首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Relative size of fluvial and glaciated valleys in central Idaho   总被引:2,自引:1,他引:1  
Quantitative comparisons of the morphometry of glaciated and fluvial valleys in central Idaho were used to investigate the differences in valley relief and width in otherwise similar geologic and geomorphic settings. The local relief, width, and cross-sectional area of valleys were measured using GIS software to extract information from USGS digital elevation models. Hillslope gradients were also measured using GIS software. Power-law relationships for local valley relief, width, and cross-sectional area as a function of drainage area were developed. Local valley relief in glaciated valleys relates to drainage area with a power-law exponent similar to fluvial valleys, but glaciated valleys are deeper for a given drainage area. Local valley width in glaciated valleys is greater than in fluvial valleys, but the exponent of the power-law relationship to drainage area is similar in both valley types. Local valley cross-sectional area in glaciated valleys increases with drainage area with a power-law exponent similar to fluvial valleys, however, glacial valleys have roughly 80% greater cross-sectional area. Steep valley walls in glaciated basins increase the potential for bedrock landsliding relative to fluvial basins. Both the Olympic Mountains of Washington and valleys in central Idaho show relationships in which glaciated valleys are up to 30% deeper than fluvial valleys despite differences in lithology, tectonic setting, and climate.  相似文献   

2.
Clay mineral assemblages of the Neogene Himalayan foreland basin are studied to decipher their significance with respect to tectonic and climate processes. Fluvial deposits of the Siwalik Group (west‐central Nepal), and sediment of the Ganga River drainage system were analysed for clay mineralogy. The observed clay mineral assemblages are mainly composed of illite (dominant), chlorite, smectite and kaolinite. Illite and chlorite are chiefly of detrital origin, derived from Himalayan sources. Kaolinite and smectite are authigenic, and mainly developed within pore space and as coating of detrital particles. With increasing burial, diagenetic processes affected the original clay mineral signature. Illitisation of smectite and kaolinite occurred below 2500 and 3500 m depth, respectively. Therefore, illite in the lower parts of the Siwalik Group consists of a mixture of inherited illite and illitised smectite and kaolinite, as suggested by illite crystallinity. Detrital grains that make up the framework of the Siwalik Group sandstones mainly consist of quartz, feldspar and lithic fragments, which are principally of sedimentary and metamorphic origin. Lithoclast content increases over time at the expense of quartz and K‐feldspar in response to uplift and erosion of the Lesser Himalaya Series since about 11–10 Ma. Despite mainly felsic source rocks, dominantly physical erosion processes in the Himalayan belt, and high‐energy fluvial depositional systems, smectite is abundant in the <7 Ma Siwalik Group deposits. Analyses of the Siwalik deposits and comparison with the clay mineralogy of the modern drainage system suggest that smectite preferentially formed in floodplains and intermontane valleys during early diagenesis because of downward percolating fluids rich in cations from weathering and soil development. In general, increasing seasonality and aridity linked to variability of the Asian monsoon from about 8 Ma enhanced clay mineral formation and development of authigenic smectite in paleo‐plains on the southern side of the Himalaya.  相似文献   

3.
Piggyback basins developed at the mountain fronts of collisional orogens can act as important, and transient, sediment stores along major river systems. It is not clear, however, how the storage and release of sediment in piggyback basins affects the sediment flux and evolution of downstream river reaches. Here, we investigate the timing and volumes of sediment storage and release in the Dehra Dun, a piggyback basin developed along the Himalayan mountain front in northwestern India. Based on OSL dating, we show evidence for three major phases of aggradation in the dun, bracketed at ca. 41–33 ka, 34–21 ka and 23–10 ka, each accompanied by progradation of sediment fans into the dun. Each of these phases was followed by backfilling and (apparently) rapid fan‐head incision, leading to abandonment of the depositional unit and a basinward shift of the active depocentre. Excavation of dun sediment after the second and third phases of aggradation produced time‐averaged sediment discharges that were ca. 1–2% of the modern suspended‐sediment discharges of the Ganga and Yamuna rivers that traverse the margins of the dun; this sediment was derived from catchment areas that together comprise 1.5% of the drainage area of these rivers. Comparison of the timing of dun storage and release with upstream and downstream records of incision and aggradation in the Ganga show that sediment storage in the dun generally coincides with periods of widespread hinterland aggradation but that late stages of dun aggradation, and especially times of dun sediment excavation, coincide with major periods of sediment export to the Ganga Basin. The dun thus acts to amplify temporal variations in hinterland sediment supply or transport capacity. This conceptual model appears to explain morphological features of other major river systems along the Himalayan front, including the Gandak and Kosi Rivers, and may be important for understanding sediment flux variations in other collisional mountain belts.  相似文献   

