首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
The Damodar valley within the Chhotanagpur Gneissic terrain at the northern-most margin of the Singhbhum craton, eastern India, is perhaps the only geological domain in the entire Indian shield which hosts the early Cretaceous Rajmahal as well as the late Cretaceous Deccan igneous activities. A number of Cretaceous mafic dykes intrude the Gondwana sedimentary formations and are focus of the present study. One set of these dykes strike NNE to ENE, are very fresh and mainly exposed within the Jharia, Bokaro and Karanpura basins; whereas the other set of dykes (including the well-known Salma mega dyke) trend NW to NNW, intrude mainly the Raniganj basin and show meagre hydrothermal alteration. Majority of the samples from both these dyke groups display ophitic or sub-ophitic textures and are essentially composed of augite/titan augite and plagioclase. On the basis of petrographic and geochemical characteristics the NNE to ENE dykes are identified as high-Ti dolerite (HTD) dykes and the NW to NNW dykes are referred to as low-Ti dolerite (LTD) dykes. Apart from the first-order distinction on their titanium contents, both these groups also show conspicuous geochemical differences. The HTD dykes contain relatively high values of iron, and high-field strength elements than those from the LTD dykes with an overlapping MgO contents.Although available field, paleomagnetic and limited geochronological data for most of the studied dykes suggests their emplacement during early Cretaceous period (110–115 Ma), the Salma dyke, dated to be of Deccan-age at ∼65 Ma, is an exception. Geochemically all the studied samples show an undoubted plume-derived character but their unequivocal affinity to either the early Cretaceous Kerguelen (Rajmahal) or the late-Cretaceous Reunion (Deccan) plume is not straightforward since they share bulk-rock characteristics of rocks derived from both these plumes. Even though, the spatial and temporal association of the mafic dykes of present study with the Rajmahal Traps are suggestive of their linkage to the Kerguelen plume activity, robust geochronological and paleomagnetic constraints are clearly required to understand the relative contributions of the two Cretaceous mantle plumes in the genesis of the mafic igneous activity in this interesting domain.  相似文献   

2.
The Central Indian Tectonic Zone (CITZ) is a Proterozoic suture along which the Northern and Southern Indian Blocks are inferred to have amalgamated forming the Greater Indian Landmass. In this study, we use the metamorphic and geochronological evolution of the Gangpur Schist Belt (GSB) and neighbouring crustal units to constrain crustal accretion processes associated with the amalgamation of the Northern and Southern Indian Blocks. The GSB sandwiched between the Bonai Granite pluton of the Singhbhum craton and granite gneisses of the Chhotanagpur Gneiss Complex (CGC) links the CITZ and the North Singhbhum Mobile Belt. New zircon age data constrain the emplacement of the Bonai Granite at 3,370 ± 10 Ma, while the magmatic protoliths of the Chhotanagpur gneisses were emplaced at c. 1.65 Ga. The sediments in the southern part of the Gangpur basin were derived from the Singhbhum craton, whereas those in the northern part were derived dominantly from the CGC. Sedimentation is estimated to have taken place between c. 1.65 and c. 1.45 Ga. The Upper Bonai/Darjing Group rocks of the basin underwent major metamorphic episodes at c. 1.56 and c. 1.45 Ga, while the Gangpur Group of rocks were metamorphosed at c. 1.45 and c. 0.97 Ga. Based on thermobarometric studies and zircon–monazite geochronology, we infer that the geological history of the GSB is similar to that of the North Singhbhum Mobile Belt with the Upper Bonai/Darjing and the Gangpur Groups being the westward extensions of the southern and northern domains of the North Singhbhum Mobile Belt respectively. We propose a three‐stage model of crustal accretion across the Singhbhum craton—GSB/North Singhbhum Mobile Belt—CGC contact. The magmatic protoliths of the Chhotanagpur Gneisses were emplaced at c. 1.65 Ga in an arc setting. The earliest accretion event at c. 1.56 Ga involved northward subduction and amalgamation of the Upper Bonai Group with the Singhbhum craton followed by accretion of the Gangpur Group with the Singhbhum craton–Upper Bonai Group composite at c. 1.45 Ga. Finally, continent–continent collision at c. 0.96 Ga led to the accretion of the CGC with the Singhbhum craton–Upper Bonai Group–Gangpur Group crustal units, synchronous with emplacement of pegmatitic granites. The geological events recorded in the GSB and other units of the CITZ only partially overlap with those in the Trans North China Orogen and the Capricorn Orogen of Western Australia, indicating that these suture zones are not correlatable.  相似文献   

