首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
西天山广泛出露下石炭统大哈拉军山组火山-沉积岩系,其与下伏地层(前寒武纪结晶基底或前石炭纪褶皱基底)之间呈广泛的区域性角度不整合接触。通过对这些角度不整合面及大哈拉军山组底部冲洪积相碎屑岩或陆相火山岩特征的研究,认为该不整合面代表了一次强烈的褶皱、隆升造山事件;不整合面之上初始沉积物地层序列是天山石炭纪后碰撞裂谷盆地新一轮沉积旋回的起点。取自大哈拉军山组底部粗碎屑岩中夹层安山岩样品的锆石LA-ICP-MS U-Pb同位素年龄为359±2.3Ma,这一年龄值不但限定了这一区域性角度不整合的形成时代,而且代表天山后碰撞裂谷盆地的开启时间。因此,天山古生代洋陆转换时限在晚泥盆世—早石炭世之交,随后,天山造山带进入后碰撞裂谷演化阶段。  相似文献   

2.
Neoproterozoic rocks in the Saxo-Thuringian part of Armorica formed in an active margin setting and were overprinted during Cadomian orogenic processes at the northern margin of Gondwana. The Early Palaeozoic overstep sequence in Saxo-Thuringia was deposited in a Cambro-Ordovician rift setting that reflects the separation of Avalonia and other terranes from the Gondwana mainland. Upper Ordovician and Silurian to Early Carboniferous shelf sediments of Saxo-Thuringia were deposited at the southern passive margin of the Rheic Ocean. SHRIMP U/Pb geochronology on detrital and inherited zircon grains from pre-Variscan basement rocks of the northern part of the Bohemian Massif (Saxo-Thuringia, Germany) demonstrates a distinct West African provenance for sediments and magmatic rocks in this part of peri-Gondwana. Nd-isotope data of Late Neoproterozoic to Early Carboniferous sedimentary rocks show no change in sediment provenance from the Neoproterozoic to the Lower Carboniferous, which implies that Saxo-Thuringia did not leave its West African source before the Variscan Orogeny leading to the Lower Carboniferous configuration of Pangea. Hence, large parts of the pre-Variscan basement of Western and Central Europe often referred to as Armorica or Armorican Terrane Assemblage may have remained with Africa in pre-Pangean time, which makes Armorica a remnant of a Greater Africa in Gondwanan Europe. The separation of Armorica from the Gondwana mainland and a long drift during the Palaeozoic is not supported by the presented data.  相似文献   

3.
The High Zagros Belt includes exposures of Lower Palaeozoic rocks in the core of several thrusted anticlines developed during the Cenozoic Zagros orogeny. The structural style and tectonic evolution of this area during the Palaeozoic remain poorly understood due to the complexity of the subsequent deformation. We present the preliminary results of a field study focusing on the structural geology of Palaeozoic rocks in this area. We confirm the existence of an angular unconformity below the Lower Permian Faraghan formation. In the geological literature, this unconformity is reported as the “Hercynian Unconformity” suggesting a relationship with the Hercynian (Variscan) orogeny, which affected Western Europe and westernmost Africa during the Carboniferous. Surprisingly the only observable structures sealed by this unconformity are N to NE trending normal faults and tilted blocks without any evidence of compressional deformation. This pre-Permian extensional deformation, which is general at the scale of the HZB, raises questions about the geodynamic significance of the “Hercynian unconformity” in the study area and, more generally, in the Arabian plate.  相似文献   

4.
FROM BACK-ARC BASIN TO BACK-ARC FORELAND BASIN—THE SEDIMENTARY BASIN AND TECTONIC EVOLUTION OF THE LATE CALEDONIAN—EARLY HERCYNIAN STAGES IN CORRIDOR AND NORTH QILIAN MTSthenationalNaturalScienceFoundationofChina(No.4 9972 0 78)  相似文献   

