首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The observed periodicity in the whistler occurrence rate recorded at our low latitude ground station at Varanasi (geomagnetic latitude, 14°55'N) is interpreted in terms of duct life time at lowL values. Power spectrum analysis of the whistler data yields a period of about 50 min for the growth and decay of ducts. Further dispersion analysis of the whistlers has qualitatively confirmed the existence of separate ducts during the period of observations.  相似文献   

2.
Stepanov  A.V.  Tsap  Y.T. 《Solar physics》2002,211(1-2):135-154
Interaction of the 30–300 keV electrons with whistlers in solar coronal loops is studied using a quasi-linear approach. We show that the electron–whistler interaction may play a dominant role in the formation of fast electron spectra within the solar flare loops with the plasma temperature 107 K and plasma density 1011 cm–3. It is found that Landau damping of whistlers provides weak and intermediate pitch-angle diffusion regimes of fast electrons in coronal loops. The level of whistler turbulence in the weak diffusion regime under flare conditions is estimated as 10–7 of the energy density in the thermal particles. The `top – footpoint' relations between the hard X-ray flux densities and spectra are derived. The reason for a `broken' spectrum of the flare microwave emission is discussed.  相似文献   

3.
Whistlers recorded at low latitude ground stations of Gulmarg, Nainital and Varanasi were used to infer the east-west component of electric field on the nightside plasmasphere atL=1.2, 1.12, and 1.07 during magnetic storm periods. The method of measuring electric field from the observed cross-L motions of whistler ducts within the plasma-sphere, indicated by changes in nose frequency of whistlers has been outlined. The nose frequencies of the non-nose whistlers under consideration have been deduced from Dowden-Allocock linear Q-technique. The results show eastward electric fields of 0.7 mVm–1 in the equatorial plane of Gulmarg and 0.3 mVm–1 in the equatorial plane of Nainital in the premidnight local time sector. Near midnight, there is a sharp transition from eastward field to a westward electric field of 0.2–0.7 mV m–1 for Gulmarg, 0.3–0.5 mV m–1 for Nainital and 0.1–0.3 mVm–1 for Varanasi.  相似文献   

4.
This paper presents discrete chorus type emissions observed in January/July, 1970 during the routine recording of whistlers and VLF emissions at our low latitude ground station Gulmarg (geomag. lat., 24°26N; geomag. long., 147°09 E). The chorus type emissions are comprised of discrete, sometimes overlapping, tones of one or more spectral shapes (risers, falling tones, hooks, etc.). It is shown that these emissions are generated in the equatorial plane (L1.2) by cyclotron resonance between the propagating wave and gyrating electrons.  相似文献   

5.
We have considered an ionospheric plasma model that includes the thermal effect along with the newly born ionic effect and derived a group travel time for the low-frequency whistlers with a view to employing it as a diagnostic tool in the ionosphere. The mathematical development shows that the thermal effect contribution varies with ( i – )–7/2 whereas that of the newly born ionic effect varies with i – )–5/2. Both the effects are discussed separately. It is concluded that the effects are reasonably countable in the ionosphere. The investigations finally conclude that both the effects should be taken into the whistler waves, otherwise the method might cause a discrepancy in the results, which could affect their accuracy.  相似文献   

6.
Higher harmonic tweeks observed for the first time at the low latitude station Varanasi (geomag. lat. 14 55 N) are reported. The analysis of data shows that higher harmonic tweeks are usually not associated with whistlers and occur when the ionization in the lower ionosphere would not increases with height. The Earth-ionosphere waveguide dispersion features play an important role in the propagation of broad band lightning generated signals and their occasional observation as higher harmonic tweeks. It is shown that the conductivity of ground and sea mixed path, forming the lower surface of the waveguide, provide an estimate of the travelled distances of higher harmonic tweeks in the waveguide. The attenuation factors are computed which shows that as the harmonic number increases their probability of observation decreases. The attenuation increases as the frequencies approach the cut-off frequencies and also as the layer height falls. The tweek activity is found to increase during periods of magnetic disturbances.  相似文献   