4.
宛川河为黄河的一级支流,位于青藏高原东北部的兰州盆地东部.该区域历史时期曾发生多次6级以上地震.以DEM数据为基础,通过河流水系分析和地貌形态指数的计算,讨论了区域新构造活动特征.山前曲折度指数(SMF)在宛川河北为1.03~1.18,在兴隆山北前缘为1.83~2.88;河谷宽高比指数(VF)在宛川河北部为0.36~2.34,在南部的兴隆山为0.55~13.SMF与VF值的大小和分布特征表明研究区新构造活动活跃,且宛川河以北(前人推测有断层存在)新构造活动的活跃程度更高.流域盆地非对称性指数(AF)在宛川河北部东南端的异常揭示存在掀斜断块和褶皱运动;结合裂点分布和沟谷错断等地貌特征,发现宛川河北正断裂的东南端也存在西北--东南向走滑活动.  相似文献   

5.
吐鲁番盆地的新构造运动及其表现   总被引:1,自引:1,他引:1  
本文主要论述了具有叠加性质的吐鲁番中,新生代断隐盆 地中,新构造运动的形迹与地貌显示。指出晚第三纪以来周边山地与盆地底部巨大的断块差异升降运动,乃是深隐盆地形成的关键;盆地中新构造运动形迹十分明显,地貌表现普遍而突出。  相似文献   

6.
研究雅鲁藏布江大拐弯入口地区流水地貌对构造运动的响应过程和响应方式。在ArcGIS平台利用新近的SRTM-DEM数据对区内的流水地貌进行分析。结果显示,该区水系为平行状格局,上游和下游河谷分别出现宽谷和峡谷(嶂谷),鲁霞村与龙白村之间的10条支流长度从西南向北东方向逐渐变短,其纵剖面逐渐变陡,鲁霞村与丹娘村两地的支流在平面上出现转折点。根据前人对该区构造演化的研究,该区主要经历了60 Ma以来两大陆碰撞2、3 Ma以来持续挤压和7 Ma以来以南迦巴瓦峰为中心的正断垮塌的构造演化过程,各阶段在地质上分别产生了褶皱、走滑和正断垮塌等构造变形,并控制了水系的发育,形成了上述流水地貌。  相似文献   

7.
Uplifting frontal ridges are one of the most conspicuous geomorphic features that mark the frontal parts of actively converging mountain belts. Growth of these ridges can lead to the simultaneous development of a drainage system that is defined by watersheds, stream network and long profiles of channels. In the present study, shape parameters of watersheds, stream network characteristics and pattern of network growth, shape of long profiles, and the SL index have been investigated in a part of NW Himalaya to understand the relationship between endogenic tectonic processes and exogenic fluvial processes. This explains the tectonic control on drainage systems in the uplifting frontal ridge. This watershed analysis was carried out using a Digital Elevation Model (DEM) and a number of anomalies have been identified and analysed. The most striking is the asymmetric development of watersheds on either side of an almost straight ridge crest. Watershed asymmetry along the ridge crest is characterized by larger area and less elongated watersheds in the southern flank (forelimb) in comparison to the northern flank (backlimb). Drainage network and long profile analysis establishes that the larger watershed area in the forelimb is due to dominance of headward erosion and its impact on drainage network growth. Dominance of headward erosion is due to slope variation in response to forelimb development along a fault-related fold. Even through, headward erosion has shifted the ridge crest; it is parallel with the trace of the Himalayan Frontal Thrust (HFT). The parallel ridge crest with reference to the HFT is indicative of the tectonic control of the HFT on the development of the watersheds. Hence, a well developed linkage between tectonic processes (fold development) and surface processes (headward erosion) is responsible for variation in watershed and drainage network pattern across the ridge crest. The study also investigates the role of planform ridge curvature on watershed development. The effect is more pronounced on an asymmetric ridge, such as the Mohand ridge, than on a symmetric ridge.  相似文献   

