首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
I use ASCA data to investigate the 2–10 keV X-ray emission of active galactic nuclei (AGN) taken from the ROSAT International X-ray Optical Survey (RIXOS). I find that the integrated spectrum of these faint, soft X-ray-selected AGN in the 2–10 keV band is harder (best-fitting α = 0.8 ± 0.1) than the slope measured with ROSAT between 0.1 and 2 keV, but softer than the 2–10 keV X-ray background, and consistent with the average 2–10 keV spectrum of bright, nearby Seyfert galaxies. With this spectral slope and using measurements of the AGN contribution to the 1–2 keV X-ray background, I estimate that the AGN percentage contribution to the 2–10 keV background is 0.60 +0.19−0.14 times the AGN percentage contribution to the 1–2 keV background. Hence AGN produce between 12 and 32 per cent of the 2–10 keV X-ray background. This is only the contribution from the types of AGN which are found in soft X-ray surveys; a population of absorbed AGN could represent an additional component of the 2–10 keV X-ray background.  相似文献   

2.
A search for high-redshift ( z  > 0.5) ultrasoft X-ray AGN in pointed ROSAT PSPC observations is made, using the wgacat catalogue. Evidence for a further three such objects is found, adding to three identified previously (E1346+266, EXO 1346.4+2637 and RX J0947.0+4721). The flux of one new object [1WGA J1342.4+2720; L (0.1–2 keV)∼ 2 × 1045 erg s−1)] was found to be variable (a factor of 1.7 over 2 d), and this object has relatively narrow permitted line emission. These properties, also seen in E1346+266 and EXO 1346.4+2637, are typical of ultrasoft AGN at all redshifts, in particular the narrow-line Seyfert 1s (NLS1s). The rarity of high- z ultrasoft AGN places limits on the 'temperature' of the soft X-ray component in the rest frame of AGN in general. It also provides an opportunity to investigate models for the soft component in the high-temperature extreme, e.g., for accretion disc models, testing the physics at the inner edge of the disc, and the effects of Comptonization in a hot, optically thin corona.  相似文献   

3.
We present results from spectral analysis of ASCA data on the strong Fe  ii narrow-line Seyfert 1 galaxy Mrk 507. This galaxy was found to have an exceptionally flat ROSAT spectrum among the narrow-line Seyfert 1 galaxies (NLS1s) studied by Boller, Brandt & Fink. The ASCA spectrum, however, shows a clear absorption feature in the energy band below 2 keV, which partly accounts for the flat spectrum observed with the ROSAT Position Sensitive Proportional Counter (PSPC). Such absorption is rarely observed in other NLS1s. The absorption is mainly the result of cold (neutral or slightly ionized) gas with a column density of (2–3) × 1021 cm−2. A reanalysis of the PSPC data shows that an extrapolation of the best-fitting model for the ASCA spectrum underpredicts the X-ray emission observed with the PSPC below 0.4 keV if the absorber is neutral (which indicates that the absorber is slightly ionized), covers only part of the central source, or there is extra soft thermal emission from an extended region. There is also evidence that the X-ray absorption is complex; an additional edge feature marginally detected at 0.84 keV suggests the presence of an additional high-ionization absorber, which imposes a strong O  viii edge on the spectrum. After correction for the absorption, the photon index of the intrinsic continuum, Γ ≃ 1.8, obtained from the ASCA data is quite similar to that of ordinary Seyfert 1 galaxies. Mrk 507 still has one of the flattest continuum slopes among the NLS1s, but is no longer exceptional. The strong optical Fe  ii emission remains unusual in the light of the correlation between Fe  ii strengths and steepness of soft X-ray slope.  相似文献   

4.
Results of ASCA and ROSAT observations of the Seyfert 1 galaxy RX J0437.4−4711 are presented. The X-ray continuum spectrum can be described by the sum of a power law with photon index 2.15 ± 0.04 and a soft emission component characterized by a blackbody with temperature 29 ± 2 eV. The total luminosity of the soft component is larger than that of the power-law component if the power law is cut off around a few hundred keV. A weak absorption edge with τ = 0.26 ± 0.13 at the rest-frame energy of E  = 0.83 ± 0.05 keV and an Fe Kα line with EW = 430 ± 220 eV at an energy E  = 6.47 ± 0.15 keV are also detected. The X-ray flux showed a 47 per cent increase between two ASCA observations 4 months apart, but no spectral variability was seen. We argue that reprocessing of the hard X-ray emission cannot produce all the soft X-ray emission, since the total luminosity of the soft component is larger than that of the integrated power-law component. Similarities with some stellar black hole candidates are briefly discussed.  相似文献   