7.
A 3-D particle simulation of excitation of whistler waves driven by an electron temperature anisotropy (T > T ) is presented. Results show that whistler waves can have appreciable growth driven by the anisotropy. The maximum intensity of the excited whistler waves increases as a quadratic function of the anisotropy. Due to the presence of a threshold, one needs a relatively large electron temperature anisotropy above threshold to generate large-amplitude whistler waves. The average amplitude of turbulence in the context of whistler waves is up to as large as about 1% of the ambient magnetic field when T /T . The total energy density of the whistler turbulence is adequate for production of relativistic electrons in solar flares through stochastic acceleration.  相似文献   

8.
We have taken a plasma model of ionosphere which is quite different from the earlier model employed by several workers to study the whistler as a diagnostic technique in the ionosphere. In contrast to the earlier model, we have considered an ionosphere that includes negative ionic species and due to which the mathematical technique loses the basic assumptions chosen earlier to derive the group travel time. We have shown that the negative ion has a significant role and without its contribution, the method to diagnose the ionospheric parameters may lead to an error. We have discussed also how to uset()= 0 h dh/v g as a diagnostic tool in determining the ionospheric parameters.  相似文献   

9.
The absorption of cosmic radio noise passing through the ionosphere may be described as a function of radio wave frequencyA(f e ) f e -n , with n 2.0 for spatially uniform precipitation of electrons and n < 2.0 for spatially nonuniform precipitation. Using multifrequency riometer recordings at SANAE, the following observations are reviewed: (1) The frequency distribution of the power index, n, obtained from 4 min averaged absorptions during 1983, shows a most probable value around n 1.5, indicating that mostly energetic electrons are precipitated spatially structured onto the upper atmosphere, as in optical aurora. (2) Multifrequency riometer recordings suggest that field-aligned ionospheric irregularities have scattered additional cosmic radio waves from the central region of the Galaxy into the fields of views of the riometer antennae during an auroral absorption event in the early morning hours of 27 July, 1982. With the power reflectivity by ionospheric irregularities inversely proportional to the fourth power of radio wave frequency, as required by the Bragg condition, an estimated 70% increase in the 20 MHz radio flux at 01:22 UT, at the strong absorption peak, can explain the strongly reduced absorption observed in 20 MHz relative to 30 and 51.4 MHz. (3) Gradual increases in absorptions observed at all three riometer frequencies from onset at 11:50 UT of the largest solar proton ground level enhancement on 29 September, 1989, until 18:00 UT, suggest diffusion of the much more intense low energy protons from the polar cap to the L=4.0 geomagnetic field shell and subsequent precipitation at SANAE due to the South Atlantic Geomagnetic Anomaly. (4) The flux of electron energy deposited per second at SANAE is closely related to geomagnetic activity, but has a lower maximum during the years 1971 and 1980 of solar polar magnetic reversals than in the years 1976 and 1986/87 of minimum solar activity. (5) A significant correlation has been found between the arrival of single-hop whistlers and 30 MHz riometer absorption events, using point statistics. The maximum absorption at 30 MHz was 0.04 dB with a delay of 3 ± 2 s relative to the whistler.  相似文献   

10.
Employing the Haselgrove ray tracing equations and a diffusive equilibrium model of the ionosphere, the propagation characteristics of hook whistlers recorded at low-latitude ground station Varanasi (geomag. lat., 16°6′.N) are discussed. It is shown that the two traces of the hook whistlers are caused by the VLF waves radiated from the return stroke of a lightning discharge which after penetrating the ionosphere at two different entry points, propagated to the opposite hemisphere in the whistler mode and were received at 16 geomagnetic latitude. Further the crossing of ray paths for the same frequency leads to the explanation of the hook whistler. The lower and higher cut-off frequencies are explained in terms of their deviating away from the bunch of the recorded whistler waves and crossing of ray paths for the same frequency.  相似文献   