5.
We compare detrital U/Pb zircon age spectra of Carboniferous and Permian / Lower Triassic sedimentary rocks from different structural positions within the Austroalpine nappe pile with published ages of magmatic and metamorphic events in the Eastern Alps and the West Carpathians. Similarities between sink and possible sources are used to derive provenance of sediments and distinct frequency peaks in sink and source age pattern are used for paleogeographic plate tectonic reconstructions. From this, travel paths of Austroalpine and West Carpathian basement units are traced from the Late Neoproterozoic to the Jurassic. We place the ancestry of basement units on the northeastern Gondwana margin, next to Anatolia and the Iranian Luth-Tabas blocks. Late Cambrian rifting by retreat of the Cadomian Arc failed and continental slivers re-attached to Gondwana during a late Cambrian / early Ordovician orogenic event. In the Upper Ordovician crustal fragments of the Galatian superterrane rifted off Gondwana through retreat of the Rheic subduction. An Eo-Variscan orogenic event at ~390 Ma in the Austroalpine developed on the northern rim of Galatia, simultaneously with a passive margin evolution to the south of it. The climax of Variscan orogeny occurred already during a Meso-Variscan phase at ~350 Ma by double-sided subduction beneath Galatia fragments. The Neo-Variscan event at ~330 Ma was mild in eastern Austroalpine units. This orogenic phase was hot enough to deliver detrital white mica into adjacent basins but too cold to create significant volumes of magmatic or metamorphic zircon. Finally, the different zircon age spectra in today's adjacent Carboniferous to Lower Triassic sediments disprove original neighbourhood of basins. We propose lateral displacement of major Austroalpine and West-Carpathian units along transform faults transecting Apulia. The intracontinental transform system was released by opening of the Penninic Ocean and simultaneous closure of the Meliata Hallstatt Ocean as part of the Tethys.  相似文献   

6.
The SW England Rhenohercynian passive margin initiated with rift-related non-marine sedimentation and bimodal magmatism (Late Lockhovian). Continued lithospheric extension resulted in the exhumation of mantle peridotites and limited seafloor spreading (Emsian-Eifelian). Variscan convergence commenced during the Late Eifelian and was coeval with rifting further north. Collision was marked by the Early Carboniferous emergence of deep marine sedimentary/volcanic rocks from the distal continental margin, oceanic lithosphere, pre-rift basement and upper plate gneisses (correlated with the Mid-German Crystalline High of the Saxothuringian Zone). Progressive inversion of the passive margin was strongly influenced by rift basin geometry. Convergence ceased in the Late Carboniferous and was replaced by an extensional regime that reactivated basin controlling/thrust faults and reorientated earlier fabrics (Start-Perranporth Zone). The resultant exhumation of the lower plate was accompanied by emplacement of the Early Permian SW England granites and was contemporaneous with upper plate sedimentary basin formation above the reactivated Rhenohercynian suture. The Rhenohercynian passive margin probably developed in a marginal basin north of the Rheic Ocean or, possibly, a successor basin following its closure. The Lizard ophiolite is unlikely to represent Rheic Ocean floor or associated forearc (SSZ) crust. The Rheic and Rhenohercynian sutures may be coincident or the Rheic suture may be located further south in the Léon Domain.  相似文献   

7.
新生代阿尔卑斯是非洲和欧洲之间的陆陆碰撞造山带。强烈的造山作用使大量前中生代基底出露地表,尽管这些基底被强烈逆冲推覆和走滑叠置,但是仍保留较丰富的前中生代基底演化信息。结合近几年对东阿尔卑斯原-古特提斯的研究,本文梳理和重建了阿尔卑斯前中生代基底的构造格局,认为前阿尔卑斯基底受原特提斯、南华力西洋、古特提斯洋构造体系影响而经历了多期造山过程。新元古代-早古生代的原阿尔卑斯作为环冈瓦纳地块群的组成部分,受原特提斯洋俯冲的制约,是新元古-早古生代环冈瓦纳活动陆缘的组成部分,其中,海尔微-彭尼内基底组成外缘增生系统,包括卡多米期地壳碎片在内的陆缘弧/岛弧以及大量增生楔组成内缘增生系统。早奥陶世瑞亚克洋打开,随后原阿尔卑斯从冈瓦纳陆缘裂离,在泥盆纪-石炭纪受南华力西洋控制,海尔微-彭尼内-中、下奥地利阿尔卑斯从冈瓦纳分离。在早石炭世(维宪期)南阿尔卑斯(或与之相当的冈瓦纳源地块)与北部阿莫里卡地块群拼贴增生于古欧洲大陆南缘,共同组成华力西造山带(广义),华力西期缝合带保留在绍山-科尔山南侧。晚石炭世-早二叠世,阿尔卑斯受古特提斯洋的俯冲影响,在华力西造山带南侧形成安第斯山型活动大陆边缘,古特提斯洋在阿尔卑斯的演化至少持续到早三叠世,消亡遗迹保留在中奥地利阿尔卑斯基底的Plankogel杂岩中。  相似文献   