5.
We present an X-ray spectroscopic study of the prototype far-infrared galaxy NGC 6240 from ASCA . The soft X-ray spectrum (below 2 keV) shows clear signatures of thermal emission well described by a multitemperature optically thin plasma, which probably originates in a powerful starburst. Strong hard X-ray emission is also detected with ASCA and its spectrum above 3 keV is extremely flat with a prominent iron K line complex, very similar to that seen in the Seyfert 2 galaxy NGC 1068 but about an order of magnitude more luminous ( L 3−10keV ≈ 1.4 × 1042 erg s−1). The hard X-ray spectrum indicates that only reflected X-rays of an active galactic nucleus (AGN) buried in a heavy obscuration ( N H > 2 × 1024 cm−2) are visible. This is evidence for an AGN in NGC 6240, emitting possibly at a quasar luminosity (∼ 1045 erg s−1), and suggests its significant contribution to the far-infrared luminosity.  相似文献   

6.
We present simultaneous ASCA and RXTE observations of Ark 564, the brightest known 'narrow-line' Seyfert 1 in the 2–10 keV band. The measured X-ray spectrum is dominated by a steep (Γ≈2.7) power-law continuum extending to at least 20 keV, with imprinted Fe K-line and edge features and an additional 'soft excess' below ∼1.5 keV. The energy of the iron K-edge indicates the presence of highly ionized material, which we identify in terms of reflection from a strongly irradiated accretion disc. The high reflectivity of this putative disc, together with its strong intrinsic O  viii Ly α and O  viii recombination emission, can also explain much of the observed soft excess flux. Furthermore, the same spectral model also provides a reasonable match to the very steep 0.1–2 keV spectrum deduced from ROSAT data. The source is much more rapidly variable than 'normal' Seyfert 1s of comparable luminosity, increasing by a factor of ∼50 per cent in 1.6 h, with no measurable lag between the 0.5–2 keV and 3–12 keV bands, consistent with much of the soft excess flux arising from reprocessing of the primary power-law component in the inner region of the accretion disc. We note, finally, that if the unusually steep power-law component is a result of Compton cooling of a disc corona by an intense soft photon flux, then the implication is that the bulk of these soft photons lie in the unobserved extreme ultraviolet.  相似文献   

7.
We present ROSAT High Resolution Imager (HRI) and ASCA observations of the well-known ultraluminous infrared galaxy (ULIRG) IRAS 19254−7245 (the 'Superantennae' ). The object is not detected by ROSAT , implying a 3 σ upper limit of X-ray luminosity L X∼8×1041 erg s−1 in the 0.1–2 keV band. However, we obtain a clear detection by ASCA , yielding a luminosity in the 2–10 keV band of 2×1042 erg s−1. The X-ray spectrum of IRAS 19254−7245 is very hard, equivalent to a photon index of Γ=1.0±0.35. We therefore attempt to model the X-ray data using a 'scatterer' model, in which the intrinsic X-ray emission along our line of sight is obscured by an absorbing screen while some fraction, f , is scattered into our line of sight by an ionized medium; this is the standard model for the X-ray emission in obscured (but non Compton-thick) Seyfert galaxies. We obtain an absorbing column density of N H=2×1023 cm−2 for a power-law photon index of Γ=1.9, an order of magnitude above the column estimated on the basis of optical observations; the percentage of the scattered emission is high (∼20 per cent). Alternatively, a model where most of the X-ray emission comes from reflection on a Compton-thick torus ( N H>1024 cm−2) cannot be ruled out. We do not detect an Fe line at 6.4 keV; however, the upper limit (90 per cent) to the equivalent width of the 6.4 keV line is high (∼3 keV). Overall , the results suggest that most of the X-ray emission originates in a highly obscured Seyfert 2 nucleus.  相似文献   

