首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We explore the effect of oblateness of Saturn (more massive primary) on the periodic orbits and the regions of quasi-periodic motion around both the primaries in the Saturn-Titan system in the framework of planar circular restricted three-body problem. First order interior and exterior mean motion resonances are located. The effect of oblateness is studied on the location, nature and size of periodic and quasi-periodic orbits, using the numerical technique of Poincare surface of sections. Some of the periodic orbits change to quasi-periodic orbits due to the effect of oblateness and vice-versa. The stability of the orbits around Saturn, Titan and both varies with the inclusion of oblateness. The centers of the periodic orbits around Titan move towards Saturn, whereas those around Saturn move towards Titan. For the orbit around Titan at C=2.9992, x=0.959494, the apocenter becomes pericenter. By incorporating oblateness effect, the orbit around Titan at C=2.99345, x=0.924938 is captured by Saturn, remains in various trajectories around Saturn, and as time progresses it spirals away around both the primaries.  相似文献   

2.
We study the change of phase space structure of the rectilinear three-body problem when the mass combination is changed. Generally, periodic orbits bifurcate from the stable Schubart periodic orbit and move radially outward. Among these periodic orbits there are dominant periodic orbits having rotation number (n − 2)/n with n ≥ 3. We find that the number of dominant periodic orbits is two when n is odd and four when n is even. Dominant periodic orbits have large stable regions in and out of the stability region of the Schubart orbit (Schubart region), and so they determine the size of the Schubart region and influence the structure of the Poincaré section out of the Schubart region. Indeed, with the movement of the dominant periodic orbits, part of complicated structure of the Poincaré section follows these orbits. We find stable periodic orbits which do not bifurcate from the Schubart orbit.  相似文献   

3.
We study two and three-dimensional resonant periodic orbits, usingthe model of the restricted three-body problem with the Sun andNeptune as primaries. The position and the stability character ofthe periodic orbits determine the structure of the phase space andthis will provide useful information on the stability and longterm evolution of trans-Neptunian objects. The circular planarmodel is used as the starting point. Families of periodic orbitsare computed at the exterior resonances 1/2, 2/3 and 3/4 withNeptune and these are used as a guide to select the energy levelsfor the computation of the Poincaré maps, so that all basicresonances are included in the study. Using the circular planarmodel as the basic model, we extend our study to more realisticmodels by considering an elliptic orbit of Neptune and introducingthe inclination of the orbit. Families of symmetric periodicorbits of the planar elliptic restricted three-body problem andthe three-dimensional problem are found. All these orbitsbifurcate from the families of periodic orbits of the planarcircular problem. The stability of all orbits is studied. Althoughthe resonant structure in the circular problem is similar for allresonances, the situation changes if the eccentricity of Neptuneor the inclination of the orbit is taken into account. All theseresults are combined to explain why in some resonances there aremany bodies and other resonances are empty.  相似文献   

4.
We demonstrate the remarkable effectiveness of boundary value formulations coupled to numerical continuation for the computation of stable and unstable manifolds in systems of ordinary differential equations. Specifically, we consider the circular restricted three-body problem (CR3BP), which models the motion of a satellite in an Earth–Moon-like system. The CR3BP has many well-known families of periodic orbits, such as the planar Lyapunov orbits and the non-planar vertical and halo orbits. We compute the unstable manifolds of selected vertical and halo orbits, which in several cases leads to the detection of heteroclinic connections from such a periodic orbit to invariant tori. Subsequent continuation of these connecting orbits with a suitable end point condition and allowing the energy level to vary leads to the further detection of apparent homoclinic connections from the base periodic orbit to itself, or the detection of heteroclinic connections from the base periodic orbit to other periodic orbits. Some of these connecting orbits are of potential interest in space mission design.  相似文献   

