首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 96 毫秒
1.
We observed a cluster of extremely bright penumbral grains located at the inner limb‐side penumbra of the leading sunspot in active region NOAA 10892. The penumbral grains in the cluster showed a typical peak intensity of 1.58 times the intensity I0 of the granulation surrounding the sunspot. The brightest specimen even reached values of 1.8–2.0 I0, thus, exceeding the temperatures of the brightest granules in the immediate surroundings of the sunspot. We find that the observed sample of extremely bright penumbral grains is an intermittent phenomenon, that disappears on time scales of hours. Horizontal flow maps indicating proper motions reveal that the cluster leaves a distinct imprint on the penumbral flow field. We find that the divergence line co‐located with the cluster is displaced from the middle penumbra closer towards the umbra and that the radial outflow velocities are significantly increased to speeds in excess of 2 km s–1. The extremely bright penumbral grains, which are located at the inner limb‐side penumbra, are also discernible in offband Hα images down to Hα ± 0.045 nm. We interpret the observations in the context of the moving flux tube model arguing that hotter than normal material is rapidly ascending along the inner footpoint of the embedded flux tube, i.e., the ascending hot material is the cause of the extremely bright penumbral grains. This study is based on speckle‐reconstructed broad‐band images taken at 600 nm and chromospheric Hα observations obtained with two‐dimensional spectroscopy. All data were taken with adaptive optics under very good seeing conditions at the Dunn Solar Telescope, National Solar Observatory/Sacramento Peak, New Mexico on 2006 June 10. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The new Multi-Diode Array and the recently modified Universal Birefringent Filter were used at the Vacuum Tower Telescope at the Sacramento Peak National Observatory to measure the continuum color temperature of a sunspot penumbra between 428.4 and 667.6 nm. The results show that the color temperatures within the penumbral structures closely follow a measure of the wavelength average of the brightness temperature. These observations suggest that, if the dark penumbral filaments overlie a normal quiet photosphere, they are opaque to the radiation from below.Operated by the Association of Universities for Research in Astronomy, Inc., under contract AST 78-17292 with the National Science Foundation.  相似文献   

3.
Observations concerning the structure of sunspots, obtained during the fourth flight of the Soviet Stratospheric Observatory (SSO), are discussed. Objects brighter than the mean photospheric background inside the sunspot penumbra retaining the stable position sometimes vary within time intervals of a few minutes. The brightness change in pores can be explained by their different location at highest levels of the photosphere. The same mechanism can cause the brightness difference of the penumbra filaments. The gradient of the brightness variation inside the pores is determined. The value of this gradient was found to be practically the same for all dark objects. Most penumbral filaments show no magnetic expansion with growing distance from the spot center.  相似文献   

4.
Network Bright Points (NBPs) are tiny, subarcsecond, bright features, visible in high-resolution filtergrams taken in white light as well as in photospheric and chromospheric absorption lines. They form the photospheric network and are associated with kilogauss, concentrated magnetic fields. Their behaviour is studied in a 3-hour, high-resolution granulation movie recorded at the Pic-du-Midi Observatory and processed at Lockheed Palo Alto Research Laboratory. The movie shows the important role played by granules. It appears that NBPs are formed in dark spaces when surrounding granules converge to fill this space. The formation is a fast phenomenon which lasts only 4 min. The lifetime of NBPs is 18 min on the average. About 15% of them split when they are squeezed between two expanding granules. Some consequences concerning the strength of the magnetic field during the formation of NBPs are discussed.  相似文献   

5.
Modifications to a Zeiss 1/4 Å filter are described which allow high spatial resolution observations of the line-of-sight velocities and magnetic fields in the photosphere and in sunspots. First results show: (1) the granular velocity field to be very strong; differences in upward motions in the granules and downward motions in between are as much as 6 km/sec; (2) the Evershed effect in sunspots to originate primarily in the dark regions between bright penumbral filaments.  相似文献   

6.
In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex β δ sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and δ spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to any change of the local magnetic shear. We present high-resolution observations of NOAA 10756 obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO). Time series of speckle-reconstructed white-light images and two-dimensional spectroscopic data were combined to study the temporal evolution of the three-dimensional vector flow field in the β δ sunspot group. An hour-long data set of consistent high quality was obtained, which had a cadence of better than 30 seconds and subarcsecond spatial resolution.  相似文献   