3.
Temperatures have been measured in eight boreholes (ranging from 260 to 800 m in depth) in five Gondwana basins of the Damodar and Son valleys. With the aid of about 250 thermal conductivity determinations on core samples from these holes, heat flow has been evaluated. Measurements of radioactive heat generation have been made on samples of Precambrian gneisses constituting the basement for the Sonhat (Son valley) and Chintalapudi (Godavari valley) basins.Heat-flow values from all of the Damodar valley basins are within the narrow range of 69–79 mW/m2. The value from the Sonhat basin (107 mW/m2) is significantly higher. The generally high heat flows observed in Gondwana basins of India cannot be attributed to the known tectonism or igneous activity associated with these basins. The plots of heat flow vs. heat generation for three Gondwana basins (Jharia, Sonhat and Chintalapudi) are on the same line as those of three regions in the exposed Precambrian crystalline terrains in the northern part of the Indian shield. This indicates that the crust under exposed regions of the Precambrian crystalline rocks as well as the Gondwana basins, form an integral unit as far as the present-day geothermal character is concerned.  相似文献   

4.
The Barabazar granite, exposed at the northern margin of Singhbhum craton, Eastern India, occurs along the South Purulia Shear Zone (SPSZ) and is emplaced into the Palaeoproterozoic metapelites and felsic volcanics of Singhbhum Group. Geochemical, petrographical and geochronological studies on the Barabazar granite addressed in the work have wide implications on understanding the geodynamics of SPSZ during Palaeoproterozoic to Mesoproterozoic. Geochemically, Barabazar granite displays limited range of major oxides, alkali enrichment and highly fractionated features (SiO2 > 75%; Eu/Eu* = 0.16–0.33; enrichment of K, Rb, Th, U and Nb; depletion of Ba, Sr, P and Ti). It is predominantly peraluminous (molar Al2O3/CaO+Na2O+K2O (A/CNK) =1.14–144) and contains abundant alkali feldspar, perthite, and minor plagioclase, biotite and accessory minerals. Geochemical and petrological data indicates that it is A-type granite, which formed in ‘Within plate granite’ tectonic set up. The Barabazar granite was emplaced at ca. 1771 Ma (Pb-Pb) in rift related environs and evolved by partial melting of stabilized lower/middle crust (initial 87Sr/86Sr = 0.7302 ± 0.0066 and μ1 = 8.5 ± 0.5). Subsequently, the shear zone (SPSZ) developed during the closure of the riftogenic basin and was reactivated during the Grenvillian orogeny (Ca. 900–1300 Ma), resulting in rehomogenisation of the strontium isotopes and thereby yielding younger whole-rock Rb-Sr isotope age of c. 971 Ma for the Barabazar granite. Probably during this tectonic event, the Singhbhum craton (Southern India Shield) would have finally juxtaposed with Northern Indian Shield along Central Indian Tectonic Zone (CITZ) during the global Grenvillian orogeny.  相似文献   

