首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The thermochemical study of a natural basic copper phosphate, pseudomalachite Cu5(PO4)2(OH)4 (Virneberg deposit, Germany), was carried out using high-temperature melt solution calorimetry method with a Tian–Calvet microcalorimeter. The enthalpy of formation of the mineral from elements was obtained to be Δ f Hel(298.15 K) =–3214 ± 13 kJ/mol. The value of the Gibbs energy of pseudomalachite formation calculated using literature data on its standard entropy is Δ f Hel°(298.15 K) =–2812 ± 13 kJ/mol.  相似文献   

2.
The paper reports pioneering data on the calorimetrically determined enthalpy of formation from elements of cuspidine, Ca fluordiorthosilicate Ca4Si2O7F2, from the Tyrny-Auz Mo–W deposit in Kabardino- Balkaria, Russia. The data were obtained by high-temperature melt solution calorimetry. The determined value is ΔfHel° (298.15 K) =–5190 ± 13 kJ/mol. The paper reports estimated S°(298.15 K) and ΔfGel° (298.15 K) of cuspidine.  相似文献   

3.
The thermochemical study of natural hydrous calcium and iron phosphate, anapaite Ca2Fe(PO4)2 · 4H2O (Kerch iron ore deposit, Crimea, Russia), was carried out using high-temperature melt solution calorimetry with a Tian-Kalvet microcalorimeter. The enthalpy of formation of the mineral from elements was obtained to be Δ f Hel°(298.15 K) =–4812 ± 16 kJ/mol. The values of the standard entropy and the Gibbs energy of anapaite formation are S°(298.15 K) = 404.2 J/K mol and Δ f Gel°(298.15 K) =–4352 ± 16 kJ/mol, respectively.  相似文献   

4.
The paper presents the results of a thermochemical and thermal study of cancrinite, (Na6.93Ca0.545K0.01)Σ7.485[(Si6.47Al5.48Fe0.05)Σ12O24](CO3)1.25 · 2.30 H2O, and cancrisilite, (Na7.17 Ca0.01)Σ7.18[(Si7.26Al4.70Fe0.04)Σ12O24][(CO3)1.05(OH)0.21(PO4)0.04(SO4)0.01] · 2.635 H2O, from the Khibina-Lovozero Complex, Kola Peninsula, Russia. Stages of the thermal decomposition of these minerals were studied using IR spectroscopy. The enthalpies of formation of the minerals from elements were determined by melt drop solution calorimetry: Δ f H el 0 (298.15 K) = ?14 490 ± 16 kJ/mol for cancrinite and ?14302 ± 17 kJ/mol for cancrisilite. The values of Δ f H el 0 (298.15 K), S o(298.15 K), and Δ f H el 0 (298.15 K) are determined for cancrinite and cancrisilite of theoretical composition.  相似文献   

5.
The heat capacity of praseodymium orthophosphate PrPO4 was measured by adiabatic and relaxation calorimetric techniques at 5.12–345.54 K, and these data were utilized to calculate thermodynamic functions of PrPO4 at 6–350 K. The Gibbs free energy of PrPO4 formation ΔfG0(298.15 K) is evaluated at 1851.8 ± 4.7 kJ mol–1.  相似文献   

6.
The solubility of Gd2Ti2O7 ceramic in acidic solutions (HCl and HClO4) was studied at 250°C and saturation vapor pressure within pH 2.5–5.2. The dissolution process occurs mainly via two reactions: 0.5 Gd2Ti2O7(cr) + 3H+ = Gd3+ + TiO2(cr) + 1.5 H2O at pH < 3 and 0.5Gd2Ti2O7(cr) + H+ + 0.5H2O = Gd(OH) 2 + TiO2(cr) at pH 3–5. The thermodynamic equilibrium constants were calculated at the 0.95 confidence level as log K (1) o = 4.12 ± 0.47; = ?0.97 ± 0.16 at 250°C. It was shown that Gd3+ undergoes hydrolysis in solutions with pH > 3, and the species Gd(OH) 2 + dominates up to at least pH 5. At pH < 3, Gd occurs in solutions as Gd3+. The second constant of Gd3+ hydrolysis was determined at 250°C as K o = ?5.09 ± 0.5, and the thermodynamic characteristics of the initial Gd2Ti2O7 solid phase were determined: S 298.15 o = 251.4 J/(mol K) and ΔfG 298.15 o = ?3630 ± 10 kJ/mol.  相似文献   

