首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meta-graywacke and meta-argillite of Archean age near Yellowknife contain biotite, cordierite, gedrite and sillimanite isograds towards the Sparrow Lake granite pluton. The chemistry of biotite, cordierite, gedrite and garnet in rocks that up-grade from the cordierite isograd indicate a small range of chemical composition, particularly with reference to Mg, Fe and Mn. The analyses show further that among the coexisting ferromagnesian minerals Fe/Fe+ Mg ratio decreases in the sequence: garnet, gedrite, biotite, cordierite while Mn/Fe+Mg+Mn ratio decreases in the sequence garnet, gedrite, cordierite, biotite. The same order is also observed in the distribution diagrams. The regular distribution of Mg, Fe and Mn among the coexisting phases demonstrate that chemical equilibrium was attained and preserved in these Archean rocks. Mg-Fe distribution between cordierite and biotite appears to be dependent on the temperature of crystallization or metamorphic grade.  相似文献   

2.
The prograde evolution of minerals in metapelites of a Barrovian sequence from the tri-state area (Massachusetts, Connecticut, New York) of the Taconic Range involves assemblages with garnet (Ga), chlorite (Ch), chloritoid (Ct), biotite (Bi) and staurolite (St). Detailed petrologic observations, mineral compositions and chemical zoning in garnet show: (1) garnet high in Mn and Fe but low in Mg is stable with chlorite at grades below those where chloritoid+biotite is found; (2) early formed garnet reacted partially to form Ct+Bi at intermediate grades; (3) at higher grades garnet (with low Mn)+chlorite is again produced, at the expense of chloritoid+biotite, suggesting a reversal in the continuous reaction involving the phases Ga, Ch, Ct and Bi. Thermodynamic modeling of the assemblage Ga+Ch+Ct+Bi±St in the MnKFMASH system reveals: (1) in the MnKFASH system the prograde reaction is Ga+Ch=Ct+Bi whereas in the KFMASH system the prograde reaction is the opposite: Ct+Bi=Ga+Ch; (2) the Ga–Ch–Ct–Bi–St invariant point in the KFMASH system occurs twice, at approximately 6.5 kbar, 545° C and 14.8 kbar, 580° C (although one of them may be metastable in a complex phase system); the appearance of the petrogenetic grid is markedly different from that of Albee, but similar to that of Spear and Cheney; (3) as a consequence, in the KFMASH system, chloritoid+biotite are stable over a wide range of P-T conditions whereas garnet+chlorite assemblages are restricted to a narrow band of P-T conditions; (4) MnO increases the stability field of Ga+Ch relative to both Ct+Bi at low temperatures, and St+Bi at high temperatures; (5) in natural samples the occurrence of Ct+Bi is controlled more by bulk Mg–Fe(-Mn) composition than P-T conditions. Specifically, Ct+Bi is restricted to bulk compositions with Fe/(Mg+Fe+Mn)>0.6. Rocks with Fe/(Mg+Fe+Mn)<0.5 are likely to display only chlorite+biotite at low grade. These observations are consistent with Wang and Spear and Spear and Cheney.  相似文献   

3.
Garnet-bearing mineral assemblages are commonly observed in pelitic schists regionally metamorphosed to upper greenschist and amphibolite facies conditions. Modelling of thermodynamic data for minerals in the system Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O, however, predicts that garnet should be observed only in rocks of a narrow range of very high Fe/Mg bulk compositions. Traditionally, the nearly ubiquitous presence of garnet in medium- to high-grade pelitic schists is attributed qualitatively to the stabilizing effect of MnO, based on the observed strong partitioning of MnO into garnet relative to other minerals. In order to quantify the dependence of garnet stability on whole-rock MnO content, we have calculated mineral stabilities for pelitic rocks in the system MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O for a moderate range of MnO contents from a set of non-linear equations that specify mass balance and chemical equilibrium among minerals and fluid. The model pelitic system includes quartz, muscovite. albite, pyrophyllite, chlorite, chloritoid, biotite, garnet, staurolite, cordierite, andalusite, kyanite. sillimanite, K-feldspar and H2O fluid. In the MnO-free system, garnet is restricted to high Fe/Mg bulk compositions, and commonly observed mineral assemblages such as garnet–chlorite and garnet–kyanite are not predicted at any pressure and temperature. In bulk compositions with XMn= Mn/(Fe + Mg + Mn) > 0.01, however, the predicted garnet-bearing mineral assemblages are the same as the sequence of prograde mineral assemblages typically observed in regional metamorphic terranes. Temperatures predicted for the first appearance of garnet in model pelitic schist are also strongly dependent on whole-rock MnO content. The small MnO contents of normal pelitic schists (XMn= 0.01–0.04) are both sufficient and necessary to account for the observed stability of garnet.  相似文献   