5.
Paleo-Mesoproterozoic (1.0-2.4 Ga) north Singhbhum mobile belt (NSMB) is one of the prominent polymetallic mineral belt within the Singhbhum crustal province of eastern India lying between Chotanagpur gneissic complex (CGC) in the north and the Archaean Singhbhum craton (>2.4 Ga) in the south. The study area is located along the northern fringe of Dalma volcano-sedimentary basin. Lithological variations, structure, metamorphism and tectonic setting indicate good prospect for regional gold exploration within this area.Extensive work by Geological Survey of India (GSI) within this basin reveals gold occurrences with its concentrations ranging from 0.1 to 4 ppm within the carbonaceous cherty quartzite. Gold mineralization within the area has been reported to be associated with quartz ± quartz carbonate vein either as disseminated gold or as refractory gold within the sulfides. A detailed study on the occurrence of refractory gold associated with carbonaceous cherty quartzite has not been carried out by any of the previous workers. The present work report the occurrence of refractory gold associated with sulfides within the carbonaceous host rocks. Detailed petrographic studies of the carbonaceous host rock reveal the presence of sulfides such as pyrrhotite, pyrite, chalcopyrite, arsenopyrite. EPMA studies of the host rocks indicate the presence of invisible gold within the sulfides varying in concentration from 100 to 1000 ppm. Total organic carbon (TOC), high resolution X-ray diffraction (HR-XRD) and Fourier transform infrared spectrometry (FTIR) analysis show the presence of organic carbon within the samples. Presence of organic carbon facilitates reducing environment required for gold mineralization within carbonaceous host rock in the study area.  相似文献   

6.
《Gondwana Research》2000,3(1):55-63
Ultrapotassic rock is reported for the first time from the polycyclic Eastern Ghats belt, India, near Borra, Visakhapatnam district, Andhra Pradesh. The rock, consisting of leucite, kalsilite, Khyphen;feldspar, graphite, apatite together with diopside, meionite and phlogopite, occurs as thin vein and veinlets in diopsidite, in close spatial association with a granulite facies carbonate ensemble of massive dolomitic carbonate rock and calc silicate granulite. It was emplaced in the midhyphen;crust along late ductile shear zones. Subsequent to its emplacement, the ultrapotassic melt with liquidus leucite interacted with the granulite wall rock, incorporating at least 40% of the crustal components mainly as Si, Al, Mg and Ca. After necessary correction of the crustal contaminant, the recalculated K2O/Na2O ratio of ∼12 (molar) and K2O/Al2O3 ratio of ∼1 (molar) in the bulk rock composition indicates that the Borra ultrapotassic melt has a lamproitic affinity. However, it is significantly modified as well, particularly being impoverished in mafic liquidus phases and depleted in incompatible (excepting Rb, Th and U) and compatible trace elements, compared to an average lamproite. Leucite later underwent subsolidus decomposition to Khyphen;feldspar + kalsilite intergrowths. The emplacement of the ultrapotassic melt posthyphen;dates an early ultra high temperature metamorphism and also the 1000 Ma Grenvillian metamorphism in the Eastern Ghats Belt and is possibly of Panhyphen;African age. The extensive Khyphen;feldspathisation in the Eastern Ghats belt could also be linked with this ultrapotassic melt.  相似文献   

7.
The diamond bearing pipe rocks in Majhgawan-Hinota (more than four pipes) occur as intrusives in sandstones of Kaimur Group. These Proterozoic (974 ±30-1170 ±20 Ma) intrusive rocks, occupying the southeastern margin of Aravalli craton, were called as ‘micaceous kimberlite’ in tune with the reported kimberlite occurrences from other parts of the world. Judging from the definition of kimberlite, as approved by the IUGS Subcommission on Systematics of Igneous Rocks, it is not justified to call these rocks as ‘micaceous kimberlite’. Rather the mineralogical assemblages such as absence of typomorphic mineral monticellite (primary), abundance of phlogopite cognate, frequent presence of barite and primary carbonate mostly as calcite coupled with ultrapotassic and volatile-rich (dominantly H2O) nature and high concentration of incompatible elements (such as Ba, Zr, Th, U), low Th/U ratios, low REE and no Eu-anomaly clearly indicate a close similarity with that of South African orangeites. Thus orangeites of Proterozoic age occur outside the Kaapvaal craton of South Africa which are much younger (200 Ma to 110 Ma) in age.  相似文献   