8.
Deeply incised drainage networks are thought to be robust and not easily modified, and are commonly used as passive markers of horizontal strain. Yet, reorganizations (rearrangements) appear in the geologic record. We provide field evidence of the reorganization of a Miocene drainage network in response to strike–slip and vertical displacements in Guatemala. The drainage was deeply incised into a 50‐km‐wide orogen located along the North America–Caribbean plate boundary. It rearranged twice, first during the Late Miocene in response to transpressional uplift along the Polochic fault, and again in the Quaternary in response to transtensional uplift along secondary faults. The pattern of reorganization resembles that produced by the tectonic defeat of rivers that cross growing tectonic structures. Compilation of remote sensing data, field mapping, sediment provenance study, grain‐size analysis and Ar40/Ar39 dating from paleovalleys and their fill reveals that the classic mechanisms of river diversion, such as river avulsion over bedrock, or capture driven by surface runoff, are not sufficient to produce the observed diversions. The sites of diversion coincide spatially with limestone belts and reactivated fault zones, suggesting that solution‐triggered or deformation‐triggered permeability have helped breaching of interfluves. The diversions are also related temporally and spatially to the accumulation of sediment fills in the valleys, upstream of the rising structures. We infer that the breaching of the interfluves was achieved by headward erosion along tributaries fed by groundwater flow tracking from the valleys soon to be captured. Fault zones and limestone belts provided the pathways, and the aquifers occupying the valley fills provided the head pressure that enhanced groundwater circulation. The defeat of rivers crossing the rising structures results essentially from the tectonically enhanced activation of groundwater flow between catchments.  相似文献   

9.
The Nysa K odzka river drainage basin in the Sudeten Mts., SW Poland, preserves a complex late Cainozoic succession that includes eight fluvial series or terraces and deposits from two glacial episodes as well as local volcanic rocks, slope deposits and loess. Fluvial sedimentation took place during the Late Pliocene and from the early Middle Pleistocene (Cromerian), with a long erosion phase (gap) during the Early Pleistocene. Fluvial series are dated to the Late Pliocene, Cromerian, Holsteinian, late Saalian/Eemian, Weichselian, and the Holocene. Glacial deposits represent the early Elsterian and early Saalian stages. Almost all these stratigraphic units have been observed in all geomorphic zones of the river: the mountainous K odzko Basin, the Bardo Mts. (Bardo gorge) and in the mountain foreland. The main phase of tectonic uplift and strong erosion was during the Early Pleistocene. Minor uplift is documented also during the post-early Saalian and probably the post-Elsterian. The post-early Saalian and post-Elstrian uplift phases are probably due to glacio-isostatic rebound. The Quaternary terrace sequence was formed due to base-level changes, epigenetic erosion after glaciations and neotectonic movements. The Cromerian fluvial deposits/terraces do not indicate tectonic influence at all. All other Quaternary terraces indicate clear divergence, and the post-early Saalian terraces also show fault scarps. The fluvial pattern remained stable, once formed during the Pliocene, with only minor changes along the uplifted block along the Bardo gorge, inferring an antecedent origin for the Bardo gorge. Only during the post-glacial times, have epigenetic incisions slightly modified the valley.  相似文献   

10.
晚新生代以来,青藏高原北东向扩展,致使祁连山地区遭受了强烈的构造隆升,造就了祁连山地区复杂的构造格局和急剧变化的构造地貌,其典型水系流域地貌特征揭示了该地区的新构造活动和地貌演化过程。庄浪河流域位于祁连山东段,作为青藏高原北东向扩展的前缘地区,庄浪河流域的地貌参数对构造活动非常敏感,提取庄浪河流域的地貌信息,有助于揭示祁连山东段庄浪河流域地貌对构造活动的响应,及系统探讨该区地貌发育特征及其所蕴含的构造意义。庄浪河流域内及边缘发育有庄浪河断裂、天祝盆地南缘断裂、疙瘩沟隐伏断裂以及金强河-毛毛山-老虎山断裂。晚新生代以来,这些断裂仍在活动,并且控制着流域内的构造变形、山体隆升和河流水系地貌发育。本研究采用ALOS DEM 12.5 m数据,基于ArcGIS空间分析技术,通过高程条带剖面、河流坡降指标体系(K,SL,SL/K)和Hack剖面、面积-高程积分值(HI)和积分曲线(HC)等方法,对庄浪河流域地貌特征进行了初步分析。结果表明,庄浪河地区地形起伏由北西向南东递减,构造活动存在东西分异的规律;庄浪河流域内部K值、SL、SL/K、HI值西侧高于东侧,Hack剖面西侧相比东侧上凸更明显;H...  相似文献   