4.
Low-pressure, medium- to high-temperature (Buchan-type) regional metamorphism of pelitic rocks in the Mount Lofty Ranges, South Australia, is defined by the development of biotite, staurolite-andalusite, fibrolite, prismatic sillimanite and migmatite zones. K-feldspar makes its first appearance in the prismatic sillimanite zone and here we restrict our discussion to lower grade assemblages containing prograde muscovite, concentrating particularly on well-developed andalusitestaurolite parageneses. In general, the spatial distribution and mineral chemical variation of these assemblages accord with the predictions of petrogenetic grids and P-T and T-X Fe pseudo-sections constructed from the internally consistent data set of Holland and Powell (1990) in the system KFMASH, assuming a(H2O) 1, although analysed white mica compositions are systematically more aluminous than predicted. Importantly, the stability ranges of most critical assemblages predicted by these grids and pseudo-sections coincide closely with P-T estimates calculated using the data set of Holland and Powell (1990) from the Mount Lofty Ranges assemblages. With the exception of Mn in garnet and Zn in one staurolite-cordierite-muscovite assemblage non-KFMASH components do not significantly appear to have affected the stability ranges of the observed assemblages. An apparent local reversal in isograd zonation in which andalusite first appears down-grade of staurolite suggests a metamorphic field gradient concave towards the temperature axis and, together with evidence for essentially isobaric heating of individual rocks, is consistent with the exposures representing an oblique profile through a terrain in which heat was dissipated from intrusive bodies at discrete structural levels.Mineral abbreviations used in figures als Al2SiO5 phase - bi biotite - chl chlorite - ky kyanite - ph phengite - sill sillimanite - and andalusite - cd cordieritc - gt garnet - mu muscovite - q quartz - st staurolite  相似文献   

5.
Aluminous parageneses containing gedrite, cordierite, garnet, staurolite, biotite, sillimanite, kyanite, quartz or spinel plus corundum are found as dark colored lenses in the polymetamorphic, multideformed Archean complex at Ajitpura in northwest peninsular India. Staurolite, like kyanite, is a relict phase of earlier metamorphism and is excluded as a paragenetic mineral in view of its incompatibility with quartz and gedrite and its lower X Mg values than for garnet of the assemblage. Its stability here is attributed to zinc content of up to 3 wt%. The XMg in other ferromagnesian minerals decreases in the order: cordierite, biotite, gedrite, garnet, as found elsewhere in high grade rocks.The textural criteria and systematic partitioning of Fe and Mg in the ferromagnesian phases, excluding staurolite, indicate attainment of equilibrium during the second metamorphism. From tie line configurations in the phase diagrams, X Mg ratios in the constituent minerals, and other petrographic criteria, it is suggested that gedrite — cordierite-garnet — sillimanite — biotite assemblage has been produced by the reactions: Biotite+Sillimanite+Quartz = Cordierite+Garnet+K-feldspar+Vapor (1) and Biotite+Sillimanite+Quartz = Cordierite +Gedrite+K-feldspar+Vapor (2) which occurred during partial melting of the rocks at fixed P and T conditions.By isothermal P-X(Fe-Mg) sections it has been demonstrated that release of FeO, SiO2 and other components modified the composition of the reactant biotite presumably by the substitution FeSi2 Al, whereby reaction 1 was replaced by reaction 2. Cordierite with higher X Mg was produced with gedrite instead of with garnet, whose X Mg is less than X Mg of gedrite. Reaction 2 has been tentatively located in T-P space from the intersection of some continuous loops in the P-X(Fe-Mg) diagram at 700°C and also by other constraints. The discontinuous reaction 2 is located about 1–2 kilobars higher than reaction 1, which implies that it is difficult to distinguish between effects of pressure and those of melting on the X Mg ratios of the reaction phases.The P-T calibrations of garnet — cordierite, garnet — biotite and garnet — plagioclase equilibria and the calibrations from other dehydration curves give temperatures near 700°C and pressure (assuming ) about 6 kilobars.  相似文献   

