首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper we construct and analyze the uniform non-LTE distributions of the aluminium ([Al/Fe]-[Fe/H]) and sodium ([Na/Fe]-[Fe/H]) abundances in the sample of 160 stars of the disk and halo of our Galaxy with metallicities within ?4.07 ≤ [Fe/H] ≤ 0.28. The values of metallicity [Fe/H] and microturbulence velocity ξ turb indices are determined from the equivalent widths of the Fe II and Fe I lines. We estimated the sodium and aluminium abundances using a 21-level model of the Na I atom and a 39-level model of the Al I atom. The resulting LTE distributions of [Na/Fe]-[Fe/H] and [Al/Fe]-[Fe/H] do not correspond to the theoretical predictions of their evolution, suggesting that a non-LTE approach has to be applied to determine the abundances of these elements. The account of non-LTE corrections reduces by 0.05–0.15 dex the abundances of sodium, determined from the subordinate lines in the stars of the disk with [Fe/H] ≥ ?2.0, and by 0.05–0.70 dex (with a strong dependence on metallicity) the abundances of [Na/Fe], determined by the resonance lines in the stars of the halo with [Fe/H] ≤ ?2.0. The non-LTE corrections of the aluminium abundances are strictly positive and increase from 0.0–0.1 dex for the stars of the thin disk (?0.7 ≤ [Fe/H] ≤ 0.28) to 0.03–0.3 dex for the stars of the thick disk (?1.5 ≤ [Fe/H] ≤ ?0.7) and 0.06–1.2 dex for the stars of the halo ([Fe/H] ≤ ?2.0). The resulting non-LTE abundances of [Na/Fe] reveal a scatter of individual values up to Δ[Na/Fe] = 0.4 dex for the stars of close metallicities. The observed non-LTE distribution of [Na/Fe]-[Fe/H] within 0.15 dex coincides with the theoretical distributions of Samland and Kobayashi et al. The non-LTE aluminium abundances are characterized by a weak scatter of values (up to Δ[Al/Fe] = 0.2 dex) for the stars of all metallicities. The constructed non-LTE distribution of [Al/Fe]-[Fe/H] is in a satisfactory agreement to 0.2 dex with the theoretical data of Kobayashi et al., but strongly differs (up to 0.4 dex) from the predictions of Samland.  相似文献   

2.
We discuss in this contribution constraints on the origin of mass-loss from young stars brought by recent observations at high angular resolution (0.1″ = 14 AU) of the inner regions of winds from T Tauri stars. Jet widths and collimation scales, the large extent of the velocity profile as well as the detection of rotation signatures agree with predictions from magneto-centrifugal disk wind ejection models. However dynamically cold disk wind solutions predict too large terminal velocities and too low jet densities and ionisation fractions, suggesting that thermal gradients (originating in an accretion heated disk corona for example) may play an important role in accelerating the flow.  相似文献   

3.
We discuss results on the oxygen abundance in a sample of 23 metal-poor (?3.0≤ [Fe/H] ≤ ?0.3) unevolved stars and one giant. High resolutionspectroscopy of OH lines in the near UV allowed us to trace the early evolution of oxygenversus metallicity. Contrary to previous expectations, we find that oxygen abundances derived from these low excitation lines agree well withthose derived from the high excitation lines of the OI IR triplet and from the [OI] λ 6300 Å line. Our new oxygen abundances show a smooth extension of previouslyknown trends of [O/Fe] versus [Fe/H] in disk stars to much lower metallicities, with a slope of ?0.31± 0.11. The [O/Fe] ratio increasesfrom 0.6 to 1 between [Fe/H] =?1.5 and ?3.0. Comparison with oxygen abundances in giant stars of the same metallicity imply that the lattermay have suffered a process of oxygen depletion. We briefly discussthe impact of these results on the yields of Type II SNe in the early Galaxy and on the age of globular clusters.  相似文献   

4.
恒星的Al元素丰度可以为探索星团和星系的化学演化提供重要线索.通过系统分析银河系薄盘、厚盘、核球、银晕以及M4、M5等球状星团中恒星的[Al/Fe]随恒星金属丰度[Fe/H]的变化趋势,得出银河系薄盘、厚盘和核球恒星的[Al/Fe]随着[Fe/H]的增加而缓慢下降,而球状星团M4和M5恒星的[Al/Fe]随[Fe/H]增加没有下降趋势,这暗示Ia超新星对M4和M5恒星元素丰度的贡献比较小.详细研究了银河系恒星[Al/Fe]与[Mg/Fe]、[Na/Fe]的相关性,结果表明银河系场星的[Al/Fe]与[Mg/Fe]正相关,但在球状星团M4和M5恒星中未见此相关性;银河系盘星及M4和M5等球状星团恒星的[Al/Fe]与[Na/Fe]都存在正相关.  相似文献   

