首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compare observations of an eruptive and a quiescent prominence in order to better understand the energetic processes in an eruptive prominence. Observations of an eruptive prominence were obtained in H, several UV emission lines (1215–1640 Å), and coronal white light at approximately 19:00 UT on September 20, 1980. The data we present shows the development of the eruption in the H and UV emission lines and is compared with the intensities from similar observations of a quiescent prominence. While the event is coincident with some coronal changes, above 1.2 and up to 1.5 solar radii, it does not result in a true coronal mass ejection event.The comparison between the eruptive and quiescent prominences reveals several differences which suggest that the activation consists not only of a mechanical movement of material, but also changes in the temperature of the prominence plasma. Some prominence material that does not seem to participate in the large scale prominence motion is heated during the eruptive event. Most of this material is heated to transition zone temperatures with almost no cool core (i.e., no or very little H emission). The behavior indicates that there are structures that are first cool and then heat up to transition zone temperatures (apparently remaining stable for some time at these temperatures). Since this is an unstable temperature region for prominence type structures the energy transport that allows this is not understood and presents an interesting theoretical problem.Member of the Carrera del Investigador, CONICET, Argentina, presently at The University of Alabama in Huntsville.  相似文献   

2.
The positions of X-ray coronal transients outside of active regions observed during Skylab were superposed on H synoptic charts and coronal hole boundaries for seven solar rotations. We confirmed a detailed spatial association between the transients and neutral lines. We found that most of the transients were related to large-scale changes in coronal hole area and tended to occur on the borders of evolving equatorial holes.Skylab Solar Workshop Post-Doctoral Appointee, 1975–1977.  相似文献   

3.
Properties of solar-flare EUV flashes measured via a type of ionospheric event, called a sudden frequency deviation (SFD), are presented. SFD's are sensitive to bursts of radiation in the 1–1030 Å wavelength range. He ii 303.8 Å, O v 629.7 Å, HL 972.5 Å and C iii 977.0 Å have essentially the same impulsive time dependence as the 1–1030 Å flash responsible for SFD's. Soft X-rays (2–20 Å) and certain EUV lines have a much slower time dependence than the 1–1030 Å flash. Most SFD's have some fine structure, but marked quasi-periodicity in EUV flashes is quite rare. EUV flashes are closely associated with hard X-ray bursts, white-light emission, microwave radio bursts and small bright impulsive kernels in the H flare. The intensity of EUV flashes depends on the central meridian distance of the H flare location; the intensity decreases at the limb. The total energy radiated in the 10–1030 Å flash for the largest events observed is about 1031 ergs.  相似文献   

4.
Spectroheliograms of resolution about 2 arc sec obtained simultaneously in He 10830 Å and H show in the network a very close agreement in position of dark H mottles and of bright H plage remnants with 10830 Å absorption, though there is not a one-to-one relation between the intensities; the typical intensity in 10830 Å, corrected for overlapping lines, is I 0.91 of the continuum. Some parts of the network do not appear in 10830 Å. This line is much weaker over supergranule centres (I 0.98), though near active regions dark H fibrils coincide with faint 10830 Å fibrils (I0.93–0.98).Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

5.
There are remarkable similarities in the structure of loop prominences when observed in H and coronal lines, although the lines arise from extremely different excitation conditions. This leads to the consideration of a multi-component model, where different emission lines come from different elements of the structure. The late phases of a large west limb loop prominence system followed by a surge were recorded at Haleakala Observatory on March 6, 1970. Simultaneous filter-grams in H and 5303 were obtained, together with spectra at three heights in the prominence over the range 3850–5950 Å. The positions of bright knots of emission as seen in the green line are compared with associated H knots. With these relative positions determined, the filtergrams are superimposed to demonstrate the two dimensional spatial relationship between H and 5303 structures. The results support a model of cool loops within a closely associated hot loop system.  相似文献   