11.
The zonal structure of the distribution of filaments is considered. The mean latitudes of two filament bands are calculated in each solar hemisphere at the minima of the sunspot cycle in the period 1924–1986: middle latitude 2, m and low latitude 1, m . It is shown that the mean latitude of the filament band 2, m at the minimum -m of the cycle correlates, with = 0.94, with the maximum - M sunspot area S(M) and maximum Wolf number W(M) in the succeeding solar cycle M. It is shown that the mean latitude of the low-latitude filament band 1, m is linearly dependent on the mean latitude filament band 2, m + 1 at the succeeding minimum. We found a correlation of the latitude of the low-latitude filament band 1, m with the maximum sunspot area in the M + 1 cycle. This enables us to predict the power of two succeeding 11-year solar cycles on the basis of the latitude of filament bands at the minimum of activity, 1985–1986: W(22) - 205 ± 10, W(23) - 210 ± 10. The importance of the relationships found for theory and applied aspects is emphasized. An attempt is made to interpret the relationships physically.  相似文献   

12.
Observations of whistlers during quiet times made at low-latitude ground station Nainital (geomag. lat. 19 1 N) are used to deduce plasmasphere-ionosphere coupling fluxes. The whistler data from 3 magnetically quiet days are presented that show a smooth decrease in dispersion with time. This decrease in dispersion is interpreted in terms of a corresponding decrease in electron content of tubes of ionization. The electron densities, electron tube contents (1016 el/m2-tube) and coupling fluxes (10 el m–1 s–2) are computed by means of an accurate curve fitting method developed by Tarcsai (1975) and are in good agreement with the results reported by other workers.  相似文献   

13.
The interaction of rotation and turbulent convection is assumed to give rise to an inhomogeneous, but isotropic, latitude dependent turbulent energy transport, which is described by a convective conduction coefficient c which varies with latitude. Energy balance in the convective zone is then possible only with a slow meridian circulation in the outer convective zone of the sun. The angular momentum transported by this circulation is balanced in a steady state by turbulent viscous transport down an angular velocity gradient. A detailed model is constructed allowing for the transition from convective transport to radiative transport at the boundaries of the convective zone, by using a perturbation analysis in which the latitude variation of c is small. The solution for a thin compressible shell gives equatorial acceleration and a hotter equator than pole, assuming that the convection is preferentially stabilised at the equator. For agreement with the sun's equatorial acceleration the model predicts an equatorial temperature excess of 70 K and a surface meridional velocity of 350 cm/sec from pole to equator.  相似文献   

14.
Discrete chorus-type emission and whistler precursors recorded in March 1972 during day time hours at our ground based station Gulmarg are presented. It is shown that discrete chorus type emissions are generated in the equatorial region (L 1.2) during cyclotron resonance interaction between the propagating whistler wave and the gyrating electrons. The whistler precursors are explained in terms of the mechanism suggested by Dowden (1972).  相似文献   

15.
We consider self-gravitating one-dimensional stellar systems governed by the coupled equations of Vlasov and Poisson. Using Bartholomew formalism we first make completely explicit the marginal mode which is a displacement mode of the system, and then we use it to show the stability of one-dimensional systems when their distribution functionF depending on the energy satisfies the sufficient condition of stability dF/d<0.  相似文献   

16.
Low frequency electromagnetic lower hybrid waves (so-called hybrid whistlers) propagating nearly transverse to the magnetic field can be driven unstable by a resonant interaction with halo electron distributions carrying solar wind heat flux. The electromagnetic lower hybrid instability is excited when the halo electron drift exceeds the parallel phase velocity of the wave. The growth rate attains a maxima at a certain value of the wavenumber. The maximum growth rate decrease by an increase in e (the ratio of electron pressure to magnetic field pressure) and halo electron temperature anisotropy. At 0.3 AU the growth time of the electromagnetic lower hybrid instability is of the order of 25 ms or shorter, whereas the most unstable wavelengths associated with the instability fall typically in a range of 27 to 90 km. The instability would give rise to a local heating of solar wind ions and electrons in the perpendicular and parallel directions relative to the magnetic field, B0. The observations of low frequency whistlers having high values ofB/E ratios (B andE being the magnitude of the wave magnetic and electric field, respectively) and propagating at large oblique angles to B0 behind interplanetary shocks, can be satisfactorily explained in terms of electromagnetic lower hybrid instability. The instability is also relevant to the generation mechanism of correlated whistler and electron plasma oscillation bursts detected on ISEE-3.  相似文献   