8.
We use non-simultaneous Ginga ASCA ROSAT observations to investigate the complex X-ray spectrum of the Seyfert 2 galaxy Mrk 3. We find that the composite spectrum can be well described in terms of a heavily cut-off hard X-ray continuum, iron Kα emission and a soft X-ray excess, with spectral variability confined to changes in the continuum normalization and the flux in the iron line. Previous studies have suggested that the power-law continuum in Mrk 3 is unusually hard. We obtain a canonical value for the energy index of the continuum (i.e., α ≈ 0.7) when a warm absorber (responsible for an absorption edge observed near 8 keV) is included in the spectral model. Alternatively, the inclusion of a reflection component yields a comparable power-law index. The soft-excess flux cannot be modelled solely in terms of pure electron scattering of the underlying power-law continuum. However, a better fit to the spectral data is obtained if we include the effects of both emission and absorption in a partially photoionized scattering medium. In particular, the spectral feature prominent at ∼ 0.9 keV could represent O VIII recombination radiation produced in a hot photoionized medium. We discuss our results in the context of other recent studies of the soft X-ray spectra of Seyfert 2 galaxies.  相似文献   

9.
We present ROSAT [High Resolution Imager (HRI) and Position Sensitive Proportional Counter (PSPC)] and ASCA observations of the two luminous ( L x ∼ 1041−42 erg s−1) star-forming galaxies NGC 3310 and 3690. The HRI shows clearly that the sources are extended with the X-ray emission in NGC 3690 coming from at least three regions. The combined 0.1–10 keV spectrum of NGC 3310 can be described by two components, a Raymond–Smith plasma with temperature kT  = 0.81+0.09−0.12 keV and a hard power law, Γ = 1.44−0.20−0.11 (or alternatively a harder Raymond–Smith plasma with kT  ∼ 15 keV), while there is no substantial excess absorption above the Galactic column value. The soft component emission is probably a super wind while the nature of the hard emission is more uncertain with the likely origins being X-ray binaries, inverse Compton scattering of infrared photons, an active galactic nucleus or a very hot gas component (∼108 K). The spectrum of NGC 3690 is similar, with kT  = 0.83+0.02−0.04 keV and Γ = 1.56+0.11−0.11. We also employ more complicated models such as a multi-temperature thermal plasma, a non-equilibrium ionization code or the addition of a third softer component, which improve the fit but not at a statistically significant level (2σ). These results are similar to recent results on the archetypal star-forming galaxies M82 and NGC 253.  相似文献   

10.
We present results of the ASCA observation of the Seyfert 2 galaxy NGC 4507. The 0.5–10 keV spectrum is rather complex and consists of several components: (i) a hard X-ray power law heavily absorbed by a column density of about 3-1023 cm−2, (ii) a narrow Fe Kα line at 6.4 keV, (iii) soft continuum emission well above the extrapolation of the absorbed hard power law and (iv) a narrow emission line at ∼0.9 keV. The line energy, consistent with highly ionized neon (Ne IX ), may indicate that the soft X-ray emission is derived from a combination of resonant scattering and fluorescence in a photoionized gas. Some contribution to the soft X-ray spectrum from thermal emission, as a blend of Fe L lines, by a starburst component in the host galaxy cannot be ruled out with the present data.  相似文献   

11.
We report on simultaneous ASCA and ROSAT observations of the Seyfert galaxy NGC 5548 made during the ASCA Performance Verification phase. Spectral features due to a warm absorber and reflection are clearly seen in the X-ray spectra. We find that the continuum spectral shape differs between the ASCA and ROSAT data sets. The photon-index obtained from the ROSAT PSPC exceeds that from the ASCA SIS ΔΓ≈0.4. The discrepancy is clear even in the 0.5–2 keV energy band over which both detectors are sensitive. The spectra cannot be made consistent by choosing a more complex model. The problem likely lies in the response curve (estimated effective area) of one, or both, detectors. There may be important consequences for a wide range of published results.  相似文献   