6.
Bright and dark curvilinear structures observed between the two major chromospheric ribbons during the flare of 29 July 1973 on films from the Big Bear Solar Observatory are interpreted as a typical system of coronal loops joining the inner boundaries of the separating flare ribbons. These observations, made through a 0.25 Å H filter, only show small segments of the loops having Doppler shifts within approximately ± 22 km s–1 relative to the filter passband centered at H, H -0.5 Å or H +0.5 Å. However, from our knowledge of the typical behavior of such loop systems observed at the limb in H and at 5303 Å, it has been possible to reconstruct an appoximate model of the probable development of the loops of the 29 July flare as they would have been viewed at the limb relative to the position of a prominence which began to erupt a few minutes before the start of the flare. It is seen that the loops ascended through the space previously occupied by the filament. On the assumption that H fine structures parallel the magnetic field, we can conclude that a dramatic reorientation of the direction of the magnetic field in the corona occurred early in the flare, subsequent to the start of the eruption of the filament and prior to the time that the H loops ascended through the space previously occupied by the filament.  相似文献   

7.
We scanned the H i L, Mg ii h and k, Ca ii K and H lines simultaneously with the LPSP instrument on OSO-8, to investigate the low and moderate temperature regions of an active region filament. The L line is not reversed except for the innermost position in the prominence. Intensity (k/h), (K/H) ratios are respectively 2 and 1.1, indicating that the Mg ii lines are optically thin, and that Ca ii K is saturated, although not clearly reversed. The results obtained during the second sequence of observations (K saturated before L for example) indicate that within the size of the slit (1 × 10) we are not observing the same emitting features in the different lines.We also observe an important line-of-sight velocity at the outer edge of the feature, increasing outwards from a few km s–1 to 20 km s–1 within 2. Less than half an hour later, this velocity is reduced to 15 km s–1 while the intensities increase. Full width at half maximum intensities for this component indicate turbulence variations from 22 to 30 km s–1. The observed high velocities at the top of the prominence can be compared with radial velocities that Mein (1977) observed in H at the edges of an active filament and interpreted as velocity loops slightly inclined on the axis of the filament.  相似文献   

8.
The utility of very high dispersion spectra (5–11 mm/Å) for the study of line profile and velocity structure in quiescent prominences is demonstrated by observations, taken with the spectregraphic slit positioned normal to the limb in H 6563 Å, He D3 5876 Å, and Ca+K 3933 Å. The emission profiles of both H and the K line often show a central reversal (absorption). Emission structures in the K-line can be complex with details as narrow as 0.04 Å. Frequently this structure consists of two distinct components: a central, strong, rather narrow line, and an often displaced, weak feature of undefined profile appearing as fuzz. It is suggested that this fuzz indicates an exchange of matter between the prominence and the corona.Visiting Astronomer, Institute for Theoretical Astrophysics, Oslo, Norway.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

9.
Thompson  B.J.  Reynolds  B.  Aurass  H.  Gopalswamy  N.  Gurman  J.B.  Hudson  H.S.  Martin  S.F.  St. Cyr  O.C. 《Solar physics》2000,193(1-2):161-180
We report coincident observations of coronal and chromospheric flare wave transients in association with a flare, large-scale coronal dimming, metric radio activity and a coronal mass ejection. The two separate eruptions occurring on 24 September 1997 originate in the same active region and display similar morphological features. The first wave transient was observed in EUV and H data, corresponding to a wave disturbance in both the chromosphere and the solar corona, ranging from 250 to approaching 1000 km s–1 at different times and locations along the wavefront. The sharp wavefront had a similar extent and location in both the EUV and H data. The data did not show clear evidence of a driver, however. Both events display a coronal EUV dimming which is typically used as an indicator of a coronal mass ejection in the inner corona. White-light coronagraph observations indicate that the first event was accompanied by an observable coronal mass ejection while the second event did not have clear evidence of a CME. Both eruptions were accompanied by metric type II radio bursts propagating at speeds in the range of 500–750 km s–1, and neither had accompanying interplanetary type II activity. The timing and location of the flare waves appear to indicate an origin with the flaring region, but several signatures associated with coronal mass ejections indicate that the development of the CME may occur in concert with the development of the flare wave.  相似文献   

10.
Using narrow-band H filtergrams, we develop a quantitative non-LTE approach to determine the physical conditions prevailing at the tops of (post)-flare loops observed against the solar disc. At temperatures 10000–15000 K, the tops of flare loops turn to emission at H line center when the gas pressure P g reaches 1 dyn cm–2 and should be clearly visible for P g 3 dyn cm–2, independently of the loop diameter. This situation corresponds to the electron density of the order 1012 cm–3. The contrast of flare-loops (in projection on the disc) at H line center is mainly the function of P g , while in the line wings (H ± 1 Å) the loop can be visible in absorption or emission only when rather strong microturbulence is present or for unrealistically high gas pressures. Finally, we briefly discuss our diagnostical results in frame of the latest (post)-flare loop model.  相似文献   