8.
汉诺坝长英质麻粒岩包体同位素年代学及其地球动力学意义   总被引:10,自引:0,他引:10  
汉诺坝地区周坝长英质麻粒岩包体的岩石学、地球化学特征指示它们部分为变沉积岩。从周坝麻粒岩相变沉积岩包体的 Sm- Nd同位素分析结果获得了 (424± 10) Ma的全岩-单矿物 Sm- Nd同位素等时线年龄。全岩 Sm- Nd同位素组成指示这些包体可能与地表出露的太古宙麻粒岩有亲缘关系,但二者的 Pb- Pb与 U- Pb锆石年龄又反映二者成因不同。周坝长英质麻粒岩包体可能为残留于大陆下地壳的古老物质。 424 Ma的 Sm- Nd年龄可能反映了与加里东运动时期蒙古板块向华北地台俯冲而发生的变质与再就位抬升作用。  相似文献   

9.
Magnetovariational studies have been carried out in Singhbhum and surrounding regions during 1987 and 1989. Three deep-seated linear conductors have been identified. One of them is located to the north of Ranchi, Bokaro and Purulia extending in E-W direction coinciding with high heat flow region and Gondwana sediments. The trend of anomaly at Ranchi and Purulia at longer periods suggests a conductivity anomaly due to the mafic and ultramafic intrusions, considered to be responsible for the uplift of Chhotanagpur plateau. The second conductor is associated with the basin margin fault that separates the Singhbhum craton and Chhotanagpur plateau from the West Bengal basin. This conductive zone appears to extend further south and join the high heat flow region of Attri-Tarabalo. This conductor could be isolated only after eliminating the coast effect from the observed induction vectors. The third conductive zone follows the trend of Mahanadi valley located south of the Sukinda thrust. Conductive anomaly associated with the Sukinda and Singhbhum thrust zones could not be resolved due to the interference from neighbouring conductive structures. These two thrusts may not be very deep-seated structures. The Singhbhum granite batholith is found to be highly resistive and seems to extend to greater depths.  相似文献   

10.
Several volumetrically minor \(\sim \)2.8 Ga anorogenic granites and rhyolites occur along the marginal part of the Singhbhum craton whose origin and role in crustal evolution are poorly constrained. This contribution presents petrographic, geochemical, zircon U–Pb and trace element, and mineral chemical data on such granites exposed in the Pala Lahara area to understand their petrogenesis and tectonic setting. The Pala Lahara granites are calc-alkaline, high-silica rocks and define a zircon U–Pb age of 2.79 Ga. These granites are ferroan, weakly metaluminous, depleted in Al, Ca and Mg and rich in LILE and HFSE. They are classified as A2-type granites with high Y/Nb ratios. Geochemical characteristics (high \(\hbox {SiO}_{2}\) and \(\hbox {K}_{2}\hbox {O}\), very low MgO, Mg#, Cr, Ni and V, negative Eu anomaly, flat HREE and low Sr/Y) and comparison with melts reported by published experimental studies suggest an origin through high-temperature, shallow crustal melting of tonalitic/granodioritic source similar to the \(\sim \)3.3 Ga Singhbhum Granite. Intrusion of the Pala Lahara granites was coeval with prominent mafic magmatism in the Singhbhum craton (e.g., the Dhanjori mafic volcanic rocks and NNE–SSW trending mafic dyke swarm). It is suggested that the \(\sim \)2.8 Ga A-type granites in the Singhbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting.  相似文献   

11.
The dominant geodynamic processes that underpin the formation and evolution of Earth’s early crust remain enigmatic calling for new information from less studied ancient cratonic nuclei.Here,we present U-Pb ages and Hf isotopic compositions of detrital zircon grains from^2.9 Ga old quartzites and magmatic zircon from a 3.505 Ga old dacite from the Iron Ore Group of the Singhbhum craton,eastern India.The detrital zircon grains range in age between 3.95 Ga and 2.91 Ga.Together with the recently reported Hadean,Eoarchean xenocrystic(up to 4.24 Ga)and modem detritus zircon grains from the Singhbhum craton,our results suggest that the Eoarchean detrital zircons represent crust generated by recycling of Hadean felsic crust formed at^4.3-4.2 Ga and^3.95 Ga.We observe a prominent shift in Hf isotope compositions at^3.6-3.5 Ga towards super-chondritic values,which signify an increased role for depleted mantle and the relevance of plate tectonics.The Paleo-,Mesoarchean zircon Hf isotopic record in the craton indicates crust generation involving the role of both depleted and enriched mantle sources.We infer a short-lived suprasubduction setting around^3.6-3.5 Ga followed by mantle plume activity during the Paleo-,Mesoarchean crust formation in the Singhbhum craton.The Singhbhum craton provides an additional repository for Earth’s oldest materials.  相似文献   