5.
We review elemental abundances derived for planetary nebula (PN) WCcentral stars and for their nebulae. Uncertainties in the abundances of[WC] stars are still too large to enable an abundance sequenceto be constructed. In particular it is not clear why the hotter [WCE]stars have C and O abundances which are systematically lower than those oftheir supposed precursors, the [WCL] stars. This abundance differencecould be real or it may be due to unaccounted-for systematic effects inthe analyses. Hydrogen might not be present in [WC] star winds asoriginallysuggested, since broad pedestals observed at the base of nebular lines canplausibly be attributed to high velocity nebular components. It isrecommended that stellar abundance analyses should be carried out withnon-LTE model codes, although recombination line analyses can provideuseful insights. In particular, C II dielectronic recombinationlines provide a unique means to determine electron temperatures in cool[WC] star winds. We then compare the abundances found for PNe which have [WC] central starswith those that do not. Numerous abundance analyses of PNe have beenpublished, but comparisons based on non-uniform samples and methods arelikely to lack reliability. Nebular C/H ratios, which might be expected todistinguish between PNe around H-poor and H-rich stars, are rather similarfor the two groups, with only a small tendency towards larger values fornebulae around H-deficient stars. Nebular abundances should be obtainedwith photoionization models using the best-fitting non-LTE modelatmosphere for the central star as the input. Heavy-metal line blanketingstill needs to be taken into consideration when modeling the central star,as its omission can significantly affect the ionizing fluxes as well asthe abundance determinations. We discuss the discrepancies between nebularabundances derived from collisionally excited lines and thosederived from optical recombination lines, a phenomenon that may havelinks with the presence of H-deficient central stars.  相似文献   

6.
We demonstrate that low-resolution Ca  ii triplet (CaT) spectroscopic estimates of the overall metallicity ([Fe/H]) of individual red giant branch (RGB) stars in two nearby dwarf spheroidal galaxies (dSphs) agree to ±0.1–0.2 dex with detailed high-resolution spectroscopic determinations for the same stars over the range  −2.5 < [Fe/H] < −0.5  . For this study, we used a sample of 129 stars observed in low- and high-resolution modes with VLT/FLAMES in the Sculptor and Fornax dSphs. We also present the data-reduction steps we used in our low-resolution analysis and show that the typical accuracy of our velocity and CaT [Fe/H] measurement is ∼2 km s−1 and 0.1 dex, respectively. We conclude that CaT–[Fe/H] relations calibrated on globular clusters can be applied with confidence to RGB stars in composite stellar populations over the range  −2.5 < [Fe/H] < −0.5  .  相似文献   

7.
The space velocities and Galactic orbital elements of stars calculated from the currently available high-accuracy observations in our compiled catalog of spectroscopic magnesium abundances in dwarfs and subgiants in the solar neighborhood are used to identify thick-disk objects. We analyze the relations between chemical, spatial, and kinematic parameters of F–G stars in the identified subsystem. The relative magnesium abundances in thick-disk stars are shown to lie within the range 0.0 < [Mg/Fe] < 0.5 and to decrease with increasingmetallicity starting from [Fe/H] ≈ ?1.0. This is interpreted as evidence for a longer duration of the star formation process in the thick disk. We have found vertical gradients in metallicity (gradZ[Fe/H] = ?0.13 ± 0.04 kpc?1) and relative magnesium abundance (gradZ[Mg/Fe] = 0.06 ± 0.02 kpc?1), which can be present in the subsystem only in the case of its formation in a slowly collapsing protogalaxy. However, the gradients in the thick disk disappear if the stars whose orbits lie in the Galactic plane, but have high eccentricities and low azimuthal space velocities atypical of the thin-disk stars are excluded from the sample. The large spread in relative magnesium abundance (?0.3 < [Mg/Fe] < 0.5) in the stars of the metal-poor “tail” of the thick disk, which constitute ≈8% of the subsystem, can be explained in terms of their formation inside isolated interstellar clouds that interacted weakly with the matter of a single protogalactic cloud. We have found a statistically significant negative radial gradient in relative magnesium abundance in the thick disk (gradR[Mg/Fe] = ?0.03 ± 0.01 kpc? 1) instead of the expected positive gradient. The smaller perigalactic orbital radii and the higher eccentricities for magnesium-richer stars, which, among other stars, are currently located in a small volume of the Galactic space near the Sun, are assumed to be responsible for the gradient inversion. A similar, but statistically less significant inversion is also observed in the subsystem for the radial metallicity gradient.  相似文献   