8.
扬子西缘东吴伸展运动   总被引:22,自引:2,他引:20       下载免费PDF全文
梁定益  聂泽同 《地球科学》1994,19(4):443-453
扬子西缘二叠系中震积岩十分发育,笔者根据震积岩、震积-伸展不整合的存在,厘定了它的时代,确认了东吴运动的存在。指出它是该区晚古生代以来最重要的一次伸展构造事件,多旋回震积岩、化石有序混积与水下边界正断层的多次活动有关。在木里地区,从东吴运动开始,地震、伸展-裂陷。火山活动持续到三叠纪,形成裂陷槽(晚二叠世-早三叠世达到高峰)。在这里,东吴运动实际是裂陷造槽运动。  相似文献   

9.
In this paper, laser ablation ICP-MS U–Pb detrital zircon ages are used to discuss provenance and early Palaeozoic palaeogeography of continental fragments that originated in the Cadomian–Avalonian active margin of Gondwana at the end of Precambrian, were subsequently extended during late Cambrian to Early Ordovician opening of the Rheic Ocean, and finally were incorporated into and reworked within the European Variscan belt. The U–Pb detrital zircon age spectra in the analysed samples, taken across a late Neproterozoic (Ediacaran) to Early/Middle Devonian metasedimentary succession of the southeastern Teplá–Barrandian unit, Bohemian Massif, are almost identical and exhibit a bimodal age distribution with significant peaks at about 2.1–1.9 Ga and 650–550 Ma. We interpret the source area as an active margin comprising a cratonic (Eburnean) hinterland rimmed by Cadomian volcanic arcs and we suggest that this source was available at all times during deposition. The new detrital zircon ages also corroborate the West African provenance of the Teplá–Barrandian and correlative Saxothuringian and Moldanubian units, questioned in some palaeogeographic reconstructions. Finally, at variance with the still popular concept of the Cadomian basement units as far-travelled terranes, we propose that early Palaeozoic basins, developed upon the Cadomian active margin, were always part of a wide Gondwana shelf and drifted northwards together before involvement in the Variscan collisional belt.  相似文献   

10.
中昆仑北部地区构造地层学初步研究   总被引:8,自引:0,他引:8  
中昆仑北部造山带可分为 5个构造地层区 :白干湖、求勉雷克、大九坝、祁漫塔格南缘和祁漫塔格北缘。白干湖和求勉雷克构造地层区出露前寒武纪变质结晶基底 ;早古生代期间 ,祁漫塔格洋沿鸭子泉—阿特阿特坎河断裂向北西俯冲碰撞 ,在祁漫塔格北缘沉积了古海沟岛弧浊积岩、晚泥盆世蛇绿混杂岩 ,在祁漫塔格南缘被动大陆边缘上发育晚泥盆世前陆磨拉石沉积 ;晚古生代早期 ,昆中求勉雷克地区简单剪切滑覆 ,在祁漫塔格南、北缘形成浅海相沉积 ,而大九坝地区由于断层高角度伸展 ,沉积了一套海相碳酸盐岩建造 ;晚古生代晚期 ,特提斯洋沿昆中断裂斜向俯冲 ,在大九坝出露了托库孜达坂蛇绿混杂岩和早二叠世前陆盆地堆积 ;晚三叠世陆相火山岩出露于祁漫塔格山南缘。  相似文献   

11.
《Gondwana Research》2010,18(4):704-714
The Iran continental crust was metamorphosed, intruded by granitoid magmas, folded and faulted during the Late Precambrian by the Pan-African Orogeny. The basement complex in the Takab Complex (northwest Iran) consists of gneisses, amphibolites, pelitic schists, meta-ultramafic and calc-silicate rocks. Geochemically, the protoliths of the Takab gneisses are slightly peraluminous and medium to high-potassic with calc-alkaline affinity. These gneisses may have been emplaced in volcanic arc tectonic setting. Furthermore, the metapelitic protolith is shale deposited in an active continental margin setting. All these characteristics, and presence of paleo-suture zone and ophiolitic rocks (i.e. serpentines, meta-mafic and meta-ultramafic rocks) around the high grade metamorphic rocks suggest that a continental-margin magmatic arc (Andean-type) formed the Takab Precambrian basement. The basement complexes are extensively overprinted by the Pan-African Orogeny and younger igneous events; this supports the inference that Early Cambrian orogenesis in the Takab Complex region of northwest Iran marks one of the fundamental lithospheric boundaries within Gondwana which belonged to a greater Late Neoproterozoic–Early Paleozoic orogenic system that was active along the Proto-Tethyan margin of the Gondwana supercontinent, extending at least from its Arabian margin to the Himalayan margin of the Indian subcontinent.  相似文献   