6.
The most recent of two metamorphic events (M2) in the Snow Peakarea caused progressive changes in mineral parageneses in peliticrocks ranging from chlorite-biotite to kyanite grade. Systematicpartitioning of elements between coexisting phases indicatesa close approach to equilibrium during M2. Temperature estimatesfor M2 range from 440 ?C in the chlorite-biotite zone to 565?C in the kyanite zone. Coexistence of kyanite, garnet, ilmenite,and quartz places an upper pressure limit of approximately 60kb, and an upper temperature limit at the kyanite-sillimaniteboundary. Equilibrium of garnet, kyanite, plagioclase, and quartzindicates that total pressure of equilibration of kyanite-bearingassemblages was approximately 6 kb. Pressure estimates basedon equilibrium of garnet, muscovite, biotite, and plagioclaseindicate a pressure gradient between garnet and lower staurolitezone samples, which equilibrated at approximately 3? 5 kb, andupper staurolite to kyanite zone samples, which equilibratedat 5? 5 kb. Equilibrium of paragonite component of muscovitewith plagioclase, kyanite and quartz, distribution of speciesin C-O-H fluids in equilibrium with graphite, and the presenceof zoisite in adjacent calc-silicate rocks indicate that themetamorphic fluid in kyanite-bearing assemblages contained 65-90mole per cent H2O. However, the experimentally calibrated equilibriumof staurolite, quartz, garnet, and kyanite can be reconciledwith estimated temperature only if XH2O in the fluid was verylow ( 33 mole per cent). T-X(Fe-Mg) relations among chlorite, biotite, garnet, staurolite,kyanite, muscovite and quartz are calculated at 6 kb on thebasis of 3 independent Fe-Mg exchange equilibria: garnet-biotite,chlorite-biotite (empirical, this study), garnet-staurolite(empirical, this study), and three independent net transferequilibria. Alternative sets of data for Mg-chlorite and Fe-stauroliteare evaluated by comparing observed and calculated changes inmineral paragenesis and mineral composition with grade. Chloritedata from Helgeson et al., 1978 give T-X(Fe-Mg) relations consistentwith trends observed in these rocks, whereas data derived frombreakdown of clinochlore and clinochlore + dolomite do not.Calculation of T-X(Fe-Mg) relations consistent with observationsrequires lower values of and than those consistent with experiments on the breakdown of staurolite+quartz.  相似文献   

7.
The Ross of Mull pluton consists of granites and granodioritesand intrudes sediments previously metamorphosed at amphibolitefacies. The high grade and coarse grain size of the protolithis responsible for a high degree of disequilibrium in many partsof the aureole and for some unusual textures. A band of metapelitecontained coarse garnet, biotite and kyanite prior to intrusion,and developed a sequence of textures towards the pluton. InZone I, garnet is rimmed by cordierite and new biotite. In ZoneII, coarse kyanite grains are partly replaced by andalusite,indicating incomplete reaction. Coronas of cordierite + muscovitearound kyanite are due to reaction with biotite. In the higher-gradeparts of this zone there is complete replacement of kyaniteand/or andalusite by muscovite and cordierite. Cordierite chemistryindicates that in Zone II the stable AFM assemblage (not attained)would have been cordierite + biotite + muscovite, without andalusite.The observed andalusite is therefore metastable. Garnet is unstablein Zone II, with regional garnets breaking down to cordierite,new biotite and plagioclase. In Zone III this breakdown is welladvanced, and this zone marks the appearance of fibrolite andK-feldspar in the groundmass as a result of muscovite breakdown.Zone IV shows garnet with cordierite, biotite, sillimanite,K-feldspar and quartz. Some garnets are armoured by cordieriteand are inferred to be relics. Others are euhedral with Mn-richcores. For these, the reaction biotite + sillimanite + quartz garnet + cordierite + K-feldspar + melt is inferred. Usinga petrogenetic grid based on the work of Pattison and Harte,pressure is estimated at 3·2 kbar, and temperature atthe Zone II–III boundary at 650°C and in Zone IV asat least 750°C. KEY WORDS: contact metamorphism; disequilibrium  相似文献   

