to the recent interpretations of relict landscapes in previously glaciated areas and is in accordance with the classical «model» of glacial selective erosion established in the Nordic and Arctic mountains.  相似文献   

11.
The Gohpur–Ganga section is located southwest of Itanagar, India. The study area and its adjacent regions lie between the Main Boundary Thrust (MBT) and the Himalayan Front Fault (HFF) within the Sub-Himalaya of the Eastern Himalaya. The Senkhi stream, draining from the north, passes through the MBT and exhibits local meandering as it approaches the study area. Here, five levels of terraces are observed on the eastern part, whereas only four levels of terraces are observed on the western part. The Senkhi and Dokhoso streams show unpaired terraces consisting of very poorly sorted riverbed materials lacking stratification, indicating tectonic activity during deposition. Crude imbrications are also observed on the terrace deposits. A wind gap from an earlier active channel is observed at latitude 27°04′42.4″ N and longitude 93°35′22.4″ E at the height of about 35 m from the present active channel of Senkhi stream. Linear arrangements of ponds trending northeast–southwest on the western side of the study section may represent the paleochannel of Dokhoso stream meeting the Senkhi stream abruptly through this gap earlier. Major lineament trends are observed along NNE–SSW, NE–SW and ENE–WSW direction. The Gohpur–Ganga section is on Quaternary deposits, resting over the Siwaliks with angular contact. Climatic changes of Pleistocene–Holocene times seem to have affected the sedimentation pattern of this part of the Sub-Himalaya, in association with proximal tectonism associated with active tectonic activities, which uplifted the Quaternary deposits. Older and younger terrace deposits seem to mark the Pleistocene–Holocene boundary in the study area with the older terraces showing a well-oxidized and semi-consolidated nature compared to the unoxidized nature of the younger terraces.  相似文献   

12.
The arctic islands of the Lofoten-Vesterålen archipelago in northern Norway have a wide distribution of weathered land surfaces commonly located above 250 m with several apparent similarities. In order to investigate the characteristics of (deep) weathering in this region, northern Langøya and Hadseløya were chosen for in-depth analyses. Eight weathering profiles were excavated from various surfaces, and the stratigraphies were logged in detail. Material was collected throughout the weathering horizons, and all samples were subsequently analysed for clay mineralogy (< 63 μm fraction) and grain size distribution. The sampling strategy was complemented by samples from additional saprolites and other landforms such as moraines and rock glaciers. The XRD results indicate that the presence of secondary minerals, such as gibbsite (Al(OH)3) and kaolinite (Al2Si2O5(OH)4), are very common throughout the profiles. Gibbsite is an extreme end product of silicate weathering and usually associated with a warmer and more humid climate, as found in Scandinavia during the Tertiary. The grain size analyses (< 63 μm) show that the finer silt fractions (< 8 μm) tend to be high in the profiles (20–40%), with significant amounts of clay (5–15%) demonstrating that the regolith itself is susceptible to frost sorting mechanisms.10Be exposure dates from in situ quartz knobs on tors and boulders of local origin suggest > 40,000 years of subaerial conditions. Considering the steady surface erosion, this figure should be viewed as an absolute minimum age estimate. Mapping of the superficial sediments and geomorphological features of the study areas has revealed several common morphological features, which indicate dominance of glacial and periglacial processes in the areas lying below the lower boundary of blockfields (c. 250 m). The weathering mantles are not a periglacial end product, but rather a relict tertiary landform that were modulated by permafrost processes as well as biological processes at later stages. The regolith cover constrain the vertical extension of warm-based Quaternary ice sheets challenging the notion of a parabolic ice mass consuming every mountain top of Lofoten and Vesterålen.  相似文献   

13.
The Southern Alps lie along the convergent Pacific-Indian plate boundary. Geomorphically distinct eastern, axial and western regions reflect the east-west gradient in tectonic uplift (1 to 10 mm a−1) and precipitation (600 to 10,000 mm a−1). The eastern region is divided into front-ange and basin-and-range subregions. Soil-sequence studies on terraces established temporal contrasts in pedogenesis within and between eastern and western regions encompassing Entisols, Inceptisols and Spodosols. On Late Pleistocene and early Holocene terraces Dystrochrepts are persistent soils in the eastern region and Aquods in the western region. These soil sequences are used in the interpretation of relative soil age, stratigraphy and erosion history in hill and mountain drainage basins of the eastern and western regions. In the subhumid to humid eastern front-range subregion, simple soil forms occur as catenary sequences, and there is little evidence of erosion following the destruction of forests in the last millenium. Mollisols are dominant in the subhumid, and Dystrochrepts in humid areas, respectively. Soil-debris mantle regoliths date from the early Holocene and are still developing on slopes. The soil pattern on mountain slopes in the humid, eastern basin-and-range subregion is a complex array of simple, eroded, composite and compound soils. This pattern has resulted from erosion following forest destruction within the last millenium. The oldest surface or buried forest soils are Dystrochrepts dating from the Late Pleistocene to early Holocene. Wind erosion of these low-fertility soils contributes to the loessial sediments in which younger soils have formed. In the western region, soil patterns and soil stratigraphy indicate continous instability with a complex pattern of highly leached, shallow Orthents and bedrock outcrops on slopes. The soils are eroded from slopes within 2 ka. These contrasts in soil development and erosion periodicity in the eastern and western regions of the Southern Alps parallel the east-west contrasts in erosion rates of ca. 1–10 mm a−1.  相似文献   