11.
H. Zirin 《Solar physics》1978,58(1):95-120
I have studied a number of flares for which good X-ray and optical data were available. An average lag of 5.5 s between hard X-ray (HXR) start and H start, and HXR peak and Ha peak was found for 41 flares for which determination was possible. Allowing for time constants the time lag is zero. The peak H lasts until 5–6 keV soft X-ray (SXR) peak. The level of H intensity is determined by the SXR flux.Multiple spikes in HXR appear to correspond to different occurrences in the flare development. Flares with HXR always have a fast H rise. Several flares were observed in the 3835 band; such emission appears when the 5.1–6.6 keV flux exceeds 5 × 104 ph cm-2 s-1 at the Earth. Smaller flares produce no 3835 emission; we conclude that coronal back conduction cannot produce the bright chromospheric network of that wavelength.The nearly simultaneous growth of H emission at distant points means an agent travelling faster than 5 × 103 km s-1 is responsible, presumably electrons.In all cases near the limb an elevated Ha source is seen with the same time duration as HXR flux; it is concluded that this H source is almost always an elevated cloud which is excited by the fast electrons. A rough calculation is given. Another calculation of H emission from compressed coronal material shows it to be inadequate.In several cases homologous flares occur within hours with the same X-ray properties.Radio models fit, more or less, with field strengths on the order of 100G. A number of flares are discussed in detail.  相似文献   

12.
Exarhos  G.  Moussas  X. 《Solar physics》1999,187(1):157-175
The microwave circular polarization of the active region (AR) NOAA 7260 on 21–23 August 1992 is analyzed. Two-dimensional images at 1.76 cm with spatial resolution of =10 from the Nobeyama radioheliograph and one-dimensional scans at 9 wavelengths in the range of 1.81–3.43 cm and =16.3–31.1 from the radio telescope RATAN-600 were used. An inversion of the sense of circular polarization through the wavelength range was recorded on 22 August. It is shown that both the wavelength and the time dependence of the inversion are consistent with quasi-transverse (QT) propagation of the radiation in the solar corona. From this, the strength of the coronal magnetic field in the active region was found to be H=20–65 G at a height of h= (5.7–8.7)×109 cm above the photosphere on 22 and 30 August and 125 G at the lower height of (3.7–6.4)×109 cm on 23 August. We present a new technique, based on the radio mapping (in both Stokes I and V) of an AR undergoing circular polarization inversion; applying this method to the Nobeyama data we obtained, for the first time, a magnetogram of the coronal magnetic field. For AR 7260 we found values in the range of 70–100 G at heights of (4–6)×109 cm on 23 August, adopting a constant value of NL (where N is the electron density and L is the scale of the coronal field divergence) of 2.5×1018 cm–2. We compare our results with force-free extrapolations of the photospheric magnetic field from a MSFC magnetogram obtained on 20 August.  相似文献   

13.
Full disk, He I 10 830 Å solar spectroheliograms have been generated using the Haleakala Stokes polarimeter-spectrometer. The spectroheliograms, with spatial resolution of 10 × 16 arc sec and wavelength bandpass of 0.53 Å, were developed for the detection of coronal holes, and have been compared with nearly simultaneous H and Ca K flltergrams.Areas of reduced helium absorption have been noted in the neighborhood of filaments and neutral zones in the longitudinal solar magnetic field. The existence of these helium lanes is discussed in terms of their relationship to H filament channels or to the coronal cavities which surround prominences.  相似文献   

14.
The H emission is searched for 67 spectroscopic binaries of the spectral types B0–B9 and of the orbital period 1–1000 days. Among them the H emission is detected in 13 stars with various intensity. The results of this inspection are presented. When combined with the previous data, our results show that the Be-star frequency in spectroscopic binaries along the orbital periods exhibits a sharp maximum in the period range 100–300 days, and that the stars of strong H emission concentrate in the same period range.  相似文献   

15.
We find that the profile changes observed for the UV emission lines L,Civ 1549, and MgIII 2798, in the Seyfert 1 galaxy Fairall 9 occur mainly near the line centre for L andCiv and in the wings for MgIII. These results indicate that the broad line region (BLR) has a complex structure, possibly with non-spherical components.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