8.
9.
The non-LTE sodium abundance has been determined from the Na I 6154 and 6161 Å lines for 38 thin-disk stars (15 of them are Ba II stars), 15 thick-disk stars, 13 Hercules-stream stars, and 13 stars that cannot be attributed neither to the thick Galactic disk nor to the thin one. The Na I model atom has been constructed using the most accurate present-day atomic data. For the Na I 6154 and 6161 Å lines, the non-LTEabundance corrections are from ?0.06 to ?0.24 dex, depending on the stellar parameters. No differences in [Na/Fe] abundance between the thick and thin disks have been detected; the derived ratios are close to the solar ones. The existence of a [Na/Fe] overabundance in the Ba II stars has been confirmed. The Hercules-stream stars exhibit nearly solar [Na/Fe] ratios. The results obtained can be used to test the sodium nucleosynthesis models.  相似文献   

10.
In this contribution, we first review the theory of self-collimated jets launched from magnetized accretion disks (disk-winds originating from the first AUs). We show why it is crucial to solve in a self-consistent way the interplay between the resistive accretion disk and the ideal MHD jets. Indeed, this is the only way to get exact values for the disk ejection efficiency ξ (the jet mass load issue). Then, we show self-similar calculations of such accretion-ejection structures: first cold jets, then warm jets obtained in the presence of a hot disk chromosphere. Finally, we present for the first time an accretion-ejection flow crossing all three critical points.  相似文献   

11.
A brief review is given of some results of our work on the construction of (I) steady and (II) time-dependent MHD models for nonrelativistic and relativistic astrophysical outflows and jets, analytically and numerically. The only available exact solutions for MHD outflows are those in separable coordinates, i.e., with the symmetry of radial or meridional self-similarity. Physically accepted solutions pass from the fast magnetosonic separatrix surface in order to satisfy MHD causality. An energetic criterion is outlined for selecting radially expanding winds from cylindrically expanding jets. Numerical simulations of magnetic self-collimation verify the conclusions of analytical steady solutions. We also propose a two-component model consisting of a wind outflow from a central object and a faster rotating outflow launched from a surrounding accretion disk which plays the role of the flow collimator. We also discuss the problem of shock formation during the magnetic collimation of wind-type outflows into jets.  相似文献   

12.
We discuss in this contribution constraints on the origin of mass-loss from young stars brought by recent observations at high angular resolution (0.1″ = 14 AU) of the inner regions of winds from T Tauri stars. Jet widths and collimation scales, the large extent of the velocity profile as well as the detection of rotation signatures agree with predictions from extended (R e ≥ 1 AU) magneto-centrifugal disk wind ejection models. Detected poloidal and toroidal velocities imply large ejection efficiencies (ξ ? 0.05, λ ? 10), suggesting that thermal gradients (originating in an accretion heated disk corona for example) play an important role in accelerating the flow.  相似文献   

13.
We have collected nearly all the available observed data of the elements from Ba to Dy in halo and disk stars in the metallicity range -4.0 <[Fe/H]< 0.5. Based on the observed data of Ba and Eu, we evaluated the least-squares regressions of [Ba/Fe] on [Fe/H], and [Eu/H] on [Ba/H]. Assuming that the heavy elements (heavier than Ba) are produced by a combination of the main components of s- and r-processes in metal-poor stars, and choosing Ba and Eu as respective representative elements of the main s- and the main r-processes, a statistical model for predicting the Galactic chemical evolution of the heavy elements is presented. With this model, we calculate the mean abundance trends of the heavy elements La, Ce, Pr, Nd, Sm, and Dy with the metallicity. We compare our results with the observed data at various metallicities, showing that the predicted trends are in good agreement with the observed trends, at least for the metallicity range [Fe/H]> -2.5. Finally, we discuss our results and deduce some importa  相似文献   