7.
Based on the expert review of literature data on the thermodynamic properties of species in the Cl-Pd system, stepwise and overall stability constants are recommended for species of the composition [PdCl n ]2 ? n , and the standard electrode potential of the half-cell PdCl 4 2? /Pd(c) is evaluated at E 298,15° = 0.646 ± 0.007 V, which corresponds to Δ f G 298.15° = ?400.4 ± 1.4 kJ/mol for the ion PdCl 4 2? (aq). Derived from calorimetric data, Δ f H 298.15° PdCl 4 2? (aq) = ?524.6 ± 1.6 kJ/mol and Δ f H 298.15° Pd2+(aq) = 189.7 ± 2.6 kJ/mol. The assumed values of the overall stability constant of the PdCl 4 2? ion and the standard electrode potential of the PdCl 4 2? /Pd(c) half-cell correspond to Δ f G 298.15° = 190.1 ± 1.4 kJ/mol and S 298.15° = ?94.2 ± 10 J/(mol K) for the Pd2+(aq) ion.  相似文献   

8.
Absorption of the synchrotron emission of the quasar 3C 345 in the continuum and H(93–95)α and H(78–79)α radio recombination lines is studied. The upper limit for absorption in the H(93–95)α lines is Tal/Tac < 0.7%; absorption in the H(78–79)α lines with antenna temperature Tal = 25 mK, linewidth Δf = 5.3 ± 0.08 MHz, and Tal/Tac ≥ 0.3% has been detected. A correction to the redshift Δz = 0.00135 ± 0.00008 (z = 0.59365) has been determined.  相似文献   

9.
This paper investigates, using the random field theory and Monte Carlo simulation, the effects of random field discretization on failure probability, p f, and failure mechanism of cohesive soil slope stability. The spatial sizes of the discretized elements in random field Δx, Δy in horizontal and vertical directions, respectively, are assigned a series of combinational values in order to model the discretization accuracy. The p f of deterministic critical slip surface (DCSS) and that of the slope system both are analyzed. The numerical simulation results have demonstrated that both the ratios of Δy/λ y (λ y  = scale of fluctuation in vertical direction) and Δx/λ x (λ x  = scale of fluctuation in horizontal direction) contribute in a similar manner to the accuracy of p f of DCSS. The effect of random field discretization on the p f can be negligible if both the ratios of Δx/λ x and Δy/λ y are no greater than 0.1. The normalized discrepancy tends to increase at a linear rate with Δy/λ y when Δx/λ x is larger than 0.1, and vice versa for p f of DCSS. The random field discretization tends to have more considerable influence on the p f of DCSS than on that of the slope system. The variation of p f versus λ x and λ y may exhibit opposite trends for the cases where the limit state functions of slope failure are defined on DCSS and on the slope system as well. Finally, the p f of slope system converges in a more rapid manner to that of DCSS than the failure mechanism does to DCSS as the spatial variability of soil property grows from significant to negligible.  相似文献   

10.
AIA/SDO data in the 193 Å channel preceding a coronal mass ejection observed at the solar limb on June 13, 2010 are used to simultaneously identify and examine two different shock fronts. The angular size of each front relative to the CME center was about 20°, and their propagation directions differed by ≈25° (≈4° in position angle). The faster front, called the blast shock, advanced the other front, called the piston shock, by R ≈ (0.02-0.03)R⊙ (R⊙ is the solar radius) and had a maximum initial speed of VB ≈ 850 km/s (with VP ≈ 700 km/s for the piston shock). The appearance and motion of these shocks were accompanied by a Type II radio burst observed at the fundamental frequency F and second harmonic H. Each frequency was split into two close frequencies f1 and f2 separated by Δf = f2 - f1 ? F, H. It is concluded that the observed frequency splitting Δf of the F and H components of the Type II burst could result from the simultaneous propagation of piston and blast shocks moving with different speeds in somewhat different directions displaying different coronal-plasma densities.  相似文献   