11.
Exploration data for different-order river crossings on the Lena-Katanga Plateau (northern Irkutsk oblast) were used to identify, according to the occurrence conditions of bedrocks, weathering crusts and alluvial deposits, three types of structure of river valley bottoms. In the geological evolution history of loose deposits in the valleys, six stages were determined, which occurred mostly during the Holocene. Karst lakes evolved into existence along tectonic fault lines in the river valleys at that time period which complicated their structure.  相似文献   

12.
Paraglacial rock slope failure (RSF) is here studied as a locally major contributor to mountain landscape evolution in the Caledonian ranges. Dense RSF clusters exist in Scotland and Norway, but overall RSF distribution in Scandinavia is poorly known. In the Abisko area, air photo scrutiny confirms the reported incidence of sparse but significant RSF. In the Kärkevagge complex, the Rissa RSF is one of the largest in northern Europe, with a scar volume of 42 Mm3. The well–known Giant Boulder Deposit (GBD) is a rock avalanche emanating from the Rissa RSF scar, the interpretation of wholesale valley wall retreat at deglaciation being discounted. In the adjacent valley of Vassivagge, a major RSF on Vuoitasrita has a similar area and morpholocation, but lacks a GBD. It has consumed 5–10% of the relict preglacial mountain surface. Both RSFs are near incipient watershed breaches in valleys which may have undergone vigorous enlargement during the last stadial. Glaciation history may explain spatial incidence as well as neotectonic and other triggers. The localised geomorphic impact of RSF in the Abisko mountains is high by comparison with contemporary slope processes. The cumulative impact of paraglacial RSF over the Quaternary may have been considerable, and RSF may be an indicator of concentrated late–stage glacial erosion.  相似文献   

13.
Paraglacial rock slope failure (RSF) is here studied as a locally major contributor to mountain landscape evolution in the Caledonian ranges. Dense RSF clusters exist in Scotland and Norway, but overall RSF distribution in Scandinavia is poorly known. In the Abisko area, air photo scrutiny confirms the reported incidence of sparse but significant RSF. In the Kärkevagge complex, the Rissa RSF is one of the largest in northern Europe, with a scar volume of 42 Mm3. The well–known Giant Boulder Deposit (GBD) is a rock avalanche emanating from the Rissa RSF scar, the interpretation of wholesale valley wall retreat at deglaciation being discounted. In the adjacent valley of Vassivagge, a major RSF on Vuoitasrita has a similar area and morpholocation, but lacks a GBD. It has consumed 5–10% of the relict preglacial mountain surface. Both RSFs are near incipient watershed breaches in valleys which may have undergone vigorous enlargement during the last stadial. Glaciation history may explain spatial incidence as well as neotectonic and other triggers. The localised geomorphic impact of RSF in the Abisko mountains is high by comparison with contemporary slope processes. The cumulative impact of paraglacial RSF over the Quaternary may have been considerable, and RSF may be an indicator of concentrated late–stage glacial erosion.  相似文献   

14.
This study investigates the influence of neotectonic activity on river and basin patterns in a mountainous area located in the northeastern part of the Carpathian Belt (the Laborecká vrchovina and Bukovské vrchy Mts. in eastern Slovakia). This area evolved within the accretionary wedge of the Carpathians during the Neogene, and it was alsowas affected by Middle to Late Miocene thrusting of the External Carpathians. Morphometric analysis, longitudinal and transverse river valley profiles, analysis of basin and valley symmetries, and investigation of alluvial terraces were carried out on the northern Laborec River and its tributaries. This was done to detect a possible relationship between their river courses and any ongoing neotectonic activity, which is otherwise difficult to detect by methods of structural geology because of the poorly exposed area.The general topography of the basin is characterized by a stepwise inclination to the SW as a result of differential uplift and subsidence. The reorganization of the river network in the Laborec drainage basin was influenced by tectonic activity along the NE-SW up to N-S fault structures during the neotectonic phase (Pliocene-Quaternary). The movement along these fault structures is predominantly normal to transtensive. The obtained data assumes that the region is under approximately NE-SW oriented SH compression and NW-SE trending Sh tension. The Laborec drainage basin is characterized by a very high degree of asymmetry that sharply increases from the upper to the lower courses of the river. The right-bank tributaries of the Laborec River are < 12 km in length; however, the left-bank tributaries such as Vydraňka, Ol'šava, Výrava, Udava, and Cirocha Streams are up to 50 km long with a high potential of headward erosion and capturing. The valley asymmetry is also very variable in the upper and lower portions of the basin. Based on these presented results, the ancient river thalweg was located along the axis of the Hostovice-Habura depression, and it was captured by the Ol'šava, Výrava, and Udava Streams. The asymmetric pattern of the drainage basin is the result of active tectonics, the continual subsidence of the Transcarpathian Basin, and by the uplift of the Laborecká vrchovina and Bukovské vrchy Mts. These events caused rejuvenation of the headward erosion of streams in the southern part. Favorable lithology was also essential in the process of river capture.  相似文献   

