首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
As shown in previous work, dynamical effects of a realistic model of a heterogeneous, compressible, stably stratified liquid core may be obtained by means of a simple analysis of the generalized two-dimensional Laplace tidal equation which describes tidal flows of an incompressible and non-gravitating fluid in a thin spherical layer with mobile boundaries. The solution was presented in the form of expansions in powers of a small parameter κ being the ratio of nutational motion frequency in space to the frequency of the Earth's diurnal rotation. Whereas in an earlier paper only first-order terms were taken into account, our present approach includes not only main second-order terms in the spherical harmonic expansions of the solutions, but also the terms of higher orders. These effects are calculated numerically for realistic models of the Earth's outer liquid core, solid inner core and anelastic mantle (PREM model). All tables are found in electronic version at http://www.tu-darmstadt.de/fb/vw/ipg/Welcome2.html Received: 12 June 1997 / Accepted: 11 December 1997  相似文献   

2.
We discuss an approach for efficiently combining different types of geodetic data to estimate time-dependent motions of stations in a region of active deformation. The primary observations are analyzed separately to produce loosely constrained estimates of station positions and coordinate system parameters which are then combined with appropriate constraints to estimate velocities and coseismic displacements. We define noninteger degrees of freedom to handle the case of finite constraints and stochastic perturbation of parameters and develop statistical tests for determining compatibility between different data sets. With these developments, we show an example of combining space and terrestrial geodetic data to obtain the deformation field in southern California. Received: 23 January 1997 / Accepted: 30 September 1997  相似文献   

3.
We assess the use of precise point positioning (PPP) within the Bernese GPS software (BSW) Version 5.0 over the period from 2000 to 2005. In our strategy, we compute a set of daily PPP solutions for international GNSS service (IGS) reference frame (IGb00) sites by fixing IGS final satellite orbits and clock products, followed by a Helmert transformation of these solutions into ITRF2000, forming a set of continuous position time series over the entire time span. We assess BSW PPP by comparing our set of transformation parameters with those produced by the IGS analysis centre coordinator (ACC) and our position time series with those of the Jet Propulsion Laboratory (JPL) and the Scripps Orbit and Permanent Array Centre at the Scripps Institute of Oceanography (SIO). The distributions of the north (N), east (E) and up (U) daily position differences are characterized by means and SD of +2.2 ± 4.8, −0.6 ± 7.9 and +4.8 ± 17.3 mm with respect to JPL, and of +0.1 ± 4.4, −0.1 ± 7.4 and −0.1 ± 11.8 mm with respect to SIO. Similarly, we find sub-millimetre mean velocity differences and SD for the N, E and U components of 0.9, 1.5 and 2.2 mm/year with JPL, and of 1.2, 1.6 and 2.3 mm/year with SIO. A noise analysis using maximum likelihood estimation (MLE) shows that when estimating global site velocities from our position time series, the series need to be on average up to 1.3 times longer than those of JPL and SIO, before an uncertainty of less than 0.5 mm/year is obtained.  相似文献   

4.
Automated GPS Data Analysis Service   总被引:5,自引:1,他引:4  
Automatic analysis of geodetic-quality GPS data is available with the use of e-mail and ftp (file transfer program) as an interface to a computer at the Jet Propulsion Laboratory (JPL), where precise transmitter parameters – GPS ephemerides and clock errors – are computed regularly. The interface is such that e-mail from an external user causes the JPL computer to fetch the user's data. The computer than analyzes the data, and places the results in an area accessible to the user. An e-mail to the user gives information on the location of the analysis results, which the user can subsequently fetch. Operations on the JPL computer are entirely automatic, and require essentially no labor. ? 1999 John Wiley & Sons, Inc.  相似文献   

5.
Geodetic measurements from 1963 through 1994 are used to estimate horizontal strain rates across the Red River fault near Thac Ba, Vietnam. Whether or not this fault system is currently active is a subject of some debate. By combining: (1) triangulation from 1963, (2) triangulation in 1983, and (3) Global Positioning System (GPS) observations in 1994, horizontal shear strain rates are estimated without imposing any prior information on fixed stations. The estimated rates of shear strain in ten triangular subnetworks surrounding the fault trace are not significantly different from zero at 95% confidence. The maximum rate of dextral shear is less than 0.3 μrad/year in all but one of the triangles. The estimates help bound the slip rate in a simple elastic dislocation model for a locked, vertical strike-slip fault. By assuming a locking depth of 5–20 km, the most likely values for the deep slip rate are between 1 and 5 mm/year of right-lateral motion. These values delimit the 23% confidence interval. At 95% confidence, the slip rate estimate falls between 7 mm/year of left-lateral motion and 15 mm/year of right-lateral motion. Received: 18 November 1997 / Accepted: 28 January 1999  相似文献   