12.
Geological evidence, supported by biogeographical data and in accord with palaeomagnetic constraints, indicates that “one ocean” models for the Variscides should be discarded, and confirms, instead, the existence of three Gondwana-derived microcontinents which were involved in the Variscan collision: Avalonia, North Armorica (Franconia and Thuringia subdivided by a failed Vesser Rift), and South Armorica (Central Iberia/Armorica/Bohemia), all divided by small oceans. In addition, parts of south-eastern Europe, including Adria and Apulia, are combined here under the new name of Palaeo-Adria, which was also Peri-Gondwanan in the Early Palaeozoic. Oceanic separations were formed by the break-up of the northern Gondwana margin from the Late Cambrian onwards. Most of the oceans or seaways remained narrow, but – much like the Alpine Cenozoic oceans – gave birth to orogenic belts with HP-UHP metamorphism and extensive allochthons: the Saxo-Thuringian Ocean between North and South Armorica and the Galicia-Moldanubian Ocean between South Armorica and Palaeo-Adria. Only the Rheic Ocean between Avalonia and peri-Gondwana was wide enough to be unambiguously recorded by biogeography and palaeomagnetism, and its north-western arm closed before or during the Emsian in Europe. Ridge subduction under the northernmost part of Armorica in the Emsian created the narrow and short-lived Rheno-Hercynian Ocean. It is that ocean (and not the Rheic) whose opening and closure controlled the evolution of the Rheno-Hercynian foldbelt in south-west Iberia, south-west England, Germany, and Moravia (Czech Republic). Devonian magmatism and sedimentation set within belts of Early Variscan deformation and metamorphism are probably strike-slip-related. The first arrival of flysch on the forelands and/or the age of deformation of foreland sequences constrains the sequential closure of the Variscan seaways (Galicia-Moldanubian in the Givetian; Saxo-Thuringian in the Early Famennian; Rheno-Hercynian in the Tournaisian). Additional Mid- to Late Devonian and (partly) Early Carboniferous magmatism and extension in the Rheno-Hercynian, Saxo-Thuringian and Galicia-Moldanubian basins overlapped with Variscan geodynamics as strictly defined. The Early Carboniferous episode was the start of episodic anorogenic heating which lasted until the Permian and probably relates to Tethys rifting.  相似文献   

13.
The evolution of the Early Palaeozoic orogen of West Gondwana in the Cambrian to Ordovician basement of the Andes between ~18° and 32° S is investigated for pressure and temperature conditions and age of metamorphism. It is characterized by mid-crust temperatures commonly above the wet granite solidus (~650°C). Widespread felsic migmatite and rare granulite formed at pressures of ca 0.5?C0.7?GPa, locally 1.0?GPa. These rocks represent the deepest exhumed sections of the Early Palaeozoic crust. High pressure?Clow temperature rocks are absent. The crystallization ages, compiled from the literature in combination with new data, for near peak metamorphic conditions of these high-grade metamorphic rocks in NW Argentina and N Chile are ~530?C500?Ma and ~470?C420?Ma. Both age groups are spatially overlapping. Radiogenic isotope signatures (Sr, Nd, Pb) are used to characterize the Early Palaeozoic basement. The Pb and Sr isotope compositions of the Early Palaeozoic basement indicate mixing arrays between pre-Palaeozoic unradiogenic and radiogenic crust. Crustal residence ages (Sm?CNd TDM) indicate a prominent event of crust formation around ~2?Ga, which is known continent-wide. This material was recycled during Midproterozoic and Early Palaeozoic orogenies without prominent additions of new crust present in the isotope record, i.e. accretion of compositional exotic material is absent.  相似文献   