12.
The bright type 1 Seyfert galaxy H1419+480  ( z ∼ 0.072)  , whose X-ray colours from earlier HEAO-1 and ROSAT missions suggested a complex X-ray spectrum, has been observed with XMM–Newton . The EPIC spectrum above 2 keV is well fitted by a power law with photon index  Γ= 1.84 ± 0.01  and an Fe Kα line of equivalent width ∼250 eV. At softer energies, a decrement with respect to this model extending from 0.5 to 1 keV is clearly detected. After trying a number of models, we find that the best fit corresponds to O vii absorption at the emission redshift, plus a 2σ detection of O viii absorption. A photoionized gas model fit yields  log ξ∼ 1.15–1.30  (ξ in erg cm s−1) with   N H∼ 5 × 1021 cm−2  for solar abundances. We find that the ionized absorber was weaker or absent in an earlier ROSAT observation. An International Ultraviolet Explorer spectrum of this source obtained two decades before shows a variable (within a year) C iv absorber outflowing with a velocity ∼1800 km s−1. We show that both X-ray and ultraviolet absorptions are consistent with arising in the same gas, with varying ionization.  相似文献   

13.
We present spectropolarimetry data on RE J1034+396, an ultra-soft X-ray narrow-line Seyfert 1 galaxy, and find an upper limit of ∼ 0.4 to the linear polarization in the optical band. This suggests that there is no synchrotron emission in this AGN, and thus it is unlikely that RE J1034+396 is related to BL Lac objects. Furthermore, any other polarization arising from transmission through dust, or reflection from dust and electrons, must be cancelled out by geometrical effects or diluted to a high degree by unpolarized radiation.  相似文献   

14.
We present new X-ray and H  I 21-cm data on the poor cluster of galaxies Abell 3581. The ASCA spectrum requires a low temperature, has a strong requirement for excess absorption and shows evidence for multi-temperature components. The ROSAT HRI image shows the strongly peaked emission indicative of a cooling flow. Despite the low temperature (∼ 1.5–2.0 keV) and low luminosity (∼ 2 × 1042 erg s−1 in the 2–10 keV band), Abell 3581 has a mass deposition rate ∼ 80 M⊙ yr−1 which is larger than found for other nearby low-luminosity objects. VLA observations in the 21-cm band set velocity width and spin temperature dependent limits on the column density of atomic hydrogen.  相似文献   

15.
We report on the discovery of a narrow-emission-line object at z  = 0.672 detected in a deep ASCA survey. The object, AXJ 0341.4–4453, has a flux in the 2–10 keV band of 1.1 ± 0.27 × 10−13 erg s−1 cm−2, corresponding to a luminosity of 1.8 × 1044 erg s−1 ( q 0 = 0.5, H 0 = 50 km s−1 Mpc−1). It is also marginally detected in the ROSAT 0.5–2 keV band with a flux 5.8 × 10−15 erg s−1 cm−2. Both the ASCA data alone and the combined ROSAT/ASCA data show a very hard X-ray spectrum, consistent with either a flat power law (α < 0.1) or photoelectric absorption with a column of n H > 4 × 1022 cm−2 (α = 1). The optical spectrum shows the high-ionization, narrow emission lines typical of a Seyfert 2 galaxy. We suggest that this object may be typical of the hard sources required to explain the remainder of the X-ray background at hard energies.  相似文献   

16.
We present a systematic analysis of the X-ray spectral properties of a sample of 22 'narrow-line' Seyfert 1 galaxies for which data are available from the ASCA public archive. Many of these sources, which were selected on the basis of their relatively narrow H β linewidth (FWHM ≤2000 km s−1), show significant spectral complexity in the X-ray band. Their measured hard power-law continua have photon indices spanning the range 1.6–2.5 with a mean of 2.1, which is only slightly steeper than the norm for 'broad-line' Seyfert 1s. All but four of the sources exhibit a soft excess, which can be modelled as blackbody emission ( T bb≈100–300 eV) superposed on the underlying power law. This soft component is often so strong that, even in the relatively hard bandpass of ASCA , it contains a significant fraction, if not the bulk, of the X-ray luminosity, apparently ruling out models in which the soft excess is produced entirely through reprocessing of the hard continuum.
Most notably, six of the 22 objects show evidence for a broad absorption feature centred in the energy range 1.1–1.4 keV , which could be the signature of resonance absorption in highly ionized material. A further three sources exhibit 'warm absorption' edges in the 0.7–0.9 keV bandpass. Remarkably, all nine 'absorbed' sources have H β linewidths below 1000 km s−1, which is less than the median value for the sample taken as a whole. This tendency for very narrow linewidths to correlate with the presence of ionized absorption features in the soft X-ray spectra of NLS1s, if confirmed in larger samples, may provide a further clue in the puzzle of active galactic nuclei.  相似文献   