14.
Integral field spectroscopy has been obtained for the nuclear regions of three large, well-studied, early-type galaxies. From these spectra we have obtained line-strength maps for about 20 absorption lines, mostly belonging to the Lick system. An extensive comparison with multilenslet spectroscopy shows that accurate kinematic maps can be obtained, and also reproducible line-strength maps. Comparison with long-slit spectroscopy also produces good agreement.
We show that Mg is enhanced with respect to Fe in the inner disc of one of the three galaxies studied, the Sombrero. [Mg/Fe] there is larger than in the rest of the bulge. The large values of Mg/Fe in the central disc are consistent with the centres of other early-type galaxies, and not with large discs, like the disc of our Galaxy, where [Mg/Fe] ∼0. We confirm with this observation a recent result of Worthey: that Mg/Fe is determined only by the central kinetic energy, or escape velocity, of the stars, and not by the formation time-scale of the stars.
A stellar population analysis using the models of Vazdekis et al. shows that our observed H γ agrees well with what is predicted based on the other lines. Given the fact that H β is often contaminated by emission lines, we confirm the statement of Worthey & Ottaviani, Kuntschner & Davies and others that if one tries to measure ages of galaxies, H γ is a much better index to use than H β . Using the line strength of the Ca  ii IR triplet as an indicator of the abundance of Ca, we find that Ca follows Fe, and not Mg, in these galaxies. This is peculiar, given the fact that Ca is an α element. Finally, by combining the results of this paper with those of Vazdekis et al., we find that the line-strength gradients in the three galaxies are primarily caused by variations in metallicity.  相似文献   

15.
Data from our compiled catalog of spectroscopically determined magnesium abundances in stars with accurate parallaxes are used to select thin-disk dwarfs and subgiants according to kinematic criteria. We analyze the relations between the relative magnesium abundances in stars, [Mg/Fe], and their metallicities, Galactic orbital elements, and ages. The [Mg/Fe] ratios in the thin disk at any metallicity in the range ?1.0 dex <[Fe/H] < ?0.4 dex are shown to be smaller than those in the thick disk, implying that the thin-disk stars are, on average, younger than the thick-disk stars. The relative magnesium abundances in such metal-poor thin-disk stars have been found to systematically decrease with increasing stellar orbital radii in such a way that magnesium overabundances ([Mg/Fe] > 0.2 dex) are essentially observed only in the stars whose orbits lie almost entirely within the solar circle. At the same time, the range of metallicities in magnesium-poor stars is displaced from ?0.5 dex < [Fe/H] < +0.3 dex to ?0.7 dex < [Fe/H] < +0.2 dex as their orbital radii increase. This behavior suggests that, first, the star formation rate decreases with increasing Galactocentric distance and, second, there was no star formation for some time outside the solar circle, while this process was continuous within the solar circle. The decrease in the star formation rate with increasing Galactocentric distance is responsible for the existence of a negative radial metallicity gradient (grad R[Fe/H] = ?0.05 ± 0.01 kpc?1) in the disk, which shows a tendency to increase with decreasing age. At the same time, the relative magnesium abundance exhibits no radial gradient. We have confirmed the existence of a steep negative vertical metallicity gradient (grad Z[Fe/H] = ?0.29 ± 0.06 kpc?1) and detected a significant positive vertical gradient in relative magnesium abundance (grad Z[Mg/Fe] = 0.13 ± 0.02 kpc?1); both gradients increase appreciably in absolute value with decreasing age. We have found that there is not only an age-metallicity relation, but also an age-magnesium abundance relation, in the thin disk. We surmise that the thin disk has a multicomponent structure, but the existence of a negative trend in the star formation rate along the Galactocentric radius does not allow the stars of its various components to be identified in the immediate solar neighborhood.  相似文献   

16.
Based on our compiled catalogue of positions, velocities, ages, and abundances of nine chemical elements for 221 classical Cepheids, we analyze the dependences of the relative abundances of α-elements as well as rapid and slow neutron capture elements on metallicity, space velocity components, and Galactocentric distance. We have found that the relative abundances of all elements in Cepheids do not depend on velocity but increase with Galactocentric distance and decrease with increasing metallicity, just as in thin-disk dwarfs and giants. In Cepheids, however, the [α/Fe]-[Fe/H] relation lies below, while the [r/Fe]-[Fe/H] and [s/Fe]-[Fe/H] relations lie above the analogous sequences for dwarfs and giants. We hypothesize that upon reaching a nearly solar metallicity in the interstellar medium of the thin disk, the most massive stars ceased to explode as type II supernovae, which mostly enriched the interstellar medium with α-elements. As a result, an underabundance of α-elements and a slight overabundance of r-process elements, which are ejected into the interstellar medium by less massive (8–10 M ) type II supernovae, were formed in the next generations of stars. The overabundance of s-process elements in Cepheids can be explained by the fact that some of the s-elements were produced in the weak s-process in the interiors of massive stars, which may be able to eject the upper parts of their envelopes even without any explosion like asymptotic giant branch stars. And since such massive stars, exploding as type II supernovae, also enriched the interstellar medium with a considerable amount of iron atoms, the [s/Fe] ratios (along with [r/Fe]) in the next generations of stars must be higher in their absence.  相似文献   