5.
A periodic orbit of the restricted circular three-body problem, selected arbitrarily, is used to generate a family of periodic motions in the general three-body problem in a rotating frame of reference, by varying the massm 3 of the third body. This family is continued numerically up to a maximum value of the mass of the originally small body, which corresponds to a mass ratiom 1:m 2:m 3?5:5:3. From that point on the family continues for decreasing massesm 3 until this mass becomes again equal to zero. It turns out that this final orbit of the family is a periodic orbit of the elliptic restricted three body problem. These results indicate clearly that families of periodic motions of the three-body problem exist for fixed values of the three masses, since this continuation can be applied to all members of a family of periodic orbits of the restricted three-body problem. It is also indicated that the periodic orbits of the circular restricted problem can be linked with the periodic orbits of the elliptic three-body problem through periodic orbits of the general three-body problem.  相似文献   

6.
The resonant structure of the restricted three body problem for the Sun- Jupiter asteroid system in the plane is studied, both for a circular and an elliptic orbit of Jupiter. Three typical resonances are studied, the 2 : 1, 3 : 1 and 4 : 1 mean motion resonance of the asteroid with Jupiter. The structure of the phase space is topologically different in these cases. These are typical for all other resonances in the asteroid problem. In each case we start with the unperturbed two-body system Sun-asteroid and we study the continuation of the periodic orbits when the perturbation due to a circular orbit of Jupiter is introduced. Families of periodic orbits of the first and of the second kind are presented. The structure of the phase space on a surface of section is also given. Next, we study the families of periodic orbits of the asteroid in the elliptic restricted problem with the eccentricity of Jupiter as a parameter. These orbits bifurcate from the families of the circular problem. Finally, we compare the above families of periodic orbits with the corresponding families of fixed points of the averaged problem. Different averaged Hamiltonians are considered in each resonance and the range of validity of each model is discussed.  相似文献   

7.
We present a global view of the resonant structure of the phase space of a planetary system with two planets, moving in the same plane, as obtained from the set of the families of periodic orbits. An important tool to understand the topology of the phase space is to determine the position and the stability character of the families of periodic orbits. The region of the phase space close to a stable periodic orbit corresponds to stable, quasi periodic librations. In these regions it is possible for an extrasolar planetary system to exist, or to be trapped following a migration process due to dissipative forces. The mean motion resonances are associated with periodic orbits in a rotating frame, which means that the relative configuration is repeated in space. We start the study with the family of symmetric periodic orbits with nearly circular orbits of the two planets. Along this family the ratio of the periods of the two planets varies, and passes through rational values, which correspond to resonances. At these resonant points we have bifurcations of families of resonant elliptic periodic orbits. There are three topologically different resonances: (1) the resonances (n + 1):n, (2:1, 3:2, ...), (2) the resonances (2n + 1):(2n-1), (3:1, 5:3, ...) and (3) all other resonances. The topology at each one of the above three types of resonances is studied, for different values of the sum and of the ratio of the planetary masses. Both symmetric and asymmetric resonant elliptic periodic orbits exist. In general, the symmetric elliptic families bifurcate from the circular family, and the asymmetric elliptic families bifurcate from the symmetric elliptic families. The results are compared with the position of some observed extrasolar planetary systems. In some cases (e.g., Gliese 876) the observed system lies, with a very good accuracy, on the stable part of a family of resonant periodic orbits.  相似文献   