17.
Hard X-ray selection is the most efficient way to discriminate between accretion-powered sources, such as active galactic nuclei (AGN), and sources dominated by starlight. Hard X-rays are also less affected than other bands by obscuration. We have therefore carried out the BeppoSAX High Energy Large Area Survey (HELLAS) in the largely unexplored 5–10 keV band, finding 180 sources in ∼50 deg2 of sky with flux≳5×10−14 erg cm−2 s−1. After correction for the non-uniform sky coverage this corresponds to resolving about 30 per cent of the hard cosmic X-ray background (XRB). Here we report on a first optical spectroscopic identification campaign, finding 12 AGN out of 14 X-ray error boxes studied. Seven AGN show evidence for obscuration in X-ray and optical bands, a fraction higher than in previous ROSAT or ASCA – ROSAT surveys (at 95–99 and 90 per cent confidence levels respectively), thus supporting the scenario in which a significant fraction of the XRB is created by obscured AGN.  相似文献   

18.
We present an XMM–Newton observation of the bright, narrow-line, ultrasoft type 1 Seyfert galaxy Ton S180. The  0.3–10 keV  X-ray spectrum is steep and curved, showing a steep slope above 2.5 keV  (Γ∼ 2.3)  and a smooth, featureless excess of emission at lower energies. The spectrum can be adequately parametrized using a simple double power-law model. The source is strongly variable over the course of the observation but shows only weak spectral variability, with the fractional variability amplitude remaining approximately constant over more than a decade in energy. The curved continuum shape and weak spectral variability are discussed in terms of various physical models for the soft X-ray excess emission, including reflection off the surface of an ionized accretion disc, inverse Compton scattering of soft disc photons by thermal electrons, and Comptonization by electrons with a hybrid thermal/non-thermal distribution. We emphasize the possibility that the strong soft excess may be produced by dissipation of accretion energy in the hot, upper atmosphere of the putative accretion disc.  相似文献   

19.
We present a sample of 21 ROSAT bright active galactic nuclei (AGNs), representing a range of spectral classes, and selected for follow-up snapshot observations with XMM–Newton . The typical exposure was between 5 and 10 ks. The objects were primarily selected on the bases of X-ray brightness and not on hardness ratio; thus the sample cannot be strictly defined as a 'soft'sample. One of the main outcomes from the XMM–Newton observations was that all of the AGN, including 11 type 1.8–2 objects, required low levels of intrinsic absorption  ( N H≲ 1021 cm−2)  . The low absorption in type 2 systems is a challenge to account for in the standard orientation-based unification model, and we discuss possible physical and geometrical models which could elucidate the problem. Moreover, there does not appear to be any relation between the strength and shape of the soft excess, and the spectral classification of the AGN in this sample. We further identify a number of AGN which deserve deeper observations or further analysis: for example, the low-ionization nuclear emission regions (LINERs) NGC 5005 and NGC 7331, where optically thin thermal and extended emission is detected, and the narrow-line Seyfert 1 II Zw 177, which shows a broad emission feature at ∼ 5.8 keV.  相似文献   

20.
This paper summarizes the soft X-ray properties of narrow-line Seyfert 1 galaxies (NLS1). NLS1 have generally steeper soft X-ray continuum slopes than Seyfert 1s with broader lines, and there exists an anticorrelation between 0.1–2.4 keV continuum slope and the FWHM of the Hβ line. Objects with steep 0.1–2.4 keV continuum slopes and Hβ FWHM > 3000 km s−1 are clearly discriminated against by nature. When simple power-law models are fit to the data, photon indices reach values up to about 5, much higher than is usually seen in Seyfert 1s. Models with smaller mass black holes and/or higher Eddington fractions show some promise to explain the relation between the FWHM of the Hβ line and the X-ray continuum slope. We further report evidence for persistent gaint and rapid variability in the ultrasoft narrow-line Seyfert 1 galaxy IRAS 13224–3809. We have examined possible explanations for the gaint variability. Unusually strong relativistic effects provide a plausible explanation of the X-ray data. Relativistic boosting effects may be relevant to understanding the strong X-ray variability of some steep spectrum Seyferts more generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号