8.
Electron-probe microanalysis of a series of garnets in metapelitic rocks of the chloritoid staurolite, kyanite and sillimanite metamorphic zones, eastern area of the Sierra de Guadarrama, Sistema Central, Spain, manifest the well-known cryptozonation commonly observed in these minerals, with MgO and FeO increasing and MnO and CaO decreasing from the center to the outer rim of the crystals.The differences in composition of the garnets, from one metamorphic zone to another, is mainly a result of small differences in composition of the host-rock, since: (1) the amounts of MnO in the garnet are controlled by the amounts of SiO2, Al2O3 and FeO present in the host-rock; and (2) the percentages of MnO and MgO of the parent-rock influence in some way the concentration of CaO in the garnet, and those of MnO, Al2O3 and CaO influence the concentration of FeO. Nevertheless, the amount of FeO in the garnet is finally controlled, due to the diadochy, by the concentration of MnO + CaO in this mineral.  相似文献   

9.
Activity-composition relationships for pyrope-grossular garnet   总被引:1,自引:0,他引:1  
Activity coefficients () for grossular in pyrope-grossular garnet have been determined experimentally using the divariant assemblage garnet-anorthite-sillimanite (kyanite)-quartz. Values of for garnets with 10–12 mole % grossular have been obtained at 1000 °, 1100 °, 1200 ° and 1300 ° C at pressures between 15 and 21 Kb. The data are consistent with a symmetrical regular solid model for grossular-pyrope solid solutions. The interaction parameter (W) increases linearly with decreasing temperature and is given by W = 7460-4.3 T cals (T in °K). A solvus in the pyrope-grossular solid solution is predicted with a temperature of critical mixing of 629°C±90 ° C.  相似文献   