8.
Numerical solutions are presented for a family of three dimensional periodic orbits with three equal masses which connects the classical circular orbit of Lagrange with the figure eight orbit discovered by C. Moore [Moore, C.: Phys. Rev. Lett. 70, 3675–3679 (1993); Chenciner, A., Montgomery, R.: Ann. Math. 152, 881–901 (2000)]. Each member of this family is an orbit with finite angular momentum that is periodic in a frame which rotates with frequency Ω around the horizontal symmetry axis of the figure eight orbit. Numerical solutions for figure eight shaped orbits with finite angular momentum were first reported in [Nauenberg, M.: Phys. Lett. 292, 93–99 (2001)], and mathematical proofs for the existence of such orbits were given in [Marchal, C.: Celest. Mech. Dyn. Astron. 78, 279–298 (2001)], and more recently in [Chenciner, A. et al.: Nonlinearity 18, 1407–1424 (2005)] where also some numerical solutions have been presented. Numerical evidence is given here that the family of such orbits is a continuous function of the rotation frequency Ω which varies between Ω = 0, for the planar figure eight orbit with intrinsic frequency ω, and Ω = ω for the circular Lagrange orbit. Similar numerical solutions are also found for n > 3 equal masses, where n is an odd integer, and an illustration is given for n = 21. Finite angular momentum orbits were also obtained numerically for rotations along the two other symmetry axis of the figure eight orbit [Nauenberg, M.: Phys. Lett. 292, 93–99 (2001)], and some new results are given here. A preliminary non-linear stability analysis of these orbits is given numerically, and some examples are given of nearby stable orbits which bifurcate from these families.  相似文献   

9.
A systematic approach to generate periodic orbits in the elliptic restricted problem of three bodies in introduced. The approach is based on (numerical) continuation from periodic orbits of the first and second kind in the circular restricted problem to periodic orbits in the elliptic restricted problem. Two families of periodic orbits of the elliptic restricted problem are found by this approach. The mass ratio of the primaries of these orbits is equal to that of the Sun-Jupiter system. The sidereal mean motions between the infinitesimal body and the smaller primary are in a 2:5 resonance, so as to approximate the Sun-Jupiter-Saturn system. The linear stability of these periodic orbits are studied as functions of the eccentricities of the primaries and of the infinitesimal body. The results show that both stable and unstable periodic orbits exist in the elliptic restricted problem that are close to the actual Sun-Jupiter-Saturn system. However, the periodic orbit closest to the actual Sun-Jupiter-Saturn system is (linearly) stable.  相似文献   

10.
We consider the scattering motion of the planar restricted three-body problem with two equal masses on a circular orbit. Using the methods of chaotic scattering we present results on the structure of scattering functions. Their connection with primitive periodic orbits and the underlying chaotic saddle are studied. Numerical evidence is presented which suggests that in some intervals of the Jacobi integral the system is hyperbolic. The Smale horseshoe found there is built from a countable infinite number of primitive periodic orbits, where the parabolic orbits play a fundamental role.  相似文献   

11.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

12.
13.
We present the biparametric family I of symmetric periodic orbits of the three-dimensional general three-body problem, found by numerical continuation of the vertical critical orbit I of the circular restricted three-body problem. The periodic orbits refer to a suitably chosen rotating frame of reference.  相似文献   

14.
The effect of the eccentricity of a planet’s orbit on the stability of the orbits of its satellites is studied. The model used is the elliptic Hill case of the planar restricted three-body problem. The linear stability of all the known families of periodic orbits of the problem is computed. No stable orbits are found, the majority of them possessing one or two pairs of real eigenvalues of the monodromy matrix, while a part of a family with complex instability is found. Two families of periodic orbits, bifurcating from the Lagrangian points L1, L2 of the corresponding circular case are found analytically. These orbits are very unstable and the determination of their stability coefficients is not accurate, so we compute the largest Liapunov exponent in their vicinity. In all cases these exponents are positive, indicating the existence of chaotic motions  相似文献   

15.
Summary The evolution of the extreme values of the functionsx(t),y(t) andz(t) which are the coordinates of the third bodyP in the barycentric rotating frame of reference, when friction is present, is discussed. These values, which are constant for periodic orbits, change due to the presence of the resisting medium. It is shown that either the orbit tends to become circular and coplanar with the two primaries or to collide with one of the primaries.  相似文献   