6.
In modern approximation methods, linear combinations in terms of (space localizing) radial basis functions play an essential role. Areas of application are numerical integration formulae on the unit sphere Ω corresponding to prescribed nodes, spherical spline interpolation and spherical wavelet approximation. The evaluation of such a linear combination is a time-consuming task, since a certain number of summations, multiplications and the calculation of scalar products are required. A generalization of the panel clustering method in a spherical setup is presented. The economy and efficiency of panel clustering are demonstrated for three fields of interest, namely upward continuation of the Earth's gravitational potential, geoid computation by spherical splines and wavelet reconstruction of the gravitational potential. Received: 1 October 1997 / Accepted: 1 April 1998  相似文献   

7.
 The definition of the mean Helmert anomaly is reviewed and the theoretically correct procedure for computing this quantity on the Earth's surface and on the Helmert co-geoid is suggested. This includes a discussion of the role of the direct topographical and atmospherical effects, primary and secondary indirect topographical and atmospherical effects, ellipsoidal corrections to the gravity anomaly, its downward continuation and other effects. For the rigorous derivations it was found necessary to treat the gravity anomaly systematically as a point function, defined by means of the fundamental gravimetric equation. It is this treatment that allows one to formulate the corrections necessary for computing the `one-centimetre geoid'. Compared to the standard treatment, it is shown that a `correction for the quasigeoid-to-geoid separation', amounting to about 3 cm for our area of interest, has to be considered. It is also shown that the `secondary indirect effect' has to be evaluated at the topography rather than at the geoid level. This results in another difference of the order of several centimetres in the area of interest. An approach is then proposed for determining the mean Helmert anomalies from gravity data observed on the Earth's surface. This approach is based on the widely-held belief that complete Bouguer anomalies are generally fairly smooth and thus particularly useful for interpolation, approximation and averaging. Numerical results from the Canadian Rocky Mountains for all the corrections as well as the downward continuation are shown. Received: 9 March 1998 / Accepted: 16 November 1998  相似文献   

8.
Estimation of the polarization orientation angle shifts induced by terrain azimuth slope variations is a recently developed application in radar polarimetry. In general, without any prior knowledge on the terrain, two polarimetric SAR (POLSAR) flight passes are required to derive terrain slopes in perpendicular directions for digital elevation model (DEM) generation. Moreover, we note that SAR intensity is a strong indicator of the range component of the terrain slopes. In this letter, we developed a method for DEM generation requiring only one POLSAR flight pass, by combining orientation angle estimation and a shape-from-shading technique. In particular, when limited POLSAR data are available, this POLSAR technique provides an alternative way for DEM generation. National Aeronautics and Space Administration Jet Propulsion Laboratory (NASA/JPL) AIRSAR L-band POLSAR data over Camp Roberts, California, is used to demonstrate the results of the method proposed in this letter, and a DEM derived from simultaneously measured C-band interferometric SAR from NASA/JPL topographic SAR instrument is selected as the comparative ground truth to validate the effectiveness of this single POLSAR method. Analyses and discussions are also included in this letter.  相似文献   

9.
The second Baltic Sea Level (BSL) GPS campaign was run for one week in June 1993. Data from 35 tide gauge sites and five fiducial stations were analysed, for three fiducial stations (Onsala, Mets?hovi and Wettzell) fixed at the ITRF93 system. On a time-scale of 5 days, precision was several parts in 109 for the horizontal and vertical components. Accuracies were about 1 cm in comparison with the International GPS Geodynamical Service (IGS) coordinates in three directions. To connect the Swedish and the Finnish height systems, our numerical application utilises three approaches: a rigorous approach, a bias fit and a three-parameter fit. The results between the Swedish RH70 and the Finnish N 60 systems are estimated to −19.3 ± 6.5, −17 ± 6 and −15 ± 6 cm, respectively, by the three approaches. The results of the three indirect methods are in an agreement with those of a direct approach from levelling and gravity measurements. Received: 3 April 1996 / Accepted: 4 August 1997  相似文献   