15.
The Jiloca depression, one of the largest morpho-structural units of the Iberian Range and traditionally considered as a neotectonic graben, is interpreted as a karst polje developed within an active halfgraben. This polje, 705 km2 in area, constitutes one of the largest documented poljes. Several evidences—(1) a sequence of eight-stepped levels of corrosion surfaces, (2) the reduced thickness of the basin fill, (3) fault-controlled mountain fronts with topographic scarps much higher than the structural throws—demonstrate that great part of the topographic relief of the depression has been generated by corrosional lowering rather than by tectonic subsidence. The height difference between the highest corrosion surface and the polje bottom indicate that the depression has been deepened around 300 m by corrosion processes. The initiation of the karst polje was determined by the creation of the Jiloca halfgraben by normal faults, which deformed a Pliocene regional erosion surface. The development of the polje has been controlled largely by the asymmetric structure and the slight neotectonic activity of the graben. Changes in the position of the polje bottom inferred from the slopes of the different corrosion surfaces (polje paleotopography) may have been controlled by neotectonic movements.  相似文献   

16.
《Geomorphology》2005,64(1-2):97-116
This paper provides an analysis of relationships between drainage patterns and fractures in the part of Sierra Nevada, California, north of the Yosemite Valley. Bedrock is Cretaceous granite and cut by numerous lineaments of various orientation, length and geomorphic expression. We have mapped fractures and drainage lines from aerial photographs, 1:40 000 scale, in four test areas ranging in size from 32.5 to 266 km2. Azimuths are shown on rose diagrams for fractures and drainage lines and then visually and statistically compared. The coincidence of drainage and fracture patterns is strong, which implies causal relationships. In plan, the majority of valleys follow fractures even if this locally means a different orientation in respect to the regional slope arising from tectonic tilt of the range. Main streams occupy deeply incised troughs coincident with ‘master fractures’ of regional extent. Among two principal fracture directions, SSW–NNE to SW–NE and WSW–ENE, the former exerts more control on the drainage lines. The presence of a central zone of structural weakness within the major valleys provided significant constraints for the course of glacial erosion and may explain why multiple Pleistocene glaciers did not succeed in transforming valley cross-sections into expected U-shapes.  相似文献   

17.
The northeastern 110 km2, or nearly 40%, of Antigua is underlain by impure limestones of the Oligocene-aged Antigua Formation, on which has developed a subdued karst landscape consisting essentially of shallow enclosed depressions (dolines), intermittently active stream valleys and widely scattered residual hills. The dispersed dolines are broad, shallow and clustered, especially in the central and southeastern sections of the limestone belt, where they attain densities of 7/km2. The widely spaced residual hills attain heights of up to 40 m and localized densities of over 4/km2. Five main valley systems up to 6 km in length traverse the limestone in a broadly northeast direction, carrying both autogenic drainage from within the karst area and allogenic drainage from the non-carbonate Central Plain. Karst and cave development has been constrained by the low purity of the limestones. Of the four types of carbonate islands identified within the Carbonate Island Karst Model, Antigua most closely resembles the Composite Island type. The karst has been much influenced by human activities, particularly agriculture and quarrying, and is now a focus of the burgeoning tourism industry. Virtually none of the karst is designated as protected areas, but several sites warrant protection, and several conservation strategies have been suggested.  相似文献   