16.
Several families of periodic orbits exist in the context of the circular restricted three-body problem. This work studies orbital motion of a spacecraft among these periodic orbits in the Earth–Moon system, using the planar circular restricted three-body problem model. A new cylindrical representation of the spacecraft phase space (i.e., position and velocity) is described, and allows representing periodic orbits and the related invariant manifolds. In the proximity of the libration points, the manifolds form a four-fold surface, if the cylindrical coordinates are employed. Orbits departing from the Earth and transiting toward the Moon correspond to the trajectories located inside this four-fold surface. The isomorphic mapping under consideration is also useful for describing the topology of the invariant manifolds, which exhibit a complex geometrical stretch-and-folding behavior as the associated trajectories reach increasing distances from the libration orbit. Moreover, the cylindrical representation reveals extremely useful for detecting periodic orbits around the primaries and the libration points, as well as the possible existence of heteroclinic connections. These are asymptotic trajectories that are ideally traveled at zero-propellant cost. This circumstance implies the possibility of performing concretely a variety of complex Earth–Moon missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining a suitable, convenient end-of-life strategy for spacecraft placed in any of the unstable orbits. The final disposal orbit is an externally confined trajectory, never approaching the Earth or the Moon, and can be entered by means of a single velocity impulse (of modest magnitude) along the right unstable manifold that emanates from the Lyapunov orbit at \(L_2\) .  相似文献   

17.
Analysis and design of low-energy transfers to the Moon has been a subject of great interest for many decades. This paper is concerned with a topological study of such transfers, with emphasis to trajectories that allow performing lunar capture and those that exhibit homoclinic connections, in the context of the circular restricted three-body problem. A fundamental theorem stated by Conley locates capture trajectories in the phase space and can be condensed in a sentence: “if a crossing asymptotic orbit exists then near any such there is a capture orbit”. In this work this fundamental theoretical assertion is used together with an original cylindrical isomorphic mapping of the phase space associated with the third body dynamics. For a given energy level, the stable and unstable invariant manifolds of the periodic Lyapunov orbit around the collinear interior Lagrange point are computed and represented in cylindrical coordinates as tubes that emanate from the transformed periodic orbit. These tubes exhibit complex geometrical features. Their intersections correspond to homoclinic orbits and determine the topological separation of long-term lunar capture orbits from short-duration capture trajectories. The isomorphic mapping is proven to allow a deep insight on the chaotic motion that characterizes the dynamics of the circular restricted three-body, and suggests an interesting interpretation, and together corroboration, of Conley’s assertion on the topological location of lunar capture orbits. Moreover, an alternative three-dimensional representation of the phase space is profitably employed to identify convenient lunar periodic orbits that can be entered with modest propellant consumption, starting from the Lyapunov orbit.  相似文献   

18.
This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill–Clohessy–Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The \(\Delta v\) requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology.  相似文献   

19.
In this paper we present a two-parametric family of symmetric periodic orbits of the three-dimensional general three-body problem, found numerically by continuation of a vertical critical orbit of the circular restricted three-body problem. The periodic orbits refer to a suitably defined rotating frame of reference.  相似文献   

20.
Four 3 : 1 resonant families of periodic orbits of the planar elliptic restricted three-body problem, in the Sun-Jupiter-asteroid system, have been computed. These families bifurcate from known families of the circular problem, which are also presented. Two of them, I c , II c bifurcate from the unstable region of the family of periodic orbits of the first kind (circular orbits of the asteroid) and are unstable and the other two, I e , II e , from the stable resonant 3 : 1 family of periodic orbits of the second kind (elliptic orbits of the asteroid). One of them is stable and the other is unstable. All the families of periodic orbits of the circular and the elliptic problem are compared with the corresponding fixed points of the averaged model used by several authors. The coincidence is good for the fixed points of the circular averaged model and the two families of the fixed points of the elliptic model corresponding to the families I c , II c , but is poor for the families I e , II e . A simple correction term to the averaged Hamiltonian of the elliptic model is proposed in this latter case, which makes the coincidence good. This, in fact, is equivalent to the construction of a new dynamical system, very close to the original one, which is simple and whose phase space has all the basic features of the elliptic restricted three-body problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号