17.
The effects of phenomenological heating functions on the flow thermodynamics of cold T-Tauri disk winds are examined. Turbulent dissipation (mechanical) heating and a warm disk corona are invoked to heat the wind. The temperature and ionization evolution are solved for along the flow. The results allow the construction of synthetic observations; emission maps, forbidden line ratios, line fluxes and line profiles; and successfully reproduce a number of observed trends. Mechanical heating produces line ratios and fluxes that fit very well with observations. Invoking a warm disk corona successfully reproduces forbidden line profile low velocity components.  相似文献   

18.
《New Astronomy Reviews》1999,43(6-7):471-472
We summarize results from several programs utilizing the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope (HST) to study winds and mass-loss from evolved, low-gravity cool stars. We have found that: (i) the photons for thermally and fluorescently excited UV emission lines are created below the region of wind acceleration, (ii) the self-reversals in optically thick emission lines indicate an outflowing wind with mean velocities of 9–25 km/s, (iii) the profiles of optically thin emission lines indicate a mean chromospheric macroturbulence of 24–35 km/s, anisotropically distributed along the radial-tangential directions, (iv) significant emission from hot material (≈105 K) is seen in both non-coronal and hybrid stars to the right of the Linsky-Haisch dividing line, (v) the weakness of Fe II emission lines in the carbon stars, combined with the presence of the Fe I 2807 Å feature only in carbon stars, suggests that the ionization fraction of iron is significantly lower in the outer atmospheres of carbon stars than in O-rich stars, and (vi) Fe II line profile variations indicate changes in mass-loss rate and wind opacity on a timescale of several years in two typical late-type, low-gravity stars.  相似文献   

19.
In spite of the large number of global three-dimensional (3-D) magnetohydrodynamic (MHD) simulations of accretion disks and astrophysical jets, which have been developed since 2000, the launching mechanisms of jets is somewhat controversial. Previous studies of jets have concentrated on the effect of the large-scale magnetic fields permeating accretion disks. However, the existence of such global magnetic fields is not evident in various astrophysical objects, and their origin is not well understood. Thus, we study the effect of small-scale magnetic fields confined within the accretion disk. We review our recent findings on the formation of jets in dynamo-active accretion disks by using 3-D MHD simulations. In our simulations, we found the emergence of accumulated azimuthal magnetic fields from the inner region of the disk (the so-called magnetic tower) and also the formation of a jet accelerated by the magnetic pressure of the tower. Our results indicate that the magnetic tower jet is one of the most promising mechanisms for launching jets from the magnetized accretion disk in various astrophysical objects. We will discuss the formation of cosmic jets in the context of the magnetic tower model.  相似文献   

20.
Many magneto-hydrodynamic (MHD) models have been developed to describe the acceleration and collimation of stellar jets, in the framework of an infall/outflow process. Thanks to high angular resolution instrumentation, such as the one on-board the Hubble Space Telescope (HST), we are finally able to test observationally the proposed ideas. We present the results obtained by us from the first 0”.1 resolution spectra of the initial portion (within 100–200 AU from the source) of the outflows from visible T Tauri stars, taken with the Space Telescope Imaging Spectrograph (STIS). We obtain the jet morphology, kinematics and excitation in different velocity intervals, and we derive the jet mass and momentum fluxes. These results confirm the predictions of magneto-centrifugal models for the jet launch. Recently we have also found indications for rotation in the peripheral regions of several flows. The derived rotational motions appear to be in agreement with the expected extraction of angular momentum from the star/disk system caused by the jet, which in turn allows the star to accrete up to its final mass. Improvements to resolution are expected from observations with STIS in the ultraviolet, and with the forthcoming AMBER spectrometer to be mounted at the VLTI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号