17.
Y. T. Chiu 《Solar physics》1970,13(2):420-443
We show that the observed modulation of some coronal microwave, X-ray and Type III emission into pulses of 10 sec intervals is a consequence of the stimulation of electron cyclotron waves propagated in the whistler mode in dipole-like bipolar regions of dimension 0.2 R . Assuming that a power law spectrum of 10 keV electrons with a slope similar to solar flare protons can be trapped in a bipolar region, we show that whistlers can be generated by pitch angle instability. The resultant 10 sec bounce motion of whistler wave trains leads to enhanced, modulated emission in microwave and X-ray frequencies by pitch angle scattering of MeV electrons, and to modulated Type III emission by scattering with coherent plasma waves. A direct prediction of the theory is the existence of sympathetic pulsations at two sources a fraction of a solar radius apart. A second test of the theory is that modulated Type III emission should show strong polarization.This work was conducted under U.S. Air Force Space and Missile Systems Organization (SAMSO) Contract No. F04701-69-C-0066.  相似文献   

18.
The propagationmechanism of low latitude daytime whistlers is investigated on the basis of ground measurements made continuously during daytime in North India at Jammu (geomag. lat. 22°26°N;L = 1.17). On February 14, 1998 extremely small dispersion (ESD) whistlers with dispersion varying from 5–10 sec1/2 in surprisingly large numbers were recorded at Jammu during daytime in the late afternoon. The results of a study of the characteristics of ESD whistlers are presented and the discussion indicates that ESD whistlers recorded are the VLF waves radiated from the return stroke of the lightning discharge launched at the ionosphere with different initial wave normal angles, propagated upwards under eitherquasi-longitudinal conditions or pro-longitudinal whistler mode, turned around at different heights due to quasi-transverse propagation and received at Jammu with the dispersion of the order of 5–10 sec1/2. The validity of this suggestion has been tested by performing actualray-tracing computations in thepresence of equatorial anomaly model. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Observation of the adiabatic behaviour of energetic particle pitch-angle distributions in the magnetosphere (Lyons, 1977, and others) in the past indicated the development of pronounced minima or drift-loss cones on the pitch-angle distributions centred at 90° in connection with storm-time changes in magnetospheric convection and magnetic field. Using a model of a drift-modified loss-cone distribution (MLCD) of the butterfly type, the linear stability of electromagnetic whistler or ion-cyclotron waves propagating parallel to the magnetic field has been investigated. The instability is shown to be quenched at high frequencies < m =A/(A+1), whereA is the thermal anisotropy. This quenching becomes stronger the higher are the respective parallel hot particle thermal velocityA h and cold plasma densityn c . Particles around pitch-angles 90° are identified as generating electromagnetic cyclotron waves near the marginally stable frequency m . It is concluded that the absence of electromagnetic VLF and ELF noise during times when MLCD develops is the result of the shift of the unstable spectrum to low frequencies.  相似文献   

20.
Low noise photoelectric measurements of the line profile of the g = 0 Fe line gl 5576.097 combined with determinations of the wavelength shift of its centre calibrated by use of an I 2 absorption tube are reported. Measurements taken at various limb distances (1.0 cos 0.2) and along 4 different diameters of the Sun are used to investigate the behaviour of the line asymmetry (C-shape) and wavelength shift of the line centre as functions of cos and of latitude and to search for possible pole-equator differences.An accuracy of approx. 0.8 mÅ r.m.s. is achieved for the determination of the centre of the solar line relative to the iodine lines and of 0.3 mÅ to 1 mÅ r.m.s. for the relative variations of the C-shape. The analysis shows a significant difference between the limb-effect curves along polar and equatorial diameters for cos 0.4 and changes of the C-shape for 0.9 cos 0.6 with a rather strong indication of a latitude dependence of the C-shape. This latitude dependence may account for the so-called ears observed by Howard et al. (1980) who used the well-known Doppler compensator method which integrates the line asymmetry from the line wings to the core.Mitteilungen aus dem Kiepenheuer-Institut Nr. 207.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号