18.
The landscape of today's central Iberian Peninsula has been shaped by ongoing tectonic activity since the Tertiary. This landscape comprises a mountain ridge trending E–W to NW–SE, the Central System, separating two regions of smooth topography: the basins of the rivers Duero and Tajo. In this study, we explore interrelationships between topography and tectonics in the central Iberian Peninsula. Regional landscape features were analysed using a digital elevation model (DEM). Slope gradients and slope orientations derived from the DEM were combined to describe topographic surface roughness. Topography trend-surfaces inferred from harmonic analysis were used to define regional topographic features. Low roughness emphasizes the smooth nature of the basins' topography, where surfaces of homogeneous slope gradient and orientation dominate. High roughness was associated with abrupt changes in gradient and slope orientation such as those affecting crests, valley bottoms and scarp edges present in the mountain chain and in some deep incised valleys in the basins. One of the applications of roughness mapping was its capacity to isolate incised valley segments. The area distribution of incised rivers shows their prevalence in the east. On a regional scale, the topographic surface can be described as a train of NE–SW undulations or waves of 20 km wavelength. These undulations undergo changes in direction and interruptions limited by N–S-trending breaks. E–W and NE–SW troughs and ridges clearly mark structural uplifts and depressions within the Central System. These structures are transverse to the compressive NW–SE stress field that controlled the deformation of the central Iberian Peninsula from the Neogene to the present. They represent the upper crustal folding that accommodates Alpine shortening. N–S breaks coincide with Late Miocene faults that control the basins' sedimentation. Further, associated palaeoseismic structures suggest the recent tectonic activity of N–S faults in the eastern part of the Tajo Basin. Apatite fission track analysis data for this area suggest the occurrence of a significant uplift episode from 7 to 10 Ma which induced the river incisions appearing in the roughness map. N–S and NE–SW faults could be seismogenic sources for the current moderate to low seismic activity of the east Tajo Basin and southeast Central System. Although N–S fault activity has already been established, we propose its significant contribution to shaping the landscape.  相似文献   

19.
The Seine and the Somme are the two main rivers flowing from northwestern France into the Channel. During the Pleistocene cold stages both rivers were tributaries of the River Manche which was exporting sediments into the central deeps of the Channel. The River Seine has a very well developed terrace system recording incision that began at around 1 Ma. The same age is proposed for the beginning of the main incision in the Somme Valley on the basis of morphostratigraphy, pedostratigraphy, palaeontology, palaeomagnetism and ESR datings. The uplift rate deduced from analysis of the Seine and Somme terrace systems is of 55 to 60 m/Ma since the end of the Lower Pleistocene. The response of the two rivers to climatic variations, uplift and sea-level changes is complex and variable in the different parts of the river courses. For example, the evolution of the lower Seine system is influenced by uplift and climate changes but dominated by sea-level changes. In the middle Seine the system is beyond the impact of sea-level variations and shows a very detailed response to climatic variations during the Middle and Upper Pleistocene in a context of uplift. The Somme Valley response appears to be more homogeneous, especially in the middle valley, where the terrace system shows a regular pattern in which incision occurs at the beginning of each glacial period against a general background of uplift. Nevertheless, the lower Somme Valley and the Palaeo-Somme in the Channel area indicate some strong differences compared with the middle valley: influence of sea-level variations and probably differences in rates of tectonic uplift between the Channel and the present continent. The differences in the responses of the two river valleys during the Pleistocene are related to differences in the size of the fluvial basins, to the local tectonic characteristics, to the geometry of the platform connected to the lower parts of the valleys and to the hydrodynamic characteristics of each river. Finally, it is shown from these examples that the multidisciplinary study of Pleistocene rivers is a very efficient tool for the investigation of neotectonic activity.  相似文献   

20.
高前兆 《中国沙漠》1984,4(4):41-49
本文分析了新疆天山北坡玛纳斯河流域治理沙漠、防治沙漠化的开发过程。总结了该地区根根流域生态系统特点,充分发挥流域内水土资源潜力,以水资源限度及其利用水平作好流域规划。并从建设完整的水资源系统、联合运用地表和地下水、掌握灌溉技术三方面充分发挥水资源的生态效益出发,同时注重建设沙漠地区绿洲防护体系,改良土壤提高土地生产力和调整农林牧结构的经验。因而,石河子垦区已建立成为一个典型的人工灌溉绿洲生态系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号