14.
塔里木盆地东南缘的阿尔金山被认为是塔里木克拉通变质基底的主要出露地区之一。 本文通过阿尔金山北坡不整合在太古代-古元古代变质基底之上的安南坝群中的碎屑岩和中南阿尔金中深变质岩石(原定为阿尔金岩群)的锆石U-Pb年代学研究,来确定塔里木盆地东南缘变质基底的性质及所经历的多期构造热历史。研究结果显示,塔里木盆地东南缘的安南坝群中含砾砂岩的碎屑锆石年龄集中在1.92Ga左右,少量在2.0~2.4Ga,表明其碎屑物质主要来源于下伏的太古代-早元古代米兰岩群和相关的深成侵入体。在中阿尔金地块和南阿尔金俯冲碰撞杂岩带的深变质岩石中,锆石U-Pb年代学数据表明其记录有新元古代早期(920~940Ma)、新元古代晚期(760Ma左右)和早古生代(450~500Ma)三期构造热事件,新元古代早期的构造热事件与塔里木(或晋宁)造山作用有关,它普遍存在于塔里木盆地周缘的和南中国地块(扬子克拉通)的变质基底岩石中,与Rodinia超级大陆汇聚相关;新元古代晚期的构造热事件也同样广泛存在于塔里木盆地周缘和扬子克拉通之中,被认为与Rodinia超大陆的裂解作用有关。因此,在新元古代时期,阿尔金的地质演化历史与扬子克拉通非常相似,而与华北则有很大的不同,锆石U-Pb测定还表明中南阿尔金的深变质岩石普遍遭受了早古生代的变质作用的改造,显示它们普遍卷入了早古生代的碰撞造山事件之中,成为早古生代碰撞造山带的组成部分。  相似文献   

15.
西藏纳木错流纹岩构造上处于北冈底斯南缘,地层角度不整合于中—晚侏罗世拉贡塘组之上,归属于卧荣沟组。其中流纹岩的LA-ICP-MS锆石U-Pb年龄为120~112 Ma,时代为早白垩世中期。岩石具高Si O2、富Al2O3和K2O,贫Ti O2、MgO、Ca O特征,A/CNK=0.94~1.91(平均1.16),属于高钾钙碱性-钾玄岩系列过铝质岩石。(La/Yb)N为1.49~11.08,δEu=0.12~0.55,球粒陨石标准化稀土元素分布模式显示为略右倾V字形。大离子亲石元素及高场强元素Rb、K、Th、Ta、Ce、Zr、Hf相对富集,Nb相对亏损,Ba、Sr、P、Ti强烈亏损,成岩岩浆源自地壳,可以与多尼组酸性火山岩对比。流纹岩具同碰撞型火山特征,不具传统岛弧环境特征,研究认为在早白垩世中期(120 Ma左右),北冈底斯发生了一次重大的构造事件,即班公湖—怒江新特提斯洋俯冲已经结束,冈底斯带与羌塘地块陆-陆碰撞开始,碰撞过程中下地壳增厚并部分发生熔融,纳木错流纹岩是碰撞后部分熔融的产物。  相似文献   

16.
SIGNIFICANCE AND CHARACTERISTICS OF OPHIOLITE SUITE IN LAJI SHAN, SOUTHERN QILIAN MOUNTAINS, QINGHAI PROVINCE,CHINAthedoctoralprogramofhighereducation (970 49119)  相似文献   

17.
The stratigraphic record of the eastern Murzuq Basin has been importantly influenced by deformation resulting in angular and/or deeply erosional unconformities, though the overall context is intracratonic. Major transgressive events and the Ordovician glaciation are nevertheless documented, allowing the delineation of tectonic-, eustasy- or climate-driven unconformities. Lower Palaeozoic key events and related unconformities that characterize the North Gondwana platform have therefore a signature in the eastern Murzuq Basin. The basement/cover unconformity, also known as the infra-Tassilian surface, truncates all the deformed and metamorphosed Lower Cambrian and older rocks. Above is a ?Middle Cambrian to Lower Ordovician megasequence (Murizidié and Hasawnah Fms.), which is in turn truncated by an intra-Ordovician, angular unconformity. This megasequence is unconformably overlain by a Middle Ordovician (Hawaz Fm.) to Silurian (Tanzzuft and Akakus Fms) megasequence, which includes the Upper Ordovician glaciogenic unit (Mamuniyat Fm.), bounded at the base by a polygenic glacial erosion surface showing corrugated glacial lineations, tillites, and glaciotectonic structures. The Middle Ordovician to Silurian megasequence is finally truncated by a base-Devonian, angular unconformity overlain by fluvial sandstones. Regarding the possibility that those fluvial deposits may be as younger as Late Devonian in the eastern Murzuq Basin based on palaeoflora, the so-called Caledonian unconformity might be here a much younger (mid-Eifelian?) surface, and the occurrence of the Lower Devonian “Tadrart Fm.” is questioned. The Upper Ordovician glacial erosion surface, which is sometimes referred to as the Taconic unconformity, usually truncates Middle Ordovician strata in the Murzuq Basin but reaches significantly deeper stratigraphic levels in places that have been previously involved in the intra-Ordovician deformation event. In the Murizidié (southeastern Murzuq Basin), the infra-Tassilian surface, the intra-Ordovician unconformity, and the Upper Ordovician glacial erosion surface amalgamate together. Here, an estimate of the glacial erosion depth cannot be derived from the stratigraphic hiatus beneath the glacial incision, the main part of which relate to the intra-Ordovician tectonic event. The Upper Ordovician climate-related glacial erosion surface is not a valid unconformity for a sequence hierarchy framework of the Lower Palaeozoic, although it presents most of the physical attributes of tectonic-driven unconformities.  相似文献   