14.
Previous studies of chemical weathering rates for soil developed on glacial moraines generally assumed little or no physical erosion of the soil surface. In this study, we investigate the influence of physical erosion on soil profile weathering rate calculations. The calculation of chemical weathering rates is based on the assumption that soil profiles represent the integrated amount of weathering since the time of moraine deposition. The weathering rate of a surface subjected to denudation is the sum of the weathering loss from the existing soil profile added to the weathering loss in the material removed by denudation, divided by the deposition age. In this study, the amount of weathered material removed since moraine deposition is calculated using the denudation rate estimated from cosmogenic nuclide data and the deposition age of the moraine. Weathering rates accounting for denudation since moraine deposition are compared to weathering rates based on the assumption of no physical erosion and on the assumption of steady-state denudation for the Type Pinedale moraine ( 21 ka) and the Bull Lake-age moraine ( 140 ka) in the Fremont Lake Area (Wind River Mountains, Wyoming, USA). The total weathering rates accounting for denudation are 8.15 ± 1.05 g(oxide) m 2 y 1 for the Type Pinedale moraine and 4.78 ± 0.89 g(oxide) m 2 y 1 for the Bull Lake-age moraine, which are  2 to 4 times higher, respectively, than weathering rates based on the assumption of no physical erosion. The weathering rates based on denudation since moraine deposition are comparable or smaller than weathering rates assuming steady-state denudation. We find the assumption of steady-state denudation is not valid in depositional landscapes with young deposition ages or slow denudation rates. The decrease in weathering rates over time between the Type Pinedale and Bull Lake-age soils that is observed in the case of no physical erosion is decreased when the influence of denudation on the total weathering rates is taken into account. Fresh unweathered material with high reactive mineral surface area is continuously provided to the surface layer by denudation diminishing the effect of decreasing weathering rate over time.  相似文献   

15.
Rates of sheet and rill erosion in Germany — A meta-analysis   总被引:2,自引:0,他引:2  
K. Auerswald  P. Fiener  R. Dikau   《Geomorphology》2009,111(3-4):182-193
Knowledge of erosion rates under real conditions is of great concern regarding sustainability of landuse and off-site effects on water bodies and settlements. Experimentally derived rates of sheet and rill erosion are often biased by experimental settings, which deviate considerably from typical landuse, by short measuring periods and by small spatial extensions, which do not account for the pronounced spatio-temporal variability of erosion events. We compiled data from 27 studies covering 1076 plot years to account for this variability. Modelling was used to correct for deficiencies in the experimental settings, which overrepresented arable land and used steeper and shorter slopes as well as higher erosivity than typically found in reality. For example, the average slope gradient was 5.9° for all arable plot experiments while it is only 2.6° on total arable land in Germany. The expected soil loss by sheet and rill erosion in Germany after taking real slopes, landuse and erosivity into account averaged 2.7 t ha− 1 yr− 1. Annual crops contributed the largest proportion (90%) but hops despite its negligible contribution to landuse (0.06%) still contribute 1.0% due to its extraordinary rapid erosion, which was even faster than the measured bare fallow soil loss standardized to otherwise identical conditions. Bare fallow soil loss, which is often used as baseline, was 80 t ha− 1 yr− 1 when standardized to 5.1° slope gradient, 200 m flow path length, and average German erosivity.  相似文献   

16.
Flared slopes are smooth concavities caused by subsurface moisture-generated weathering in the scarp-foot zone of hillslopes or boulders. They are well represented in granitic terrains but also developed in other massive materials such as limestone, sandstone, dacite, rhyolite, and basalt, as well as other plutonic rocks. Notches, cliff-foot caves, and swamp slots are congeners of flared slopes. Though a few bedrock flares are conceivably caused by nivation or by a combination of coastal processes, most are two-stage or etch forms. Appreciation of the origin of these forms has permitted their use in the identification and measurement of recent soil erosion and an explanation of natural bridges. Their mode of development is also germane to the origin of the host inselberg or bornhardt and, indeed, to general theories of landscape evolution. But certain discrepancies have been noted concerning the distribution and detailed morphology of flared slopes. Such anomalies are a result of structural factors (sensu lato), of variations in size of catchment and in degree of exposure, and of several protective factors. Notwithstanding, the original explanation of flared slopes stands, as do their wider implications. [Key words: flared slope, inselberg, soil erosion, weathering, fractures.]  相似文献   