11.
The coupled solubility of Au(cr) and Pt(cr) has been measured in acidic chloride solutions at 350–450°С and 0.5 and 1 kb using the autoclave technique with determination of dissolved metal contents after quenching. The constants of the reaction combining the dominant species of Au and Pt in high-temperature hydrothermal fluids (K(Au–Pt)) have been determined: 2 Au(cr) + PtCl42- = Pt(cr) + 2AuCl2-; log K(Au–Pt) =–1.02 ± 0.25 (450°С, 1 kb), 0.09 ± 0.15 (450°С, 0.5 kb), and –1.31 ± 0.20 (350°С, 1 kb). It has been established that the factors affecting the Au/Pt concentration ratio in hydrothermal fluids and precipitated ores are temperature, pressure, redox potential, and sulfur fugacity. An increase in temperature results in an increase in the Au/Pt concentration ratio (up to ~550°С at P = 1 kb). A decrease in pressure and redox potential leads to enrichment of fluid in Au. An increase in sulfur fugacity in the stability field of Pt sulfides results in increase in the Au/Pt concentration ratio. Native platinum is replaced by sulfide mineral in low-temperature systems enriched in Pt (relative to Au).  相似文献   

12.
The paper reports data obtained in the course of a comprehensive physicochemical study of Li-tosudite, a mixed-layer mineral from hydrothermally altered rocks in western Chukotka, Russia, whose formula was reliably established. The enthalpy of formation of Li-tosudite from Chukotka, Ca0.15(Li0.9Mg0.2Al6.0)[Si6.4Al1.6O20](OH)10 · 3.3H2O, from elements was experimentally determined by melt solution calorimetry in a high-temperature Calvet microcalorimeter: ΔfH el o (298.15 К) =–15087 ± 26 kJ/mol. The standard entropy and Gibbs free energy of formation of this mineral were evaluated.  相似文献   

13.
We have performed experiments to determine the effects of pressure, temperature and oxygen fugacity on the CO2 contents in nominally anhydrous andesitic melts at graphite saturation. The andesite composition was specifically chosen to match a low-degree partial melt composition that is generated from MORB-like eclogite in the convective, oceanic upper mantle. Experiments were performed at 1–3 GPa, 1375–1550?°C, and fO2 of FMQ ?3.2 to FMQ ?2.3 and the resulting experimental glasses were analyzed for CO2 and H2O contents using FTIR and SIMS. Experimental results were used to develop a thermodynamic model to predict CO2 content of nominally anhydrous andesitic melts at graphite saturation. Fitting of experimental data returned thermodynamic parameters for dissolution of CO2 as molecular CO2: ln(K 0) = ?21.79?±?0.04, ΔV 0?=?32.91?±?0.65 cm3mol?1, ΔH 0?=?107?±?21 kJ mol?1, and dissolution of CO2 as CO3 2?: ln(K 0 ) = ?21.38?±?0.08, ΔV 0?=?30.66?±?1.33 cm3 mol?1, ΔH 0?=?42?±?37 kJ mol?1, where K 0 is the equilibrium constant at some reference pressure and temperature, ΔV 0 is the volume change of reaction, and ΔH 0 is the enthalpy change of reaction. The thermodynamic model was used along with trace element partition coefficients to calculate the CO2 contents and CO2/Nb ratios resulting from the mixing of a depleted MORB and the partial melt of a graphite-saturated eclogite. Comparison with natural MORB and OIB data suggests that the CO2 contents and CO2/Nb ratios of CO2-enriched oceanic basalts cannot be produced by mixing with partial melts of graphite-saturated eclogite. Instead, they must be produced by melting of a source containing carbonate. This result places a lower bound on the oxygen fugacity for the source region of these CO2-enriched basalts, and suggests that fO2 measurements made on cratonic xenoliths may not be applicable to the convecting upper mantle. CO2-depleted basalts, on the other hand, are consistent with mixing between depleted MORB and partial melts of a graphite-saturated eclogite. Furthermore, calculations suggest that eclogite can remain saturated in graphite in the convecting upper mantle, acting as a reservoir for C.  相似文献   