12.
Heavy metal distribution patterns in river sediments aid in understanding the exogenic cycling of elements as well as in assessing the effect of anthropogenic influences. In India, the Subernarekha river flows over the Precambrian terrain of the Singhbhum craton in eastern India. The rocks are of an iron ore series and the primary rock types are schist and quartzite. One main tributary, the Kharkhai, flows through granite rocks and subsequently flows through the schist and quartzite layers. The Subernarekha flows through the East Singhbhum district, which is one of India’s industrialised areas known for ore mining, steel production, power generation, cement production and other related activities. Freshly deposited river sediments were collected upstream and downstream the industrial zone. Samples were collected from four locations and analysed in <63-μm sediment fraction for heavy metals including Zn, Pb, Cd and Cu by anodic stripping voltammetry. Enrichment of these elements over and above the local natural concentration level has been calculated and reported. Sediments of the present study are classified by Muller’s geo-accumulation index (I geo) and vary from element to element and with climatic seasons. During pre-monsoon period the maximum I geo value for Zn is moderately to highly polluted and for Cu and Pb is moderately polluted, respectively, based on the Muller’s standard. Anthropogenic, lithogenic or cumulative effects of both components are the main reasons for such variations in I geo values. The basic igneous rock layer through which the river flows or a seasonal rivulet that joins with the main river may be the primary source for lithogenic components.  相似文献   

13.
胶东莱西地区高压麻粒岩的Sm-Nd同位素年代学   总被引:19,自引:1,他引:19       下载免费PDF全文
在胶东地区莱西-莱阳-栖霞一带的晚太古代花岗片麻岩中,出露一条长约200多公里,NE向展布的高压基性麻粒岩-超镁铁质岩带。由于这条岩带东邻苏鲁高压-超高压变质带,西接华北克拉通基底的古老变质岩,因此其区域构造归属以及大地构造意义是一个十分重要的问题。本文分析的高压基性麻粒岩样品具有降压退变质结构,退变质矿物组合为麻粒岩相。矿物-全岩Sm-Nd等时线年龄为1752Ma,全岩T(DM)模式年龄为2788Ma,与华北克拉通北缘的高压基性麻粒岩的同位素年龄完全相似。根据高压麻粒岩-超镁铁质岩的围岩片麻岩特征和同位素年龄,可以确定这条出露于华北陆块东缘的岩带是早前寒武纪华北克拉通下地壳岩石,其抬升与华北陆块与扬子陆块的拼合有关。  相似文献   

14.
The northern margin of the Eastern Ghats Mobile belt against the Singhbhum craton exposes granitic rocks with enclaves from both the high-grade and low-grade belts. A shear cleavage developed in the boundary region is also observed in these granitoids. Field features and petrography indicate syn-tectonic emplacement of these granitoids. Petrology-mineralogy and geochemistry indicate that some of the granitoids are derived from the high-grade protoliths by dehydration melting. Others could have been derived from low-grade protoliths. Moreover, microstructural signatures in these granitoids attest to their syn-collisional emplacement.  相似文献   