17.
Granitic regolith, developed in the Boulder Creek catchment and adjacent areas, records a history of deep weathering, some of which may predate Quaternary time. Field and well-log measurements of weathering, chemical denudation and rates of erosion derived from 10Be cosmogenic radionuclide (CRN) data help to quantify rates of landscape change in the post-orogenic Rocky Mountains. The density of oxidized, fractured bedrock ranges from 2.7 to about 2.2 g cm− 3, saprolite and grus have densities between 2.0 and 1.8 g cm− 3, and 30 soil samples averaged 1.6 ± 0.2 g cm− 3. Highly weathered regolith in 540 wells averages 3.3 m thick, mean depth to bedrock in 1661 wells is 7 m, and the weathered thickness exceeds 10 m in relatively large local areas east of the late Pleistocene glacial limit. Thickness of regolith shows no simple relationship to rock type or structure, local slope, or distance from channels. Catchments in the vicinity of the Boulder Creek have an average CRN erosion rate of 2.2 ± 0.7 cm kyr− 1 for the past 10,000 to 40,000 yr. Annual losses of cations and SiO2 vary from about 2 to 5 g m− 2 over a runoff range of 10 to nearly 160 cm.Using measured rates in simple box models shows that if a substantial fraction of void space is created by volume expansion in the weathering rock materials, 7 m of weathered rock materials could form in as little as 230 kyr. If density loss results mainly from chemical denudation and some volume expansion, however, the same weathering profile would take > 1340 kyr to form. Rates of erosion measured by CRN could be balanced by the rate of soil formation from saprolite if the annual solute loss from soil is 2.0 g m− 2 and 70% of the density decrease from saprolite to grus and soil results from strain. Saprolite, however, forms from oxidized bedrock at a far slower rate and rates of saprolite formation cannot balance soil and grus losses to erosion. The zone of thick weathered regolith is likely an eroding relict landscape. The undulating surface marked by relatively low relief and tors is not literally a topographic surface of Eocene, Oligocene or Miocene age unless it was covered with deposits that were removed in Pliocene or Quaternary time.  相似文献   

18.
冰川环境中的动力过程种类多且复杂。一般冰底以挤压、磨蚀等过程为主,其它部位则是以斜坡、塌积、坠落、流水、寒冻风化等过程最多。前者能真正反映冰川动力过程的本质。地貌全过程(侵蚀、搬运、堆积)中,堆积过程控制着冰碛的构造、层序、组构和相模式。  相似文献   

19.
Landforms are used as analytical tools to separate inherited features from the glacial impact on Precambrian basement rocks in southwest Sweden. The study covers three different palaeosurfaces, the sub-Cambrian peneplain (relative relief (r.r.) 0–20 m) with the character of a pediplain, an uplifted and dissected part of the sub-Cambrian peneplain (r.r. 5–40 m) and an etch-surface (r.r. 20–135 m), presumably sub-Mesozoic. The surfaces were recently re-exposed, probably due to a Neogene upheaval with some pre-glacial reshaping. Strong structural control and no alignment with glacial erosional directions other than those coinciding with structures, are arguments for etch processes as a most important agent for relief differentiation. This is strengthened by the occurrence of saprolite residues and etchforms in protected positions.
The glacial reshaping of the sub-Cambrian flat bedrock surfaces is negligible. The glacial impact becomes more evident in the uplifted and dissected parts of the peneplain and within the hilly sub-Mesozoic surface. The higher the initial relief the more effect of glacial erosion on individual hills, both on the abrading side, with formation of roches moutonnées, and on the plucking side. Detailed etchforms are preserved in protected positions in spite of erosion by a clearly wet-based ice. The magnitude of the Pleistocene glacial erosion is considerably less than the amplitude of the palaeorelief in the entire area.
Landscapes of areal glacial scouring have been described as comprising irregular depressions with intervening bosses scraped by ice and labelled 'knock and lochan' topography, but we suggest that an etched bedrock surface is a prerequisite for this type of landscape to develop.  相似文献   

20.
Sedimentary deposits from the Smith Canyon dune field, south-central Columbia Basin, Washington, U.S.A. document climatically-influenced Late Pleistocene and Holocene aeolian and fluvial deposition in a region impacted by glacial outburst floods and tephra falls. The depositional history is summarized by five environmentally distinctive and climatically sensitive sedimentary units (temporal limits estimated): Unit 1 (c. 15·5–8 ka), pedogenically altered glacial outburst flood and minor aeolian silt and clay; Unit 2 (c. 8–6·9 ka), fluvial and minor aeolian sand; Unit 3 (c. 6·9–6·8 ka), flood-induced fluvial sand with gravel-sized tephra clasts; Unit 4 (c. 6·8–3·9 ka), aeolian dune sand; Unit 5 (c. 3·9 ka to present), pedogenically altered, stabilized dune sand. Estimated age ranges are based on stratigraphic position, tephrochronology, and correlation with temporally constrained strata from elsewhere in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号