14.
The behavior of the 0.1 mNaCl + 0.002 mHCl + 1.9 × 10?5 mUO2(NO3)2 solution was studied at pH from 2.7 to 11.0, 25°C, and 1 bar in an argon atmosphere. The curve of variations in U concentration exhibits two minima at pH = 6.6 ± 0.7 and 10.0 ± 0.5. These minima are related to the precipitation of schoepite and clarkeite, respectively. The experimental data were used to refine the stability constants of U(VI) (hydroxo) complexes. For the polymer species of U(VI) with charges from +2 to ?1, the method of additivity of thermochemical increments was used, and increments of the linear relation were determined for the calculation of the Gibbs free energies of formation (ΔfG 298.15 0 ) of respective homologue series. The proposed method was applied to calculate the ΔfG 298.15 0 of formation of U(VI) (hydroxo)complexes containing from one to five uranium atoms.  相似文献   

15.
Previously, similarity of source spectra of Kamchatka earthquakes with respect to the common corner frequency fc1 and the expressed deviations from similarity for the second fc2 and the third fc3 corner frequencies were revealed. The value of fc3 reflects the characteristic size Lis of fault surface; correspondingly, LisvrTis, where vr is the rupture speed and Tis ≈ 1/fc3 is characteristic time. The estimates of fc3 are used for normalizing fc1 and fc2. In this way one obtains dimensionless rupture temporal parametres τ1 and τ2 and can further study the dependence τ21). The growth of a rupture is considered as a process of aggregation of elementary fault spots of the size Lis. The dimensionless width of the random front of aggregation is on the order of τ2. The relationship τ21) approximately follows power law with exponent β. The estimates of β derived from earthquake populations of Kamchatka, USA and Central Asia (β = 0.35–0.6) agree with values expected from the known Eden’s theory of random aggregation growth and from its generalizations.  相似文献   

16.
The influence of oxygen fugacity (fO2) and temperature on the valence and structural state of iron was experimentally studied in glasses quenched from natural aluminosilicate melts of granite and pantellerite compositions exposed to various T-fO2 conditions (1100–1420°C and 10?12–10?0.68 bar) at a total pressure of 1 atm. The quenched glasses were investigated by Mössbauer spectroscopy. It was shown that the effect of oxygen fugacity on the redox state of iron at 1320–1420°C can be described by the equation log(Fe3+/Fe2+) = k log(fO2) + q, where k and q are constants depending on melt composition and temperature. The Fe3+/Fe2+ ratio decreases with decreasing fO2 (T = const) and increasing temperature (fO2 = const). The structural state of Fe3+ depends on the degree of iron oxidation. With increasing Fe3+/Fe2+ ≥ 1, the dominant coordination of Fe3+ changes from octahedral to tetrahedral. Ferrous iron ions occur in octahedral (and/or five-coordinated) sites independent of Fe3+/Fe2+.  相似文献   

17.
Spectroscopic and photometric data for the two rapidly rotating members of the α Persei cluster He 373 and AP 225 are analyzed. Improved estimates have been obtained for the projected equatorial rotation velocities: v sin i = 164 km/s for He 323 and v sin i = 129 km/s for AP 225. Multi-band photometric mapping is used to map the spot distributions on the surfaces of the two stars. The fractional spotted areas S and mean temperature difference ΔT between the unspotted photosphere and the spots are estimated (S = 7% and ΔT = 1000 K for He 373; S = 9% and ΔT = 800 K for AP 225). The H α line profiles of both stars have variable emission components whose widths are used to deduce the presence of extended regions of emission reaching the corotation radius.  相似文献   