15.
The Mianning–Dechang(MD) rare earth element(REE) belt, located in the northern Kangdian axis(KDA) in the western margin of the Yangtze platform, is one of the most economically significant REE mineral belts in China. REE mineralization is associated with Himalayan carbonatite–alkaline complexes. The Lizhuang nordmarkite occurred in the northern part of the MD REE belt. The majority of zircons from the Lizhuang nordmarkite are characterized by pronounced positive Ce yet slightly negative Eu anomalies and high U/Yb. Moreover, all zircons have stable Hf isotopic compositions with initial ~(176) Hf/(~(177)Hf) ratios ranging from 0.282739 to 0.282808 and an average value of 0.282773. The negative Lu/Hf and positive ε_(Hf)(t) range from-0.98 to-0.94(average value of-0.96) and from-0.56 to 1.89(the majority is positive, with an average of 0.66), respectively. These characteristics indicate that the rock is derived from an enriched mantle and subducted material. LA-ICP-MS analysis of the zircons from the intrusion yields a weighted mean ~(206)Pb/(~(238)U) age of 28.57±0.61 Ma. During this period, the tectonic activity in the KDA is not plate subduction but an intraplate tectonic exhibiting fold–thrust and strike–slip behaviors in the western marginal zone of the Yangtze platform(WMYB). We suggest the possibility of an existing eastward old slab subduction under WMYB combined with a regional tectonic evolution. The Lizhuang nordmarkite may be derived from an enriched mantle beneath the western part of the Yangtze craton, which originated from the remelting of the Tethys subducting slab, because of the Himalayan strike–slip that formed a special type of REE deposit called strike–slip-type REE deposits.  相似文献   

16.
Reappraisal of field relationships between the different lithological ensembles supported by available geochronological data, and taking due note of the tectono-metamorphic, magmatic and sedimentation history helped to build up a coherent crustal evolutionary history of the Singhbhum Archaean craton, eastern India. The evolution of the earliest sialic crust, as the isotope ages suggest, was around 3700 Ma or even earlier. Deposition of the oldest, dominantly metasedimentary supracrustals, the Older Metamorphic Group (OMG), was initiated at around 3380 Ma, i.e. after a gap of about 320 million years. The closing of OMG basins synchronously with the emplacement of a granitoid phase was at ca.3285 Ma. No other fabric-forming ductile deformation and metamorphism associated with the development of foliation and mineral lineation is known in the rocks of the Singhbhum Archaean craton subsequent to this event. Formation of the succeeding geological ensembles including the deposition of BIF-bearing Iron Ore Group (IOG) and the emplacement of the post-IOG granitoids at ca.3100 Ma can be described as ??lsnon-orogenic?? event taking place during the phase of tectonic quiescence. Supracrustals like the Dhanjori and Simlipal mafic volcanics with intercalated beds of arenite evolved later during the phase of Plume outburst at around 2800 Ma. The end-Archaean intrusion of Newer Dolerite dykes in conjugate sets and the deposition of Kolhan Group in an N-S oriented basin during an E-W stress system mark the culmination of the Archaean crust-building activity in the Singhbhum Archaean craton.  相似文献   

17.
内蒙古赵井沟大型铌钽矿床地质特征及成因   总被引:8,自引:2,他引:6  
内蒙古武川县赵井沟矿床是近年来在内蒙古中部地区找到的一处大型铌钽矿床.铌钽氧化物储量为8000余吨(钽氧化物含量大于50%),其中,ω(Nb2O5)和ω(Ta2O5)的平均含量为0.011%和0.012%.铌钽矿化主要在早二叠世碱长花岗岩类侵入杂岩体内,呈浸染状和条带状产出,并且构成似层状、脉状和透镜状矿体.研究表明,碱长花岗岩、碱长花岗细晶岩和碱长花岗伟晶岩锆石U-Pb同位素年龄值分别为(277.14±0.82) Ma、(277.0±2.1) Ma和(276.6±2.1) Ma.鉴于铌钽矿化呈浸染状在含矿侵入杂岩体内产出,推测赵井沟矿床的成矿作用与海西期构造-岩浆活动有关.古大陆块体伸展构造条件下,富钠质钙-碱性岩浆作用为铌钽矿床的形成提供了动力和物质来源,而断裂构造为成矿物质沉淀聚集创造了空间条件.赵井沟矿床属富钠的过铝质花岗岩型铌钽矿床.  相似文献   