10.
Abstract This work uses a simplified model of equilibrium to predict the assemblage sequence and compositional zoning in garnet that should result from prograde metamorphism of common bulk compositions of pelitic rocks. An internally-consistent set of model thermodynamic data are derived for natural mineral compositions from natural assemblages. Equilibrium assemblages can be calculated for pelitic compositions with excess quartz and either muscovite or K-feldspar at any pressure and water pressure. The compositions and abundances of phases in equilibrium assemblages can be calculated where the elements Mg, Fe and Mn are exchanged among phases. The prograde metamorphic assemblage sequences and the effects of pressure on assemblages, predicted by the simulation method presented here, are similar enough to natural observations to suggest that the simulations can be used to analyse natural equilibrium and growth processes. The calculated phase diagrams at moderate and high crustal pressures explain the mineral assemblage sequence produced by prograde metamorphism in common pelitic compositions. Garnet appears by continuous reaction of biotite and chlorite as the garnet-biotite-chlorite divariant field migrates toward higher Mg/Fe ratios over the bulk composition. Staurolite appears in common bulk compositions when garnet and chlorite become incompatible. An aluminum silicate phase can appear when staurolite and chlorite react. Staurolite breaks down at an extremum point to produce garnet. Continuous reaction of biotite and sillimanite causes growth of abundant garnet. The reaction sequence involving garnet, staurolite and aluminum silicates is probably different at low pressure, but the main reason that staurolite and garnet are rare is the restricted compositional range over which their assemblages exist. Andalusite appears by the divariant reaction of chlorite and cordierite appears at low temperature in low pressure assemblages for common bulk compositions by the extremumpoint breakdown reaction of chlorite. Compositional zoning of garnet and the systematic variation of biotite composition in metamorphic sequences indicate that garnet is probably fractionated during growth. Fractionation of garnet causes garnet-consuming, univariant reactions to become multivariant. The metastable persistence of garnet should reduce the abundance and stability range of staurolite. Fractionation of even small quantities of garnet should deplete the equilibrating bulk composition of Mn, but have little effect otherwise. The simulations show that the prograde assemblage sequence in pelitic rocks can be complex in detail, with some assemblages lasting over temperature intervals of only a few degrees. The major prograde reactions that release water are the breakdown of chlorite to form garnet at low grade and the breakdown of muscovite at high grade. The volume of water released by formation of garnet at high grade is also important. These reactions have the capacity to buffer water pressure. The density of anhydrous pelitic rock increases markedly when chlorite breaks down and by the continuous reaction forming garnet at high grade. The heat content is controlled principally by heat capacity and continuous reactions. Discontinuous reactions have little thermal buffering capacity. Simulations of garnet fractionation show that commonly-observed garnet zoning profiles can be formed by garnet growth in the assemblage garnet-biotite-chlorite in common bulk compositions. A reversal of Fe-zoning in garnet can occur when garnet resumes growth above staurolite grade in the assemblage garnetbiotite-sillimanite. Discontinuities in zoning profiles can be caused only by disequilibrium. The disequilibrium can be due to either metastable persistence during a hiatus in growth or to growth by irreversible reaction. Because the appearance of garnet is controlled by a continuous rather than a discontinuous reaction, the appearance of garnet is very sensitive to bulk composition. The early development of garnet is also sensitive to the pressure and water pressure of metamorphism. As a consequence the first garnet isograd is of limited thermometric value. Metastable persistence of kyanite and manite at high grades could reduce the abundance of garnet and allow biotite to persist. Metastable persistence would also limit the of cordierite formation.  相似文献   

11.
Chloritoid, and the Isochemical Character of Barrow's Zones   总被引:1,自引:0,他引:1  
It is argued that despite poverty of outcrop the apparent restrictionof chloritoid to a wedge-shaped area at the north-eastern extremityof Barrow's zones is real. Two possible interpretations of thisrestriction are considered: (a) That the chloritoid producingreaction (as yet unidentified) was characterized by a lowerP/T than that of the reaction muscovite+ chlorite+chloritoid+quartz staurolite+biotite+H2O, whereby, with increasing grade, chloritoidgives way to staurolite. A pressure gradient increasing fromnorth-east to south-west (postulated on separate grounds, Chinner,1966) would then result in the convergence of the chloritoidand staurolite isograds towards the south-west, and the eventualsuppression of the chloritoid isograd to give the wedge-shapedoutcrop actually found, (b) The lack of low-grade hydrous assemblagesaluminous enough to give chloritoid or staurolite with increasinggrade suggests that the low-grade limit of chloritoid (and,to the south-west, of staurolite) may not be an isograd, buta chemical boundary. Such a boundary could either be metasedimentary,or metasomatic, representing an alkali gradient of the typestudied by Orville, in which, essentially, potassium and waterreleased within the high-grade metamorphic zones have migratedto low-grade zones to form more micaceous assemblages. The widespreadexistence of ‘shimmer aggregate‘ muscovite alterationof aluminous minerals in thesillimanite, kyanite, and staurolitezones provides evidence of potassium transfer during the waneof metamorphic temperatures on a scale comparable to that which,during the main metamorphic imprint, would have been requiredto mask the development of peraluminous assemblages in the chlorite,biotite, and garnet zones.  相似文献   