18.
Multi-epoch observations with high spectral resolution acquired in 1998–2008 are used to study the time behavior of the spectral-line profiles and velocity fields in the atmosphere and circumstellar shell of the post-AGB star V448 Lac. Asymmetry of the profiles of the strongest absorption lines with lower-level excitation potentials χ low < 1 eV and time variations of these profiles have been detected, most prominently the profiles of the resonance lines of BaII, YII, LaII, SiII. The peculiarities of these profiles can be explained using a superposition of stellar absorption line and shell emission lines. Emission in the (0; 1) 5635 Å Swan system band of the C2 molecule has been detected in the spectrum of V448 Lac for the first time. The core of the Hα line displays radial-velocity variations with an amplitude of ΔV r ≈ 8 km/s. Radial-velocity variations displayed by weak metallic lines with lower amplitudes, ΔV r ≈ 1–2 km/s, may be due to atmospheric pulsations. Differential line shifts, ΔV r = 0–8 km/s have been detected on various dates. The position of the molecular spectrum is stationary in time, indicating a constant expansion velocity of the circumstellar shell, V exp = 15.2 km/s, as derived from the C2 and NaI lines.  相似文献   

19.
Understanding the changes in permeability of soil, when soil is subjected to high confining pressure and flow pressure, which may alter the textural and geomechanical characteristics of soil, is of great importance to many geo-engineering activities such as, construction of high-rise buildings near the coast or the water bodies, earthen dams, pavement subgrades, reservoir, and shallow repositories. It is now possible to evaluate the changes in permeability of soil samples under varying conditions of confining pressure and flow pressure using flexible wall permeameter (FWP). In the present study, investigation was carried out on a cylindrical sample of granular soil employing FWP under varied conditions of confining pressure (σ3)—50–300 kPa, which can simulate the stress conditions equivalent to depth of about 20 m under the earth’s crust, and a flow pressure (fp)—20–120 kPa, which is mainly present near the small earthen embankment dams, landfill liners, and slurry walls near the soft granular soil with high groundwater table. The obtained results indicate a linear relationship between hydraulic conductivity (k) with effective confining pressure (σeff.), k, decreasing linearly with an incremental change in σeff.. Further, k increases significantly with an increase in fp corresponding to each σeff., and q increases significantly with increase in the fp corresponding to each (σ3). It was also observed that corresponding to the low fp of 20 kPa, the reduction in k is nonlinear with σ3. The percentage reduction in k is observed to be 9, 13, and 27% corresponding to σ3 of 50–100, 100–200, and 200-300 kPa, respectively.  相似文献   

20.
Studies of the extreme solar proton event of January 20, 2005 intensified the contest over of a long-standing problem: are solar cosmic rays arriving at the Earth accelerated by solar flares or by shocks preceding rapidly moving coronal mass ejections? Among the most important questions is the relationship between the energy spectra of the solar cosmic rays and the frequency spectra of flare microwave bursts. Some studies of previous solar-activity cycles have shown that such a relationship does exist, in particular, for protons with energies of tens of MeV. The present work analyzes this relation using data for 1987–2008. For flare events observed in the western half of the disk, there is a significant correlation between the index δ, which is equivalent to the power-law index of the integrated energy spectrum of 10–100 MeV protons detected near the Earth’s orbit, and radio burst parameters such as a ratio of peak fluxes S at two frequencies (for example, at 9 and 15 GHz) and a microwave peak frequency f m . Proton fluxes with hard (flat) energy spectra (δ ≤ 1.5) correspond to hard microwave frequency spectra (S 9/S 15 ≤ 1 and f m ≥ 15 GHz), while flares with soft radio spectra (S 9/S 15 ≥ 1.5 and f m ≤ 5 GHz) result in proton fluxes with soft (steep) energy spectra (δ ≥ 1.5–2). It is also shown that powerful high-frequency bursts with the hardest radio spectra (f m ≈ 30 GHz) can point at acceleration of significant proton fluxes in flares occurring in strong magnetic fields. These results argue that solar cosmic rays (or at least their initial impulses) are mainly accelerated in flares associated with impulsive and post-eruptive energy release, rather than in shocks driven by coronal mass ejections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号