7.
In this empirical study, we compare high-resolution observations obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO) in 2005 and with the Dunn Solar Telescope (DST) at the National Solar Observatory/Sacramento Peak (NSO/SP) in 2006. We measure the correction of the high-order adaptive optics (AO) systems across the field of view (FOV) using the spectral ratio technique, which is commonly employed in speckle masking imaging, and differential image motion measurements. The AO correction is typically much larger (10′′ to 25′′) than the isoplanatic angle and can be described by a radially symmetric function with a central core and extended wings. The full-width at half-maximum (FWHM) of the core represents a measure of the AO correction. The average FWHM values for BBSO and NSO/SP are 23.5′′ and 18.2′′, respectively. The extended wings of the function show that the AO systems still contribute to an improved speckle reconstruction at the periphery of the 80′′×80′′ FOV. The major differences in the level of AO correction between BBSO and NSO/SP can be explained by different contributions of ground-layer- and free-atmosphere-dominated seeing, as well as different FOVs of the wavefront sensors. In addition, we find an anisotropic spectral ratio in sunspot penumbrae caused by the quasi-one-dimensional nature of penumbral filaments, which introduces a significant error in the estimation of the Fourier amplitudes during the image restoration process.  相似文献   

8.
We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot of active region NOAA 11242 using scanning spectroscopy in Hα and Ca?ii 8542 Å with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler-velocity maps. Temporal-sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.  相似文献   

9.
1991年7月11日日食期间,在大熊湖天文台进行了白光观测.图象是用65cm反射系统和OSL的CCD获得的.月亮边缘始终包含在视场之中,从模糊的月亮边缘轮廓推得了一维的视宁度点扩散函数(PSF),其中包含了望远镜引起的畸变。当天的PSF的宽度介于0.8到1.3弧秒之间。假设存在圆柱对称性,则可得到二维的PSF。然后,运用视宁度函数,对所观测的白光像消卷积。复原方法将观测到的rms反衬值由5%增强到18%;亮桥可能亮于正常的光球强度;暗的半影纤维可能暗到正常光球的50%;而亮纤维可能达到正常光球值。  相似文献   

10.
High resolution photographs of the solar chromosphere have been obtained with the 40-cm refractor of the Athens Observatory and a 0.5 Å Halle H filter. Our best photographs show a resolution of 0.6, which is comparable with the theoretical resolving limit of 0.4, at H. The achieved resolution permitted us to secure some excellent observations of the fine structure of the chromosphere on the disk as well as on the limb. The study of these observations leads to the following results: (a) the bright filaments of the disturbed chromosphere as well as the penumbral ones appear to consist of knots, (b) inside the cells of the chromospheric network of the quiet chromosphere, bright roundish granule-like formations are present, their mean size being of the order of 2500 km. (c) the bright fine mottles seem to lie at the root of the elongated dark ones, each pair of them giving rise to a spicule.  相似文献   

11.
Penn  M.J.  Walton  S.  Chapman  G.  Ceja  J.  Plick  W. 《Solar physics》2003,213(1):55-67
Spectroscopic observations at 1565 nm were made in the eastern half of the main umbra of NOAA 9885 on 1 April 2002 using the National Solar Observatory McMath-Pierce Telescope at Kitt Peak with a tip-tilt image stabilization system and the California State University Northridge–National Solar Observatory infrared camera. The line depth of the OH blend at 1565.1 nm varies with the observed continuum temperature; the variation fits previous observations except that the continuum temperature is lower by 600 K. The equivalent width of the OH absorption line at 1565.2 nm shows a temperature dependence similar to previously published umbral molecular observations at 640 nm. A simple model of expected OH abundance based upon an ionization analogy to molecular dissociation is produced and agrees well with the temperature variation of the line equivalent width. A CN absorption line at 1564.6 nm shows a very different temperature dependence, likely due to complicated formation and destruction processes. Nonetheless a numerical fit of the temperature variation of the CN equivalent width is presented. Finally a comparison of the Zeeman splitting of the Fei 1564.8 nm line with the sunspot temperature derived from the continuum intensity shows an umbra somewhat cooler for a given magnetic field strength than previous comparisons using this infrared 1564.8 nm line, but consistent with these previous infrared measurements the umbra is hotter for a given magnetic field strength than magnetic and temperature measurements at 630.2 nm would suggest. Differences between the 630.2 nm and 1564.8 nm umbral temperature and magnetic field relations are explained with the different heights of formation of the lines and continua at these wavelengths.  相似文献   