12.
A suite of pelitic rocks around Kandra, Singhbhum District, Bihar, displays a metamorphic gradient registered by the index minerals chlorite, biotite, garnet, staurolite and sillimanite in a Barrovian sequence. Metamorphism was by and large coeval with folding movements, and correlating the internal fabric of minerals and deformational characters, a regular sequence of the index minerals is derived. It is argued that the chronological order by itself is not sufficient to prove that metamorphism was progressive in time.Among the index minerals, garnet appears to have formed by the reaction chlorite+biotitea+quartz garnet+biotiteb+H2O. For the origin of sillimanite, a new reaction, 3 staurolite+muscovite+quartz=7 sillimanite+biotite+3H2O, is suggested on the basis of significant textural features. Textural and petrological indications regarding the formation of staurolite are in discordance. Staurolite was either derived from the biotite zone phases, or should be taken to have formed, against textural evidences, from chloritoids of the garnet zone.Graphical analysis of the assemblages by Thompson's AFM projection reveals that chlorite and staurolite are excess phases owing to retrogression and incomplete reaction. Shifting of apices of triangular fields and intersection of garnet-biotite tie lines within a zone can be satisfactorily explained in terms of extra components CaO and MnO or their ratios. It is pointed out that if MgO/(MgO + FeO) between two phases show a linear relation, their tie lines will be concurrent on the AF side of the projection, the point of concurrence reflecting equilibrium and temperature of recrystallisation.  相似文献   

13.
Calcic schists in the andalusite-type regional metamorphic terrainin the Panamint Mountains, California, contain the low-varianceassemblage quartz+epidote+muscovite+biotite+calcic amphibole+chlorite+plagioclase+spheneat low grade. Near the sillimanite isograd, chlorite in thisassemblage is replaced by garnet. The low variance in many calcicschists allows the determination of the nature of the reactionthat resulted in the coexistence of garnet+hornblende. A graphicalanalysis of the mineral assemblages shows that the reactioncan not be of the form biotite+epidote+chlorite+plagioclase+quartz=garnet+hornblende+muscovite+sphene+H2Obecause garnet+chlorite never coexisted during metamorphismand the chlorite-bearing and garnet-bearing phase volumes donot overlap. The compositions of the minerals show that withincreasing grade amphibole changed from actinolite to pargasitichornblende with no apparent miscibility gap, the partitioningof Fe and Mg between chlorite and hornblende changed from KD(Mg/Fe, chl&amp) < 1 to KD > 1, the partitioning betweenbiotite and hornblende changed from KD (Mg/Fe, bio/amp) <1 in chlorite-zone samples to KD > 1 in garnet + hornblende-zonesamples, and the transition to the garnet-bearing assemblageoccurred when the composition of plagioclase was between An55and An80. Both the graphical analysis and an analytical analysisof the compositions of the minerals using simplified componentsderived from the natural mineral compositions indicate thatat the garnet+hornblende isograd the composition of hornblendewas colinear with that of plagioclase and biotite, as projectedfrom quartz, epidote, muscovite, and H2O. During progressivemetamorphism, chlorite+biotite+epidote+quartz continuously brokedown to form hornblende+muscovite+sphene until the degeneracywas reached. At that point, tie lines from hornblende couldextend to garnet without allowing garnet to coexist with chlorite.Thus, the garnet+hornblende isograd was established throughcontinuous reactions within the chlorite-grade assemblage ratherthan through a discontinuous reaction. In this type of isograd,the low-grade diagnostic assemblage occurs only in Mg-rich rocks;whereas the high-grade assemblage occurs only in Fe-rich rocks.This relation accounts for the restricted occurrence of garnet+hornblendeassemblage in low-pressure terrains. In Barrovian terrains,garnet+chlorite commonly occurs, and the first appearana ofgarnet+hornblende can simply result from the continuous shiftof the garnet+chlorite tie line to Mg-rich compositions.  相似文献   

14.
辽河群变质相带特征及石榴石的研究   总被引:2,自引:0,他引:2  
辽河群变质带以博洛铺—红石砬子为基轴,显示南北对称呈EW向展布,变质带中没有发现矽线石、红柱石、堇青石等矿物,表明变质温度未达到高温等变质反应度,而属中压相带,且可划分出中压型巴罗式变质带,即黑云母带、铁铝榴石带、十字石带和兰晶石带。变质矿物石榴石均属铁铝石榴石,随着变质度的增高,石榴石成分Al_2O_3、MgO、FeO+Fe_2O_3的含量增加,而CaO、MnO的含量减少,石榴石晶胞参数也随着变质度增高而有规律的减小。  相似文献   