10.
 The annual and semiannual residuals derived in the axial angular momentum budget of the solid Earth–atmosphere system reflect significant signals. They must be caused by further excitation sources. Since, in particular, the contribution for the wind term from the atmospheric layer between the 10 and 0.3 hPa levels to the seasonal variations in length of day (LOD) is still missing, it is necessary to extend the top level into the upper stratosphere up to 0.3 hPa. Under the conservation of the total angular momentum of the entire Earth, variations in the oceanic angular momentum (OAM) and the hydrological angular momentum (HAM) are further significant excitation sources at seasonal time scales. Focusing on other contributions to the Earth's axial angular momentum budget, the following data are used in this study: axial atmospheric angular momentum (AAM) data derived for the 10–0.3 hPa layer from 1991 to 1997 for computing the missing wind effects; axial OAM functions as generated by oceanic general circulation models (GCMs), namely for the ECHAM3 and the MICOM models, available from 1975 to 1994 and from 1992 to 1994, respectively, for computing the oceanic contributions to LOD changes, and, concerning the HAM variations, the seasonal estimates of the hydrological contribution as derived by Chao and O'Connor [(1988) Geophys J 94: 263–270]. Using vector representation, it is shown that the vectors achieve a close balance in the global axial angular momentum budget within the estimated uncertainties of the momentum quantities on seasonal time scales. Received: 6 April 2000 / Accepted: 13 December 2000  相似文献   

11.
马利霞  郑光  何维  居为民  程亮 《遥感学报》2015,19(4):609-617
叶方向(包括叶倾角和方位角)是决定林冠内部及其下层太阳辐射在3维空间分布的重要因素,并进而影响植被的光合作用效率和林冠的二向性反射特性。本文利用地面激光雷达扫描系统(TLS)对一棵人工阔叶树在水平圆形轨道设置等间距6站进行扫描,获取其完整覆盖的3维点云数据。在手动选取78片点云完整叶片数据的基础上,通过重建单点在其邻域内的法向量和所在叶片主轴方向分别得到了叶的倾角和方位角分布,将构成每片叶子的所有点的倾角和方位角各自均值作为其倾角和方位角。通过与利用角度尺和罗盘进行逐叶片手动测量结果对比发现:基于TLS计算的叶倾角和方位角与手动测量结果均具有较强的相关性,R2分别为0.88(N=209,p0.001)和0.97(N=78,p0.001)。本文方法能准确获取林冠元素的3维空间分布,为估算森林冠层在任意给定光照条件下的消光系数提供了理论基础,为促进地面激光雷达在植被冠层3维结构参数,特别是叶面积指数的反演起到了积极作用。  相似文献   

12.
 The value of the Earth's rotational angular velocity determined from observations is given in the GCRS (geocentric celestial reference system) defined by Resolution B1 of the 2000 IAU General Assembly. The same quantity derived from dynamical theories of the Earth's rotation, such as SMART97, is referred to the␣DGRSC (dynamically non-rotating ecliptical reference system). The relativistic theory of reference systems (RSs) enables unambiguous general-relativity relations between these quantities to be derived. Received: 9 November 2000 / Accepted: 9 July 2001  相似文献   

13.
 A fast spherical harmonic approach enables the computation of gravitational or magnetic potential created by a non-uniform shell of material bounded by uneven topographies. The resulting field can be evaluated outside or inside the sphere, assuming that density of the shell varies with latitude, longitude, and radial distance. To simplify, the density (or magnetization) source inside the sphere is assumed to be the product of a surface function and a power series expansion of the radial distance. This formalism is applied to compute the gravity signal of a steady, dry atmosphere. It provides geoid/gravity maps at sea level as well as satellite altitude. Results of this application agree closely with those of earlier studies, where the atmosphere contribution to the Earth's gravity field was determined using more time-consuming methods. Received: 14 August 2000 / Accepted: 19 March 2001  相似文献   

14.
15.
P. Moore 《Journal of Geodesy》2001,75(5-6):241-254
 Dual satellite crossovers (DXO) between the two European Remote Sensing satellites ERS-1 and ERS-2 and TOPEX/Poseidon are used to (1) refine the Earth's gravity field and (2) extend the study of the ERS-2 altimetric range stability to cover the first four years of its operation. The enhanced gravity field model, AGM-98, is validated by several methodologies and will be shown to provide, in particular, low geographically correlated orbital error for ERS-2. For the ERS-2 altimetric range study, TOPEX/Poseidon is first calibrated through comparison against in situ tide gauge data. A time series of the ERS-2 altimeter bias has been recovered along with other geophysical correction terms using tables for bias jumps in the range measurements at the single point target response (SPTR) events. On utilising the original version of the SPTR tables the overall bias drift is seen to be 2.6±1.0 mm/yr with an RMS of fit of 12.2 mm but with discontinuities at the centimetre level at the SPTR events. On utilising the recently released revised tables, SPTR2000, the drift is better defined at 2.4±0.6 mm/yr with the RMS of fit reduced to 3.7 mm. Investigations identify the sea-state bias as a source of error with corrections affecting the overall drift by close to 1.2 mm/yr. Received: 25 May 2000 / Accepted: 24 January 2001  相似文献   