16.
Since 1986, we have made some improvements to the multichannel solar spectrograph at Purple Mountain Observatory (PMO) step by step, and now we have developed and added to it a multichannel infrared imaging solar spectrograph. The original spectrograph can be used to observe simultaneously solar activity at 9 wave bands including Caii H and K line, Mgi b line, Hei D3 line and H through H. The newly developed infrared imaging spectrograph can work in three wavelengths, i.e., Hei 10830 Å, Caii 8542 Å, and H. We replaced plates in the original system with CCDs and placed an image reducer before each CCD in order to match the CCD pixel size. The dispersions for Hei 10830 Å, Caii 8542 Å, and H of the new imaging solar spectrograph are 0.0693 Å, 0.0767 Å, and 0.0754 Å per CCD pixel respectively, and each vertical CCD pixel represents 0.34 arc sec of solar disk. We can obtain the line-center and off-band intensities of the three lines and the intensities of continua adjacent to these lines through the new instrument. We can also acquire velocity maps and line profiles. Therefore, it is specially suitable for two-dimensional (2D) spectroscopic observations of solar flares and active regions. We carry out scanning observation by rotating the second mirror of the coelostat system. In this paper, we introduce the improvements we made and the new imaging solar spectrograph. Some observation results are also presented in this article.  相似文献   

17.
For representative sections of the solar UV spectrum ( 2765 Å– 2790 Å, 2765 Å– 2805 Å) the line density and the accuracy of wavelength positions of absorption features are derived as function of the spectral resolution. In low resolution spectrograms unresolved blends may shift intrinsic wavelength positions of absorption lines by amounts up to a few tenths of the spectral resolution.The results obtained for the solar spectrum are applied to the flux spectrogram of CMi.Guest Investigator in the BUSS Program jointly performed by the Space Research Laboratory, Utrecht, The Netherlands, and the NASA L. B. Johnson Space Center, Houston, U.S.A.  相似文献   

18.
We use the Cerenkov line emission mechanism to give a new explanation of the observed intensity ratios, particularly the L/H ratio, of the emission lines of quasars. We give equations that restrict the choice of the parameter values. The parameters are the characteristic energy of the relativistic electrons, the number density of neutral hydrogen and its relative level populations. With reasonable choice of the parmaeters, we can obtain calculated L/H, H/H, P/H ratios in agreement with observed values. Our estimate for the gas density in the broad line region of quasars is 1015 cm–3, very different from previous estimates. Unlike previous theories, such a high density causes no difficulties with the Cerenkov line emission.  相似文献   

19.
We have processed a 10-year set of BBSO Caii K-line filtergrams covering most of solar cycle 22. The excess K-line emission is integrated to form linear and square-root activity indices that are fitted to UV data from UARS and SME. Good fits are found both for the Mgii core–wing ratio (linear) and total L irradiance (square root) and the indices are thus good proxies for UV data. The SME L irradiance is systematically lower by 20% than predicted from our corresponding K-line indices. The 10.7 cm radio data confirms that SME underestimated the flux. The network is partly responsible for the solar cycle variation of the indices and is relatively more important in L than in Mgii and Caii K. This is due to the saturation of L equivalent width. We also report on substantial improvements to the equipment and reduction software. The system is now based on a digital CCD camera which promises more accurate measurements in the upcoming solar cycle 23.  相似文献   

20.
A sequence of images taken at different positions in the resonance lines of Ca ii, Mg ii, and H i was obtained over a quiescent prominence with the LPSP instrument on OSO-8. Ca ii K (and H) profiles are reconstructed at different locations in the prominence with a (10 × 5) arc sec2 resolution. Significant variations of FWHM and line shifts are found: FWHM range from 0.14 Å to 0.5 Å; blue shifts reach about 14 km s-1. The ratio of K to H absolute intensities shows a large spread around the average value of 1.2. The same ratio for the Mg ii lines in the whole prominence is higher (1.7), a fact already noticed at the edge of an active prominence (Vial et al., 1979). The ionization degree, as measured by the L/Ca K ratio, shows noticeable variations within the prominence. The L intensity is about 0.3 times the intensity measured in the quiet Sun, and the L/L ratio is less than one half the disk value. These results indicate important variations of the thermal conditions inside the prominence.DASOP, Observatoire de Paris, 92190 Meudon, France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号