15.
Textural evidence for the partial breakdown of staurolite-biotite and andalusite-biotite assemblages to cordierite-orthoamphibole implies high temperature metasomatic depletion of K2O in semi-pelitic rocks from Springton, South Australia. The origin of the reaction textures is discussed with reference to K2O-T diagrams derived from the topologically equivalent K2O–(-H2O) diagram showing both discontinuous and Fe–Mg continuous reactions. The involvement of fluids in the metasomatic process is implied by the scale of K2O removal and suggests that the outcrop pattern of cordierite-gedrite rocks reflects, at least in part, a heterogeneous distribution of advecting fluids in the metamorphic pile at high temperatures.Mineral abbreviations used in text and figures ab albite - alm almandine - als aluminosilicate - and andalusite - anth anthophyllite - bt biotite - cd cordierite - fe-bt Fe-rich biotite - fe-cd Fe-rich cordierite - fe-oa Fe-rich orthoamphibole - fe-st Fe-staurolite - gt garnet - ksp potassium feldspar - ky kyanite - mg-cd Mg-rich cordierite - mg-oa Mg-rich orthoamphibole - mg-st Mg-rich staurolite - mu muscovite - oa orthoamphibole - phl phlogopite - plag plagioclase - py pyrope - sill sillimanite - st staurolite - v vapour  相似文献   

16.
Two xenoliths of garnet harzburgite from the Finsch kimberlite, South Africa, have been found to contain diamond. One of the xenoliths has mineral compositions typical of low-T coarse textured garned peridotites, whereas minerals in the other are similar but not identical to most peridotite-suite minerals included in diamonds, especially in the low-CaO content of garnet. Geothermobarometric calculations show both xenoliths equilibrated at temperatures above 1,100°C and pressures>55 kbar, which is near the low-pressure end of the range of equilibration conditions for diamond-free garnet lherzolites and garnet harzburgites from Finsch. The chemistries of the minerals in the two rocks are distinctly different to most of the mineral inclusions in Finsch diamonds. This, as well as the different 13C compositions between xenolith diamonds (-2.8 to-4.6) and diamonds in the kimberlite (generally<-4.3) suggest different origins or sources for the diamonds.  相似文献   

17.
The second of two periods of regional metamorphism that affectedpelitic rocks near Snow Peak caused complete re-equilibrationof mineral assemblages and resulted in a consistent set of metamorphicisograds. Metamorphic chlorite and biotite occur in the lowestgrade rocks. With increasing grade, garnet, staurolite, andkyanite join the assemblage, resulting in a transition zonecontaining all the above phases. At higher grade, chlorite,and finally staurolite disappear. Mass balance relations at isograds and among minerals of low-varianceassemblages have been modelled by a non-linear least-squaresregression technique. The progressive sequence can be describedin terms of schematic T-XH2O relations among chlorite, biotite,garnet, staurolite, and kyanite at Ptotal above the KFMASH invariantpoint involving those phases. The first appearance of garnetwas the result of an Fe-Mg-Mn continuous reaction. As temperaturerose, the garnet zone assemblage encountered the stauroliteisograd reaction, approximated by the model reaction: 3?0 chlorite + 1?5 garnet + 3?3 muscovite + 05 ilmenite = 1?0staurolite + 3?1 biotite + 1?5 plagioclase + 3?3 quartz + 10?3H2O. The staurolite zone corresponds to buffering along this reactionto the intersection where chlorite, biotite, garnet, staurolite,and kyanite coexist. The transition zone assemblage formed byreaction at this T–X H2O intersection which migrates towardmore H2O-rich fluid composition with progressive reaction. Thenet reaction at the intersection is approximated by the transitionzone reaction: 1?0 chlorite +1?1 muscovite + 0?2 ilmenite = 2?7 kyanite + 1?0biotite + 0?4 albite + 4?2 H2O. Chlorite was commonly the first phase to have been exhaustedand the remaining assemblage was buffered along a staurolite-outreaction, represented by the model reaction: 1?0 staurolite + 3?4 quartz + 0?4 anorthite + 1?4 garnet + 0?1ilmenite + 7?9 kyanite + 2?0 H2O. Consumption of staurolite by this reaction resulted in the highestgrade assemblage, which contains kyanite, garnet, biotite, muscovite,quartz, plagioclase, ilmenite, and graphite.  相似文献   