16.
 The recovery of a full set of gravity field parameters from satellite gravity gradiometry (SGG) is a huge numerical and computational task. In practice, parallel computing has to be applied to estimate the more than 90 000 harmonic coefficients parameterizing the Earth's gravity field up to a maximum spherical harmonic degree of 300. Three independent solution strategies (preconditioned conjugate gradient method, semi-analytic approach, and distributed non-approximative adjustment), which are based on different concepts, are assessed and compared both theoretically and on the basis of a realistic-as-possible numerical simulation regarding the accuracy of the results, as well as the computational effort. Special concern is given to the correct treatment of the coloured noise characteristics of the gradiometer. The numerical simulations show that the three methods deliver nearly identical results—even in the case of large data gaps in the observation time series. The newly proposed distributed non-approximative adjustment approach, which is the only one of the three methods that solves the inverse problem in a strict sense, also turns out to be a feasible method for practical applications. Received: 17 December 2001 / Accepted: 17 July 2002 Acknowledgments. We would like to thank Prof. W.-D. Schuh, Institute of Theoretical Geodesy, University of Bonn, for providing us with the serial version of the PCGMA algorithm, which forms the basis for the parallel PCGMA package developed at our institute. This study was partially performed in the course of the GOCE project `From E?tv?s to mGal+', funded by the European Space Agency (ESA) under contract No. 14287/00/NL/DC. Correspondence to: R. Pail  相似文献   

17.
Improvements in height datum transfer expected from the GOCE mission   总被引:1,自引:1,他引:1  
 One of the aims of the Earth Explorer Gravity Field and Steady-State Ocean Circulation (GOCE) mission is to provide global and regional models of the Earth's gravity field and of the geoid with high spatial resolution and accuracy. Using the GOCE error model, simulation studies were performed in order to estimate the accuracy of datum transfer in different areas of the Earth. The results showed that with the GOCE error model, the standard deviation of the height anomaly differences is about one order of magnitude better than the corresponding value with the EGM96 error model. As an example, the accuracy of the vertical datum transfer from the tide gauge of Amsterdam to New York was estimated equal to 57 cm when the EGM96 error model was used, while in the case of GOCE error model this accuracy was increased to 6 cm. The geoid undulation difference between the two places is about 76.5 m. Scaling the GOCE errors to the local gravity variance, the estimated accuracy varied between 3 and 7 cm, depending on the scaling model. Received: 1 March 2000 / Accepted: 21 February 2001  相似文献   

18.
Spherical cap harmonic analysis is the appropriate analytical technique for modelling Laplacian potential and the corresponding field components over a spherical cap. This paper describes the use of this method by means of a least-squares approach for local gravity field representation. Formulations for the geoid undulation and the components ξ, η of the deflection of the vertical are derived, together with some warnings in the application of the technique. Although most of the formulations have been given by another paper, these were confusing or even incorrect, mainly because of an improper application of the spherical cap harmonic analysis. Received: 16 January 1996 / Accepted: 17 March 1997  相似文献   

19.
About half a million marine gravity measurements over a 30×30 area centered on Japan have been processed and adjusted to produce a new free-air gravity map from a 5′×5′ grid. This map seems to have a better resolution than those previously published as measured by its correlation with bathymetry. The grid was used together with a high-degree and -order spherical harmonics geopotential model to compute a detailed geoid with two methods: Stokes integral and collocation. Comparisons with other available geoidal surfaces derived either from gravity or from satellite altimetry were made especially to test the ability of this new geoid at showing the sea surface topography as mapped by the Topex/Poseidon satellite. Over 2 months (6 cycles) the dynamic topography at ascending passes in the region (2347N and 123147E) was mapped to study the variability of the Kuroshio current. Received: 15 July 1994 / Accepted: 17 February 1997  相似文献   

20.
Recent advances in image-matching techniques and VHR satellite imaging at submeter resolution theoretically offer the possibility to measure Earth surface displacements with decimetric precision. However, this possibility has yet not been explored and requirements of ground control and external topographic datasets are considered as important bottlenecks that hinder a more common application of optical image correlation for displacement measurements. This article describes an approach combining spaceborne stereo-photogrammetry, orthorectification and sub-pixel image correlation to measure the horizontal surface displacement of landslides from Pléiades satellite images. The influence of the number of ground-control points on the accuracy of the image orientation, the extracted surface models and the estimated displacement rates is quantified through comparisons with airborne laser scan and in situ global navigation satellite measurements at permanent stations. The comparison shows a maximum error of 0.13 m which is one order of magnitude more accurate than what has been previously reported with spaceborne optical images from other sensors. The obtained results indicate that the approach can be applied without significant loss in accuracy when no ground control points are available. It could, therefore, greatly facilitate displacement measurements for a broad range of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号