18.
塔里木克拉通基底古隆起构造-热事件及其结构与演化   总被引:10,自引:4,他引:6  
通过盆地内部锆石U-Pb测年分析表明,塔里木克拉通基底存在2950~ 3100Ma、2100 ~ 2400Ma、1900~2000Ma、1300~1600Ma、900 ~ 950Ma、700~800Ma、540 ~ 560Ma、400~ 500Ma和270~290Ma等9期构造-热事件.中央航磁异常带井下花岗岩锆石SHRIMP U-Pb年龄测定发现1908.2±8.6Ma前寒武纪基底,表明盆地内部可能存在古元古代构造-热事件形成的古老花岗岩基底.结合新的地质与地球物理资料综合分析,塔里木盆地前寒武纪具有不同年代、不同类型的基底结构,北部为中-新元古代中浅变质岩基底、中部为古元古代花岗岩基底、南部为新元古代早-中期岩浆岩与变质岩基底、东南部为遭受早志留纪区域变质改造的变质岩基底.井震结合发现塔里木盆地寒武系/前寒武系发育广泛分布的大型不整合,形成塔北与塔南两大前寒武纪基底古隆起,可能与550Ma“泛非运动”相关.塔里木盆地基底古隆起主要经历5期演化,古元古代中期形成克拉通化基底,新元古代早期形成统一的变质结晶基底,寒武纪沉积前两大基底古隆起形成,加里东晚期五大基底古隆起基本定型,海西期以来发生局部调整改造.  相似文献   

19.
徐亚军  杜远生 《地球科学》2018,43(2):333-353
华南的广西运动被认为是发生在早古生代的陆内造山作用,然而触发陆内变形的地球动力学机制仍然不清.广西运动形成了泥盆系与下伏岩石之间广泛的不整合面以及分布在局部地区的下古生界内部的多个不整合面.广西运动期间的构造热事件和古生物响应时间在460~380 Ma,时间上对应于奥陶系和泥盆系之间的多个不整合,而分布在华南南缘的寒武系和奥陶系之间的不整合面(郁南运动)仅与少量的530~480 Ma之间的变质事件相当,但是却同步于广泛分布在东冈瓦纳北缘的造山事件.华南南部寒武系-奥陶系不整合面上下的碎屑锆石年代学研究表明,早古生代华南与印度北缘相连,而三亚地块在寒武纪是澳大利亚西缘的一部分,直到奥陶纪才与华南拼合,同步于冈瓦纳最终的聚合.郁南运动之后,华夏板块处于冈瓦纳内部,来自冈瓦纳东缘造山作用的应力向大陆内部传播,在具有弱流变学性质的南华盆地聚集,导致盆地构造反转,触发了广西运动.早古生代的华南经历了从板缘碰撞(郁南运动)到陆内造山(广西运动)的演化过程.   相似文献   

20.
ABSTRACT Insight into the origin and pre-orogenic palaeogeographical links of terranes involved in the assembly of collisional mountain belts is fundamental to the understanding of orogenic processes. Here we address the provenance and possible tectonic settings of the uppermost allochthonous terrane of the NW Iberian Variscan Belt through a 213-nm Laser Ablation ICP-MS study of U–Pb ages of detrital zircons. The age groups of zircons from greywackes in this terrane ( c . 480–610, 1900–2100, 2400–2500 Ma) and the lack of Mesoproterozoic zircons suggest an origin in a Neoproterozoic – Early Palaeozoic peri-Gondwanan realm along the periphery of the west African craton. It is further inferred that the greywackes were deposited in the periphery of a crustal unit that had been detached from the Gondwanan margin in relation to the opening of the Rheic ocean in Cambro-Ordovician times. This terrane was thrusted back upon the Gondwanan margin during the course of the Variscan collision and closure of the intervening ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号