18.
Analyses of major and rare earth elements are presented for co-existing garnet, clinopyroxene, and amphibole from a Kakanui eclogite.New and previously published analyses of garnets suggest a gradual increase of Fe and decrease of Mg from xenocrysts through garnet pyroxene eclogitic rocks to amphibole-rich eclogitic rocks. Clinopyroxenes show a parallel increase in Fe/Mg ratio and an increase in Jadeite component and decrease in Tschermak's component. These data indicate crystallization of garnet and clinopyroxene from an alkali-rich undersaturated magma and are consistent with the concept of eclogite fractionation, but rare earth data allow severe constraints to be placed on this process. The eclogites are considered to be deep-seated crystallization products of nephelinite, but eclogite fractionation is small and cannot account for the association of alkali basalt, basanite and nephelinite.  相似文献   

19.
Pelitic and calcareous rocks in the Whetstone Lake area havean unusually wide range of chemical composition. Metamorphicreactions have been deduced that represent the observed ‘discontinuities’in compatible mineral assemblages, and by plotting the reactantand the product assemblage of each reaction on a map, metamorphicisograds have been delincated ‘from both sides’.For the pelitic rocks, successively higher-grade isograds arebased on the following reactions: (1)chlorite+muscovite+garnetstaurolite+biotite+quartz+water; (2) chlorite+muscovite+staurolite+quartz kyanite+biotite+water; (3) kyanitesillimanite; (4)staurolite+museovite+quartzsillimanite+garnet+biotite+water. A fifth isograd, based on the reaction (5) biotite+calcite+quartzCa-amphibole+K-feldspar+carbon dioxide+water intersects the isograds based on reactions (2), (3), and (4)in such a manner as to indicate that the H2O/CO2 fugacity ratiowas significantly higher in the vicinity of a granite plutonthan in the metasedimentary rocks remote from the pluton. Chemicalanalyses of the coexisting minerals in reaction (5) indicatethat the real reaction may involve plagioclase, epidote, sphene,and Fe-Ti oxides as well.  相似文献   

20.
Porphyroblastic biotite and garnet in the Barrovian metapelites of the Imjingang belt, Korea, were investigated to unravel the sequence and mechanism of mineral growth. Poikiloblastic biotite contains straight inclusion trails (Si) discontinuous to the major foliation, and develops clear zones at the grain margin. These microstructures suggest an initial growth of biotite between two contractional deformations (Dn−1 and Dn) followed by an overgrowth during Dn. Although garnet poikiloblasts contain variable Si patterns, their major growth is likely to have occurred during Dn on the basis of compositional relationships among variable garnet types. Early poikiloblasts of both minerals were formed by chemical replacement of the matrix that consisted mainly of chlorite, muscovite and quartz. Subsequent growth of biotite was governed by a crack-filling mechanism, and was accompanied by the production of extensional cracks inside or around biotite, providing fluid pathways. The overgrowth of garnet was favoured at the biotite–garnet interface, and the consequence was a partial replacement of inclusion-poor garnet after biotite subsequent to Dn. In addition, clear zones and pressure shadows as well as the matrix around biotite porphyroblasts were replaced by garnet, suggesting an inheritance of various pre-existing microstructures in the Si pattern of garnet. Further attention is thus required for any attempt to delineate the microstructural interaction between deformation and metamorphism, particularly in a sample containing early-grown porphyroblasts. Microstructural evidence for the two-stage growth of biotite and garnet is present up to the kyanite zone, indicating that this growth mechanism is prevalent during progressive metamorphism of Barrovian metapelites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号