18.
中国北方中生代大规模成矿作用的期次及其地球动力学背景   总被引:170,自引:67,他引:170  
本文论述了中国北方(包括华北、东北及长江中下游地区)金属矿床的空间分布特点,分析和讨论了主要成矿区带(长江中下游、小秦岭-熊耳山、西秦岭、华北克拉通北缘和大兴安岭南段)及一些大型矿集区(胶东、鲁西和乌奴格吐-甲乌拉)中矿化组合和成矿期次以及地球动力学背景。提出中国北方大规模成矿作用出现在200-160Ma,140Ma左右和120Ma左右三个峰期。通过对中生代地球动力学演化的分析研究,认为三大成矿事件所对应的地球动力学背景分别为后碰撞造山过程、构造体制大转折晚期和岩石圈大规模快速减薄。在200-160Ma时期主要表现为大厚度岩石圈局部伸展有关的岩浆-热成矿,在140Ma左右时期成矿表现为与深源花岗质岩石有关的斑岩-夕卡岩矿床,而120Ma左右时期的成矿是在岩石圈快速减薄过程有大量地幔流体参与成矿作用。  相似文献   

19.
In the Damodar Valley Basin, coalfields containing coal bearing Barakar Formation are Raniganj, Jharia, Bokaro, Ramgarh, and Karanpura. The Barakar Formation is composed of conglomerate, sandstone, siltstone, shale, fireclay, and coal. The lower part of Barakar Formation represents a braided channel deposit, and also in few places glacio-fluvial deposit which changes to meandering channel system with the formation of some ox-bow lake, and cut-off channel in the middle part. In a few places deltaic/brackish water condition possibly existed along with this meandering channel system. In the upper part of Barakar Formation, marine signatures are more prominant. Marine signatures/influences have been reported from Barakar Formation of Ramgarh, South Karanpura, and West Bokaro coalfields on the basis of trace fossil assemblage, sedimentation character, and trace element content. Although, definite marine signatures have not been observed from Jharia, and Raniganj coalfields, high concentration of boron, vanadium, and chromium, and presence of skolithos, and thalassinoides burrows possibly suggest a brackish water condition. The upper part clearly suggest that the sediments were deposited in a geographic setting very close to the sea or at the edge of the sea possibly in a peritidal setting where storm activity played a vital role during sedimentation which in turn suggests the presence of a broad shallow sea (epeiric/epicontinental sea) that develop during times of high sea level. The sea water possibly entered from the northeastern side as vast seaways or as embayment through the Damodar Valley which acted as a channel.  相似文献   

20.
秦岭造山带东段秦岭岩群的年代学和地球化学研究   总被引:20,自引:14,他引:6  
时毓  于津海  徐夕生  邱检生  陈立辉 《岩石学报》2009,25(10):2651-2670
对东秦岭地区的陕西省洛南县、宁陕县、长安县和河南省淅川县出露的四个秦岭岩群变质岩进行的岩石学和地球化学研究表明,样品主要由变质火山岩和变质沉积岩组成.详细的锆石U-Pb定年结果显示三个正变质岩均形成于新元古代早期(971~843Ma),而副变质岩中富集大量新元古代碎屑锆石,根据最年轻的谐和年龄(859Ma)和早古生代的变质年龄,推测其沉积时代为新元古代中晚期.因此,北秦岭南部的秦岭岩群的变质岩主要由新元古代早期的火成岩和新元古代中晚期的沉积岩组成.变质作用主要发生在加里东期,局部有燕山期的变质作用叠加.指示北秦岭的造山作用主要发生在早古生代.岩石地球化学研究还显示秦岭岩群的新元古代火山岩均形成于火山弧构造环境,沉积岩沉积于大陆弧-活动大陆边缘环境,指示秦岭造山带在新元古代早期是一个火山弧.秦岭岩群的火山岩和沉积岩在形成时代和构造环境方面与扬子克拉通西缘的特征非常相似,表明位于北秦岭造山带的秦岭岩群应归属于扬子克拉通陆块,是扬子北缘的一个大陆边缘弧.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号