12.
Polarimetric observations of the light scattered by dust have been carried out at Pic-du-Midi Observatory with the 2 m telescope in June and September–October 1996, and at Haute-Provence Observatory with the 0.80 m telescope in April 1997. They cover a total number of 11 nights and a large (6.9°–47.7°) phase angle range. The spatial resolution allows to underline structures in the coma, as well in the brightness images as in the polarization maps, with a correlation between the regions of bright structures and the regions of higher polarization. A clear difference appears between the sunward and antisunward side, with higher polarization on the antisunward side. The phase angle coverage allows us to obtain a polarimetric phase curve for the whole coma and to compare it with other cometary phase curves. The degree of polarization is higher for Hale-Bopp than for the comets previously observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
An excellent high-resolution movie in the green continuum was produced by shift-and-add treatment of two 60-min videotapes obtained at the Big Bear Solar Observatory. We have studied the digitized images by direct measurement, cross-correlation techniques, and correlation tracking. The seeing-limited resolution was about 0.3 arc sec.While the cross-correlation lifetime for granules is about five minutes, we find that actually tracking the growth and decay of a granule gives lifetimes from 10 to 22 minutes, the longest lifetimes pertaining to the largest granules. The longer lifetime comes from tracking the granule while it undergoes large changes in size and shape, while the cross-correlation lifetime is just the time in which it grows by a factor two. All the granules followed began as small elements, grew to some size, and either faded (88%), exploded (2%) or were hit by an exploding granule (10%). The major variation in granule structure appears to be due to substantial variations in the dark lanes, which often double in width.The granulation shows the typical exploding granule behavior; we find the probability that any granule will be affected by an exploding granule during its lifetime to be 10%. We also observed a larger scale explosion covering about 10 granules. This explosion was marked by rapid (1 km s–1) outward flux of the granules.We tracked the development of six small pores, one of which could be followed for two hours. The latter showed four maxima of absorption separated by about 30 min each, virtually disappearing in between. Another was observed to form in about 20 min, but no changes occur in less than granule lifetime.We confirm the inflow in penumbral fibrils observed by Muller. The inflow velocity is about 0.5 km s–1, and all bright spots disappear into the umbra. The inflow which affects bright and dark features in the penumbral fibrils, is also observed in the smaller spots. We surmise that the Evershed flow is limited to the areas between the bright fibrils. We confirm granular outflow outside the penumbra.  相似文献   

14.
We study the periodicity of twisting motions in sunspot penumbral filaments, which were recently discovered from space (Hinode) and ground-based (SST) observations. A sunspot was well observed for 97 minutes by Hinode/SOT in the G-band (4305 Å) on 12 November 2006. By the use of the time?–?space gradient applied to intensity space?–?time plots, twisting structures can be identified in the penumbral filaments. Consistent with previous findings, we find that the twisting is oriented from the solar limb to disk center. Some of them show a periodicity. The typical period is about ≈?four minutes, and the twisting velocity is roughly 6 km s?1. However, the penumbral filaments do not always show periodic twisting motions during the time interval of the observations. Such behavior seems to start and stop randomly with various penumbral filaments displaying periodic twisting during different intervals. The maximum number of periodic twists is 20 in our observations. Studying this periodicity can help us to understand the physical nature of the twisting motions. The present results enable us to determine observational constraints on the twisting mechanism.  相似文献   

15.
太阳磁场的极性反转线(Polarity Inversion Line, PIL)是研究太阳活动、分析太阳磁场结构演变和预测太阳耀斑最重要的日面特征之一.磁场极性反转的位置是太阳耀斑和暗条可能出现的位置."先进天基太阳天文台(ASO-S)"是中国首颗空间太阳专用观测卫星,其搭载的"全日面矢量磁像仪(Full-Disk Vector Magnetograph, FMG)"主要任务是探测高空间、高时间分辨率的全日面矢量磁场.为了提高观测数据使用效率、快速监测太阳活动水平、提高太阳耀斑与日冕物质抛射的预报水平以及更好地服务于FMG数据处理与分析系统,采用了图像自动识别与处理技术,更加精确有效地检测极性反转线.从支持向量机(Support Vector Machine, SVM)的模型出发,将极性反转线位置的探测问题转化为一个模式识别中的二分类问题,提出了一种基于支持向量机的极性反转线检测算法,自动探测与识别太阳动力学天文台(Solar Dynamics Observatory, SDO)日震和磁成像仪(Helioseismic and Magnetic Imager, HMI)磁图的极性反转线位置.与现有算法的对比结果表明,此算法可以精确直观地检测太阳活动区的极性反转线.  相似文献   

16.
From investigating spectrograms of penumbrae of some sunspots it is concluded that the maximum magnetic field strength occurs in dark filaments and amounts to 1800–1900 G; the intensity of the magnetic field in dark filaments is 100–400 G larger than in the neighbouring bright filaments; the bright filaments seen in the space between the dark features cannot be attributed to the ordinary undisturbed photosphere.  相似文献   

17.
Q. Hao  C. Fang  P. F. Chen 《Solar physics》2013,286(2):385-404
We developed a method to automatically detect and trace solar filaments in Hα full-disk images. The program is able not only to recognize filaments and determine their properties, such as the position, the area, the spine, and other relevant parameters, but also to trace the daily evolution of the filaments. The program consists of three steps: First, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect filaments; third, filament properties are recognized through morphological operators. To test the algorithm, we successfully applied it to observations from the Mauna Loa Solar Observatory (MLSO). We analyzed Hα images obtained by the MLSO from 1998 to 2009 and obtained a butterfly diagram of filaments. This shows that the latitudinal migration of solar filaments has three trends in Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum, after which it became relatively slow. After 2006, the migration became divergent, signifying the solar minimum. About 60 % of the filaments with latitudes higher than 50° migrate toward the polar regions with relatively high velocities, and the latitudinal migrating speeds in the northern and the southern hemispheres do not differ significantly in Solar Cycle 23.  相似文献   

18.
Line asymmetries of five magnetically insensitive lines in penumbrae are investigated in detail. It is shown that the high Evershed velocities as derived from line satellites originate in dark penumbral regions (DR), the main line components showing small velocities originate in bright penumbral regions (BR). From the depressions of the main line component and the satellite the intensity of the DR is estimated to be 3.5 times higher than that of umbrae. The area of the BR exceeds that of the DR by a factor of about 1.8. An interpretation of the discrepancy between velocity- and magnetic neutral lines is given.  相似文献   

19.
Soft X-ray observations confirm that some of the dark gaps seen between interconnecting loops and inner cores of active regions may be loci of open fields, as it has been predicted by global potential extrapolation of photospheric magnetic fields. It seems that the field lines may open only in a later state of the active region development.Skylab Solar Workshop Post-Doctoral Appointee, 1975–1977. The Skylab Solar Workshops are sponsored by NASA and NSF and managed by the High Altitude Observatory, National Center for Atmospheric Research.  相似文献   

20.
R. Muller 《Solar physics》1973,29(1):55-73
A sequence of 34 photographs of the main spot of the group H 26 (Daily Maps of the Sun, Freiburg 1970, Rome number 5847) has been obtained with the 38 cm refractor of the Pic-du-Midi Observatory, showing throughout a resolution very close or equal to 0′'.3. An interval of 3 hr is covered. The pictures taken at intervals of 6 min approximately permit to study the fine structure of the penumbra and associated phenomena:
  1. The penumbra appears to consist of bright grains, generally lined up in the form of filaments, showing up against a dark background (see Figure 1).
  2. The bright grains form all over the penumbra (see Figure 5).
  3. They move toward the umbra of the spot. Their horizontal velocity is zero at the border penumbra-photosphere and maximum at the umbral border (0.5 km s?1) (see Figures 3,4 and 8). Therefore, the grains never originate in the photosphere nor do they enter it.
  4. They disappear in the penumbra proper or, if they form near enough to the umbra and live long enough, they can enter the umbra and their appearance becomes similar to that of umbral dots.
  5. The life time of the grains is a function of their place of origin within the penumbra: It is maximum and of the order of 3 hr or more for those forming in the middle part of the penumbra, and 50 and 40 min respectively for the points formed in the inner and outer part of the penumbra.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号